JPH0257741A - Vibration preventing device - Google Patents

Vibration preventing device

Info

Publication number
JPH0257741A
JPH0257741A JP10374689A JP10374689A JPH0257741A JP H0257741 A JPH0257741 A JP H0257741A JP 10374689 A JP10374689 A JP 10374689A JP 10374689 A JP10374689 A JP 10374689A JP H0257741 A JPH0257741 A JP H0257741A
Authority
JP
Japan
Prior art keywords
particles
vibration
preventing device
vibration preventing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10374689A
Other languages
Japanese (ja)
Inventor
Eiji Hattori
英次 服部
Yasuo Oguri
康生 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Publication of JPH0257741A publication Critical patent/JPH0257741A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/30Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To prevent wears of particles and the wall of a vibration preventing device by hydrolyzing and polymerizing metal alcoxides or derivative therefrom, dispersing spherical particles containing electrolytic solution obtained therefrom in an electrical insulative liquid, and thereby forming an electrical viscous fluid. CONSTITUTION:Metal alcoxides, for ex. Si(OC2H2), are hydrolyzed and polymerized, and spherical silica is separated from alcohol solution and dried to provide spherical particles containing electrolytic solution. These spherical particles are dispersed in electrical insulative liquid such as silicon oil, wherein the amount of used particles shall normally be 5-50vol.% of the electric insulative liquid. This electrical viscous fluid is used to vibration preventing device, and the viscosity of the liquid in a piping 4 is varied by impressing voltage on electrodes 10, 11, and thereby the damping performance and dynamic rigidity are adjusted. Therein the wall and particles are substantially free of wear even after oscillative reversals corresponding to running for 100 thousands of kms have been applied to this vibration preventing device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種の有害な振動を防止する防振装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration isolator that prevents various harmful vibrations.

L従来の技術】 従来、防振装置の一つに、振動減衰媒体として電気粘性
流体を用いた防振装置が知られている。
BACKGROUND OF THE INVENTION Conventionally, one type of vibration isolator is known that uses an electrorheological fluid as a vibration damping medium.

ここで、電気粘性流体とは、印加電圧の作用(OFF、
ON、電圧の変化)によってその見掛けの粘度が迅速か
つ可逆的に変化する、いわゆる電気粘性効果を示す流体
である。従って、振動源からの振動数に応じて印加電圧
を変化させることにより、電気粘性流体の粘度を変化さ
せて振動を吸収することができる。従来、電気粘性流体
の1つとして、電気絶縁性液体、イオンを吸着ないしは
含有する微粒子および少量の水を強力撹拌して得られた
ものが知られている。
Here, the electrorheological fluid refers to the effect of applied voltage (OFF,
It is a fluid that exhibits the so-called electrorheological effect, in which its apparent viscosity changes rapidly and reversibly depending on the voltage (on, voltage change). Therefore, by changing the applied voltage according to the frequency of vibration from the vibration source, the viscosity of the electrorheological fluid can be changed to absorb vibrations. Conventionally, as one type of electrorheological fluid, one obtained by vigorously stirring an electrically insulating liquid, fine particles adsorbing or containing ions, and a small amount of water is known.

上記流体における電気粘性効果は次のように考えられる
。すなわち5強力撹拌処理によって水が微粒子中に移行
して電解質溶液を生ぜしめ、電圧を印加した際には、こ
うして得られた電解質溶液中のイオンが微粒子中を移動
・偏在し、当該粒子は分離する。各微粒子は、上記分離
に基づく静電気引力により互いに凝集し、その結果とし
て、電気粘性効果が発現される。
The electrorheological effect in the above fluid can be considered as follows. In other words, water moves into the fine particles through the 5 strong stirring process to create an electrolyte solution, and when a voltage is applied, the ions in the electrolyte solution thus obtained move and become unevenly distributed in the fine particles, causing the particles to separate. do. The fine particles aggregate with each other due to electrostatic attraction based on the separation described above, and as a result, an electrorheological effect is developed.

