JPH0316910A - Fluid having electroviscous effect - Google Patents

Fluid having electroviscous effect

Info

Publication number
JPH0316910A
JPH0316910A JP1151004A JP15100489A JPH0316910A JP H0316910 A JPH0316910 A JP H0316910A JP 1151004 A JP1151004 A JP 1151004A JP 15100489 A JP15100489 A JP 15100489A JP H0316910 A JPH0316910 A JP H0316910A
Authority
JP
Japan
Prior art keywords
particles
fine particles
electrically insulating
dispersed
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1151004A
Other languages
Japanese (ja)
Inventor
Koji Shima
耕司 島
Eiji Hattori
英次 服部
Yasuo Oguri
康生 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1151004A priority Critical patent/JPH0316910A/en
Publication of JPH0316910A publication Critical patent/JPH0316910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To improve electroviscous effect by forming electrically insulating film on the surface of electrically conductive particles dispersed in an electrical]y insulating liquid by hydrolysis or polymerization of a metal alkoxide or its derivative. CONSTITUTION:An aqueous alcohol solution is prepared, which has 0.05 to 5mole% of metal alkoxide such as Si methoxide concentration, 0.1 to 10mole% of water concentration, and 1 to 100 of [H2O]/[alkoxide]. Electrically conductive fine particles of 0.01 to 500mum average particle size and more than 10<-10>OMEGA<-1>.cm<-1> such as Al, semiconductive Si or beta-Al2O3 particles are dispersed in the prepared aqueous alcohol solution to deposit the hydrolysate of the metal alkoxide or its derivative on the surface of the fine particles. Then, the particles are separated from the solution and dried below about 600 deg.C to give fine particles whose surfaces are coated with electrically insulating film in a thickness of 0.05 to 1mu. The fine particles are dispersed in an electrically insulating fluid such as silicone oil in a concentration of 5 to 50% by volume and an electric field is impressed to obtain the subject electroviscous fluid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気粘性流体に関するものであり、詳しくは、
電気絶縁性液体4申に分散される微粒子として、その表
面が特定の方法によって、電気絶縁性被膜で均一に被覆
された微粒子を用いることを特徴とする電気粘性流体に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to electrorheological fluids.
The present invention relates to an electrorheological fluid characterized in that fine particles whose surfaces are uniformly coated with an electrically insulating film by a specific method are used as the particles dispersed in an electrically insulating liquid.

電気粘性流体とは、印加電圧の作用(QFF,ON(電
圧変化))によってその見掛けの粘度が迅速かつ可逆的
に変化する、いわゆる電気粘性効果を示す液体である。
An electrorheological fluid is a liquid that exhibits the so-called electrorheological effect, in which its apparent viscosity changes rapidly and reversibly under the action of applied voltage (QFF, ON (voltage change)).

〔従来技術〕[Prior art]

電気粘性流体は、導電性微粒子を電気絶縁性液体中に分
散してなるものであり、その電気粘性効果発現のメカニ
ズムは次のように考えられている。
An electrorheological fluid is made by dispersing conductive fine particles in an electrically insulating liquid, and the mechanism of its electrorheological effect is thought to be as follows.

すなわち、電気粘性流体に電圧を印加した際、電極間に
生じる電場の作用により、分散粒子は分極し、更に、該
分極に基づく静電引力により互いに凝集し、その結果と
して、電気粘性効果が発現される。
That is, when a voltage is applied to an electrorheological fluid, the dispersed particles are polarized due to the action of the electric field generated between the electrodes, and further, they aggregate with each other due to electrostatic attraction based on the polarization, and as a result, the electrorheological effect occurs. be done.

従来、このような原理に基づく電気粘性流体の.分散粒
子としては、電解質溶液を含有する粒子や半導体粒子な
どが知られている。
Conventionally, electrorheological fluids have been developed based on this principle. As dispersed particles, particles containing an electrolyte solution, semiconductor particles, and the like are known.

ところで、金属や導電性カーボンなどの良導体粒子も、
これが凝集した際に粒子間でショートすることのないよ
うに、その表面に電気絶縁性物質の被膜を設けるならば
、分散粒子として使用し得ると考えられる。
By the way, good conductor particles such as metals and conductive carbon also
It is thought that they can be used as dispersed particles if a coating of an electrically insulating substance is provided on their surfaces to prevent short-circuits between the particles when they aggregate.