ところで、電気粘性流体を利用した防振装置においては
該流体がオリフィス状の間隙を通過する際の粘度変化を
利用することが一般的である。
By the way, in a vibration isolating device using an electrorheological fluid, it is common to utilize a change in viscosity when the fluid passes through an orifice-shaped gap.

従って分散相である粒子と防振装置の壁との摩耗が問題
となる。
Therefore, wear between the particles, which are the dispersed phase, and the walls of the vibration isolator becomes a problem.

[発明の目的] 本発明は、上記の問題点を改良した防振装置を提供する
ことを目的とするものである。
[Object of the Invention] An object of the present invention is to provide a vibration isolating device that improves the above-mentioned problems.

[発明の構成] 以下、本発明を添付噸面に従って詳細に説明する。[Structure of the invention] Hereinafter, the present invention will be explained in detail according to the attached figures.

第1図は本発明防振装置の概念的断面図である。上部お
よび下部が圧力変化によって変形復元可能に作られたハ
ウジングを、プレート電極を上下に有するオリフィスに
よって上下に区分し、上下の各分画空間内に電気粘性流
体を充填し、ハウジング上部に@置された振動光生装置
からの振動数に応じて印加電圧を変化させるように構成
された防振装置である。
FIG. 1 is a conceptual sectional view of the vibration isolator of the present invention. A housing whose upper and lower parts can be deformed and restored by changes in pressure is divided into upper and lower parts by an orifice having plate electrodes on the upper and lower sides, each of the upper and lower compartment spaces is filled with electrorheological fluid, and the housing is placed at the upper part of the housing. This vibration isolator is configured to change the applied voltage according to the frequency of vibration from the vibration light generation device.

本発明において、電気粘性流体は、金属アルコキサイド
又はその誘導体を加水分解・重縮合させることによって
得られた、電解質溶液を含有する球状粒子を電気絶縁性
液体に分肢させて構成される。
In the present invention, the electrorheological fluid is composed of electrically insulating liquid containing spherical particles containing an electrolyte solution obtained by hydrolyzing and polycondensing a metal alkoxide or a derivative thereof.

金属アルコキサイドとしては、r Metal Alk
oxides (D、C,Bradley、R,C,M
ehrotra、D、P、Gaur共著) Acade
mic Preas 1987Jに記述されている種々
のアルコキサイドが使用可能であるが、代表的なものと
してはSi、Ti、Zr等のアルコキサイドやBa−T
i、5r−Ti、Pb−Tj。
As metal alkoxide, r Metal Alk
oxides (D, C, Bradley, R, C, M
co-authored by Ehrotra, D, P, and Gaur) Acade
Various alkoxides described in mic Preas 1987J can be used, but typical examples include alkoxides such as Si, Ti, and Zr, and Ba-T.
i, 5r-Ti, Pb-Tj.

Pb−Ti−Zr、Li−Nb等の複合アルコキサイド
が挙げられる。
Examples include complex alkoxides such as Pb-Ti-Zr and Li-Nb.

金属アルコキサイドの加水分解は、一般に、アルコキサ
イドを溶解したアルコール溶液とアルコール水溶液とを
混合することによって行なわれるが、加水分解速度を適
宜調整することによって、金属酸化物の非晶質体を実質
的に球状の粒子として析出させることができる。加水分
解速度は、通常、反応系内のアルコキサイドと水のモル
比、濃度および必要に応じて加えられる加水分解の触媒
(アルカリまたは酸等)の量等によって調整される0球
状粒子を得るための条件はアルコキサイドの種類によっ
て異なるため一概には決定できないが、例えばS i 
(OCt Hs )   T 1COCt fEs )
a 、Zr COC* Hs )4 (D場合は、通常
、[H! 01 / [アルコキサイド1モル比が1〜
150.より好ましくはl−1oo、アルコキサイドの
濃度(mol/l)が0.05〜10、より好ましくは
0.05〜5、水の濃度(m o l / l )が0
.1〜20、より好ましくは0、INtoの範囲が好ま
しい。
Hydrolysis of metal alkoxides is generally carried out by mixing an alcohol solution in which the alkoxide is dissolved with an alcohol aqueous solution, but by appropriately adjusting the hydrolysis rate, the amorphous form of the metal oxide can be substantially removed. It can be precipitated as spherical particles. The hydrolysis rate is usually adjusted by the molar ratio and concentration of alkoxide and water in the reaction system, and the amount of hydrolysis catalyst (alkali or acid, etc.) added as necessary. Conditions cannot be determined unconditionally because they vary depending on the type of alkoxide, but for example, Si
(OCt Hs ) T 1COCt fEs )
a, ZrCOC*Hs)4 (In case of D, usually [H!01/[alkoxide 1 molar ratio is 1~
150. More preferably l-1oo, the concentration of alkoxide (mol/l) is 0.05 to 10, more preferably 0.05 to 5, and the concentration of water (mol/l) is 0.
.. A range of 1 to 20, more preferably 0, INto is preferred.

第2図は実施例に於て、S i  (QCs Ha )
 aの加水分解で得られたシリカの球状粒子の走査電子
顕微鏡写真(倍率10,000倍)であるが、同図から
明らかなように、各粒子は球状を呈しまたその粒径分布
もシャープである。
FIG. 2 shows S i (QCs Ha ) in the example.
This is a scanning electron micrograph (10,000x magnification) of spherical silica particles obtained by hydrolysis of a.As is clear from the figure, each particle is spherical and the particle size distribution is sharp. be.

球状シリカはアルコール溶液中から固形分を濾過または
遠心沈降分離などにより分離し、ロータリーエバポレー
タなどにより乾燥することによって得られ、平均粒径は
0.05〜2μmの範囲である。
Spherical silica is obtained by separating the solid content from an alcohol solution by filtration or centrifugal sedimentation, and drying it using a rotary evaporator or the like, and has an average particle size in the range of 0.05 to 2 μm.

そして、上記球状粒子は電解質溶液を含有したものでな
くてはならず、当該溶液中のイオンにより、前述の原理
に基づいて電気粘性効果が発現される。
The spherical particles must contain an electrolyte solution, and the ions in the solution produce an electrorheological effect based on the above-mentioned principle.

電解質溶液を構成する電界質としては、水等極性溶媒中
でイオンに解離するものであれば特に制限はなく、例え
ば、N Hs 、 N a OH、N a ClLiC
1、Ba Os 、Cab、MgSO4,FO(N O
sL等の無機化合物や、スルホン酸ソーダ、カルボン酸
ソーダ、アルキルベンゼンスルホン酸ソーダ、ポリスチ
レンスルホン酸ソーダ、脂肪酸カルシウム塩、ナフタリ
ンスルホン酸のホルマリン縮合物などのイオン性界面活
性剤等が挙げられる。
The electrolyte constituting the electrolyte solution is not particularly limited as long as it dissociates into ions in a polar solvent such as water; for example, N Hs, Na OH, Na ClLiC.
1.BaOs,Cab,MgSO4,FO(NO
Examples include inorganic compounds such as sL, and ionic surfactants such as sodium sulfonate, sodium carboxylate, sodium alkylbenzenesulfonate, sodium polystyrene sulfonate, fatty acid calcium salt, and formalin condensate of naphthalenesulfonic acid.

電解質溶液を構成する溶媒としては、使用する電解質を
十分溶解しつるものであれば何れの掻性溶媒をも使用で
きる。
As the solvent constituting the electrolyte solution, any scratchy solvent can be used as long as it can sufficiently dissolve the electrolyte used.

電解質溶液の濃度および含有量は、電界を印加した際に
導通な起こさない範囲から適宜選択されるが、濃度は、
通常011〜90重石%、好ましくは5〜50重量%の
範囲から選択され、含有量は、0.1〜20重世%、好
ましくは1−10重置%の範囲から選択される。
The concentration and content of the electrolyte solution are appropriately selected within a range that does not cause conduction when an electric field is applied.
It is usually selected from the range of 0.11 to 90% by weight, preferably 5 to 50% by weight, and the content is selected from the range of 0.1 to 20% by weight, preferably 1 to 10% by weight.

金属アルコキサイドの加水分解・重縮合は、前述のよう
に、NHs7iの触媒の存在下に実施し得るので、かか
る場合は、当該触媒をそのまま電解質として利用するこ
とができる。すなわち、金属アルコキサイドの加水分解
・重縮合の後、球状シリカは、アルコール溶液から分離
され、乾燥されるが、この乾燥を完全に行なうことなく
、空気中で200℃まで加熱した場合の加熱M世減少が
0.1〜20!l!%、好ましくは1〜10重量%に成
るように乾燥すれば、上記範囲の電解質溶液を含有する
球状粒子が得られる。なお、上記の加熱重量減少は、l
O℃/分の昇温速度における示差熱分析における値であ
る。
As mentioned above, the hydrolysis and polycondensation of the metal alkoxide can be carried out in the presence of the NHs7i catalyst, and in such a case, the catalyst can be used as it is as an electrolyte. That is, after hydrolysis and polycondensation of the metal alkoxide, the spherical silica is separated from the alcohol solution and dried. Decrease is 0.1-20! l! %, preferably 1 to 10% by weight, yields spherical particles containing an electrolyte solution in the above range. In addition, the above heating weight reduction is 1
This is a value obtained by differential thermal analysis at a heating rate of 0° C./min.

勿論、上記乾燥、あるいは、その前の水洗を完全に実施
し、その後に、電解質溶液を含有させることも可能であ
る。このような場合、電解質溶液を構成する換性溶媒と
して、水よりも高沸点の溶媒を使用するのが好ましい、
すなわち、水などの低沸点溶媒を使用した電気粘性流体
は、高温や高剪断力のために発熱するような環境におい
て長期間に亘って使用すると、溶媒が揮発、飛敗し、そ
の結果、十分な電気粘性効果が発現されなくなるという
問題があるが、高沸点溶媒の使用によってこのような問
題は一挙に解決し得る。上記目的のために使用される高
沸点礪性溶媒としては、グリコール、エタノールアミン
などが挙げられるが、そのなかでもエチレングリコール
が好適に用いられる。この際、電解質溶液の含浸の仕方
としては球状粒子、電解質、極性溶媒及び電気絶縁性液
体をボールミル等で数時間混合する、又は球状粒子を電
解質溶液に含浸する等いずれの方法でも行なうことがで
きる。
Of course, it is also possible to completely carry out the above-mentioned drying or washing with water before drying, and then add the electrolyte solution. In such cases, it is preferable to use a solvent with a higher boiling point than water as the converting solvent constituting the electrolyte solution.
In other words, if an electrorheological fluid that uses a low-boiling point solvent such as water is used for a long period of time in an environment that generates heat due to high temperatures or high shear forces, the solvent will volatilize and break down, resulting in insufficient Although there is a problem that the electrorheological effect is no longer expressed, such problems can be solved at once by using a high boiling point solvent. Examples of the high boiling point sparse solvent used for the above purpose include glycol and ethanolamine, among which ethylene glycol is preferably used. At this time, the method of impregnating the electrolyte solution can be carried out by mixing the spherical particles, electrolyte, polar solvent, and electrically insulating liquid in a ball mill for several hours, or by impregnating the spherical particles with the electrolyte solution. .

電気絶縁性液体は球状粒子を安定に分散でき、かつ、絶
縁抵抗が高く、電解質溶液を溶解しないものが使用され
、具体的には、シリコーンオイル、トランスオイル、エ
ンジンオイル、エステルやパラフィン、オレフィンまた
は芳香族炭化水素等から適宜選ばれる。 電気絶縁性液
体に対する球4状粒子の使用量は、通常5〜50体積%
が用いられ、好ましくはlO〜40体積%とされる。
The electrically insulating liquid used is one that can stably disperse spherical particles, has high insulation resistance, and does not dissolve the electrolyte solution, and specifically, silicone oil, transformer oil, engine oil, ester, paraffin, olefin, or Appropriately selected from aromatic hydrocarbons and the like. The amount of spherical 4-shaped particles used in electrically insulating liquid is usually 5 to 50% by volume.
is used, preferably 10 to 40% by volume.

分散方法はボールミルや超音波分散で代表される一般的
な混合分散機が使用できる。
As a dispersion method, a general mixing and dispersing machine such as a ball mill or an ultrasonic dispersion machine can be used.

電気粘性効果の測定は、共軸二重円筒型回転粘度計を使
用し、内外円筒間に電圧を印加したときの同一剪断速度
(1825ec−’)における剪断応力の増加量を求め
、これを粘度変化に換算する方法によって行なうことが
できる。
To measure the electrorheological effect, use a coaxial double cylinder rotational viscometer to determine the amount of increase in shear stress at the same shear rate (1825 ec-') when a voltage is applied between the inner and outer cylinders, and calculate this as the viscosity. This can be done by converting it into a change.

以下、実施例により本発明を具体的に説明するが、本発
明はその要旨を越えないかぎり、以下の実施例に限定さ
れるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

[′X施例] 本防振装置は、後述する中間板1O111の中を通って
走る配管4によって互いに液圧的に接続された上側室l
と下側室2とから成っている。上側室lはゴム弾性材料
からなる厚肉の中空円錐状室壁5によって形成され、こ
の室壁5は上側がボルト7を介して例えばエンジンがそ
こに固定される支持板6に、下側室は保持フランジ8に
接続されている。
['X Example] This vibration isolator has upper chambers l hydraulically connected to each other by a pipe 4 running through an intermediate plate 1O111, which will be described later.
and a lower chamber 2. The upper chamber l is formed by a thick hollow conical chamber wall 5 made of rubber-elastic material, which is connected on the upper side to a support plate 6 to which, for example, an engine is fixed via bolts 7, and on the lower side to a support plate 6 to which, for example, an engine is fixed. It is connected to the retaining flange 8.

中間板3において両方の室1,2を液圧的に接続する配
管4は、2枚の金属プレートlo、11によって形成さ
れ、これらのプレート10゜11は中間板3の相応した
中空室の中に互いに間隔をおいて入れられ、その間隔及
幅が配管4の断面積を決定する。プレートio、ttの
一端に上側室lへの通路12が、他端に下側室2への通
路13がそれぞれ設けられている。
The pipe 4, which hydraulically connects the two chambers 1, 2 in the intermediate plate 3, is formed by two metal plates lo, 11, which are inserted into the corresponding hollow chambers of the intermediate plate 3. are spaced apart from each other, and the spacing and width determine the cross-sectional area of the pipe 4. A passage 12 to the upper chamber 1 is provided at one end of the plates io, tt, and a passage 13 to the lower chamber 2 is provided at the other end.

上側電橋として作用するプレート10は外に導かれた配
線14を介して調整可能な電源15に接続され、一方下
側電極11は大地電位に接続されている。
The plate 10, which acts as an upper bridge, is connected to an adjustable power source 15 via an externally led wire 14, while the lower electrode 11 is connected to ground potential.

両方の室1,2は以下の方法で製造した電気粘性流体で
充填した。
Both chambers 1, 2 were filled with an electrorheological fluid produced in the following manner.

すなわち、Si  (OCx Ha )、186.0g
をエチルアルコール670.7gに溶解したA液と28
重四%NH,OH水溶液223.6g、水173.9g
を同じくエチルアルコール1999.5gに溶解したB
液を混合し直径0.56μmのシリカ粒子を析出させた
0粒子直径の標準偏差は1.05であった。このスラリ
ーを常法に従い粒子を分離し、100℃、1時間、真空
乾燥して粉末状態の粒子を得た。この粒子はNHs  
(1,3重量%)、水(4,1重置%)、エタノール(
0,6重量%)を含んでおり、200℃で空気中加熱し
たときの重量減少は6%であった0次にこの粒子30.
1gをシリコーンオイル(foes)32.8gに加え
、ボールミルにて12時間、分散混合した。こうして得
られた電気粘性流体について共軸二重円筒型回転粘度計
を使用し、内外円筒間に電圧を印加したときの同一剪断
速度(162sec””)における剪断応力を測定した
(電礪間距離1mm、温度25℃)。
That is, Si (OCx Ha ), 186.0 g
and 28
Heavy 4% NH,OH aqueous solution 223.6g, water 173.9g
B dissolved in 1999.5 g of ethyl alcohol
The standard deviation of the diameter of 0 particles was 1.05 when the liquid was mixed and silica particles with a diameter of 0.56 μm were precipitated. The particles of this slurry were separated according to a conventional method and dried under vacuum at 100° C. for 1 hour to obtain particles in a powder state. This particle is NHs
(1.3% by weight), water (4.1% by weight), ethanol (
0.6% by weight), and the weight loss when heated in air at 200°C was 6%.
1 g was added to 32.8 g of silicone oil (FOES), and the mixture was dispersed and mixed in a ball mill for 12 hours. Using a coaxial double cylinder rotational viscometer for the electrorheological fluid thus obtained, the shear stress was measured at the same shear rate (162 sec) when voltage was applied between the inner and outer cylinders (distance between 1 mm, temperature 25°C).

得られた結果を第3図に示す。The results obtained are shown in FIG.

この電気粘性流体は本防振装置中で先ず普通の液体のよ
うに作用し、大きな振幅で低い周波数の振動の際に配管
4を通して上側室lかも下側室2へ流れ、その場合配管
4内にある液体の移動量によって相応した絞り作用が生
ずる。電極10,11に電圧を印加した場合、配管4内
の液体の粘性が変化するので、本防振装置は異なった減
衰性能を示す、印加電圧の大きさを適当に設定すること
により、?It気粘気流性流体管4を通しての液体交換
を殆ど不可能にするほど固くなる。即ちこれは液体の粘
性を制御することによってエンジン支持体の減衰性能並
びに動的剛性を調整でき、あらゆる任意の負荷状態に合
せられることを意味している。
This electrorheological fluid first acts like an ordinary liquid in the present vibration isolator and, during vibrations of large amplitude and low frequency, flows through the pipe 4 into the upper chamber 1 and also into the lower chamber 2, in which case it flows into the pipe 4. A certain amount of liquid displacement results in a corresponding throttling effect. When a voltage is applied to the electrodes 10 and 11, the viscosity of the liquid in the pipe 4 changes, so this vibration isolator exhibits different damping performance. It becomes so stiff as to make liquid exchange through the gas-viscous fluid tube 4 almost impossible. This means that by controlling the viscosity of the liquid, the damping performance as well as the dynamic stiffness of the engine support can be adjusted and adapted to any arbitrary load situation.

10万km走行に相当する振動回数を本防振装置に加え
た後、壁からの摩耗及粒子の摩耗をチエツクした結果摩
耗は殆ど見出せなかった。
After subjecting the vibration isolator to the vibration frequency equivalent to running 100,000 km, we checked for abrasion from the wall and particle abrasion, and found almost no abrasion.

[発明の効果] 本発明は上述のごとく、従来の先行技術で開示されてい
る防振装置にくらべて、より安定性が高く、広範囲に何
等の可動部品を必要とすることのない防振装置を与える
[Effects of the Invention] As described above, the present invention provides a vibration isolator that is more stable than the vibration isolators disclosed in the prior art and does not require any moving parts over a wide range. give.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく防振装置の断面図である。 l、2−一一室、3−m−中間板、4−m−配管、1O
111−−−プレート電極、12,13−一一通路、1
5−−−電源 第2図は実施例に使用した球状シリカ粒子の走査型電子
顕微鏡写真である。 第3図は本発明の電気粘性流体の印加電界に対する増粘
効果を示すグラフであり、横軸は印加電界(kv/mm
)、縦軸は粘度(poise)である。 第1図
FIG. 1 is a sectional view of a vibration isolator according to the present invention. l, 2-11 room, 3-m-intermediate plate, 4-m-piping, 1O
111---Plate electrode, 12, 13-11 passage, 1
5 - Power source Figure 2 is a scanning electron micrograph of spherical silica particles used in Examples. FIG. 3 is a graph showing the thickening effect of the electrorheological fluid of the present invention with respect to the applied electric field, and the horizontal axis is the applied electric field (kv/mm
), the vertical axis is the viscosity (poise). Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)上部および下部が圧力変化によって変形復元可能
に作られたハウジングを、プレート電極を上下に有する
オリフィスによって上下に区分し、上下の各分画空間内
に電気粘性流体を充填し、ハウジング上部に載置された
振動発生装置からの振動数に応じて印加電圧を変化させ
るように構成された防振装置において、前記電気粘性流
体として、電気絶縁性液体とこれに分散された微粒子か
らなり、当該微粒子が、金属アルコキサイド又はその誘
導体を加水分解・重縮合して得られた、電界質溶液を含
有する球状粒子である電気粘性流体を用いたことを特徴
とする防振装置。
(1) A housing whose upper and lower parts can be deformed and restored by pressure changes is divided into upper and lower parts by an orifice having plate electrodes on the upper and lower sides, and each upper and lower compartment space is filled with electrorheological fluid, and the upper part of the housing is In a vibration isolator configured to change an applied voltage according to the frequency of vibration from a vibration generator mounted on a vibration isolator, the electrorheological fluid is composed of an electrically insulating liquid and fine particles dispersed therein, A vibration isolating device characterized in that the fine particles are electrorheological fluid, which are spherical particles containing an electrolyte solution obtained by hydrolyzing and polycondensing a metal alkoxide or a derivative thereof.
JP10374689A 1988-05-13 1989-04-24 Vibration preventing device Pending JPH0257741A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-116630 1988-05-13
JP11663088 1988-05-13

Publications (1)

Publication Number Publication Date
JPH0257741A true JPH0257741A (en) 1990-02-27

Family

ID=14691952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10374689A Pending JPH0257741A (en) 1988-05-13 1989-04-24 Vibration preventing device

Country Status (1)

Country Link
JP (1) JPH0257741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745472A (en) * 1993-08-24 1998-04-28 Samsung Electronics Co., Ltd. Vibration attenuation apparatus of optical disc player

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745472A (en) * 1993-08-24 1998-04-28 Samsung Electronics Co., Ltd. Vibration attenuation apparatus of optical disc player

Similar Documents

Publication Publication Date Title
US4772407A (en) Electrorheological fluids
US7981315B2 (en) Polar molecule dominated electrorheological fluid
US6852251B2 (en) Electrorheological fluids
JPH1081889A (en) Powder for electroviscous fluid
US4992192A (en) Electrorheological fluids
Yoon et al. Enhanced electroresponse of alkaline earth metal-doped silica/titania spheres by synergetic effect of dispersion stability and dielectric property
JPH0853689A (en) Electrorheological fluid containing electrorheological particle coated with carbonate
US5417314A (en) Electrorheological fluid damper
Kuramoto et al. The electrorheological property of a polyaniline-coated copolystyrene particle suspension
US5849212A (en) Electroviscous fluid containing β-alumina
JPH0257741A (en) Vibration preventing device
Chen et al. Silica-based ionogels containing imidazolium ionic liquids and their electrorheological responses at room and elevated temperatures
Ono et al. 1H spin–spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG)
Liu et al. Fabrication of ammonium persulfate coated silica microsphere via chemical grafting and its electrorheology
US5217638A (en) Electroviscous fluid
AU612483B2 (en) Electroviscous fluid
JP4109473B2 (en) Electrorheological composition
JPH04164996A (en) Electroviscous fluid
JPH02284991A (en) Electrorheological fluid composition, granular material used therein and its manufacture
KR20060015843A (en) An electrorheological fluid consisting of polyaniline/titanium dioxide composites as conducting particles and its preparation
JPH03166295A (en) Electro-viscous fluid having improved dispersibility
JP2971909B2 (en) Electrorheological fluid
JPH0316910A (en) Fluid having electroviscous effect
JPH0333010A (en) Functional fluid
JP3407050B2 (en) Electrorheological fluid