また、従来の電気粘性流体においても、消費電力を小さ
くする上で、抵抗率は大きいことが望ましいが、湛度、
電気絶縁性液体の種類、微粒子の導電率、あるいは印加
電圧の大きさによっては、抵抗率が低下することがある
ので、このよ51よ電気絶縁性物質の被膜は作動条件の
最適範囲の拡大上、望ましいものである。
In addition, even in conventional electrorheological fluids, high resistivity is desirable in order to reduce power consumption, but
Since the resistivity may decrease depending on the type of electrically insulating liquid, the conductivity of the particles, or the magnitude of the applied voltage, coatings of electrically insulating materials like this51 are useful for expanding the optimal range of operating conditions. , is desirable.

〔従来技術の問題点〕[Problems with conventional technology]

しかしながら、電気粘性流体に使用される粒子は、長期
間にわたっての分散安定性を確保する必要性から、例え
ば、0.7〜/00μmの粒径のものが使用されるので
あるが、このような微粒子の表面に凝集を招くことなく
電気絶縁性物質の適当A膜厚の被膜を均一に設けること
は困難であり実際、そのような微粒子を電気絶縁性液体
に分散してなる電気粘性流体の例は知られて℃・ない。
However, the particles used in electrorheological fluids have a particle size of, for example, 0.7 to 0.00 μm due to the need to ensure long-term dispersion stability. It is difficult to uniformly coat the surface of fine particles with an appropriate thickness of an electrically insulating material without causing agglomeration, and in fact, an example of an electrorheological fluid made by dispersing such fine particles in an electrically insulating liquid is There is no known temperature.

〔発明の構或〕[Structure of the invention]

本発明は上記実情の基になされたものであり、その要旨
は、導電性微粒子を電気絶縁性液体中?分散してなる電
気粘性流体であって、前記微粒子が、金属アルコキサイ
ドまたはその誘導体の加水分解・重合反応によってその
表面に電気絶縁性被膜を形成したものであることを特徴
とする電気粘性流体に存ずる。
The present invention has been made based on the above-mentioned circumstances, and its gist is that conductive fine particles are placed in an electrically insulating liquid. The electrorheological fluid is a dispersed electrorheological fluid, characterized in that the fine particles have an electrically insulating film formed on their surface by a hydrolysis/polymerization reaction of a metal alkoxide or a derivative thereof. .

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明で用いる導電性微粒子とは、電解質溶液等の揮発
性物質を含有しない導電性微粒子をさし、その電気伝導
度は、通常/θ−10Ω−1−α−1以上、好ましくは
/0−50−1・(lm−’以上である。
The conductive fine particles used in the present invention refer to conductive fine particles that do not contain volatile substances such as electrolyte solutions, and the electrical conductivity thereof is usually /θ-10Ω-1-α-1 or more, preferably /0 -50-1·(lm-' or more.

具体的には、金属、半導体、導電性カーボン、固体電解
質、導電性樹脂等が使用可能であるが、代表的なものと
しては、アル■ニウム、半導体シリコン、グラファイト
、β−アルミナなどが挙げられる。該導電性微粒子の粒
径は、粒子が後述の電気絶縁性液体中に安定に分散され
るかぎり特に限定されtよいが、平均粒径で0.0/〜
夕00μmより好ましくは0, /〜/00μmのもの
が用いられる。本発明で使用される金属アルコキサイド
又はその誘導体としては、= 3 乙 一 「MetalA口<oxides  ( D.C.Br
adley,R.C.Mehrotra, D. P.
 Gaur共著) Academic Press/9
gク」に記述されている種々のアルコキサイドが使用可
能であるが、代表的なものとしてはS i, T i,
 Zr等のアルコキサイド又は、アルキル基、ビニル基
等を含むその誘導体やBa− T i , S r −
 T i. , P b−T i , P b−T i
 − Z r ,L i − N b等の複合アルコキ
サイド又はその誘導体が挙げられる。その中でも特に、
反応速度、取り扱いの容易さ、工業規模での入手の容易
さなどから81のメトキシ、エトキシ、プロボキシ、ブ
l・キシ等の低級アルコキサイドが好適に用いられる。
Specifically, metals, semiconductors, conductive carbon, solid electrolytes, conductive resins, etc. can be used, but typical examples include aluminum, semiconductor silicon, graphite, β-alumina, etc. . The particle size of the conductive fine particles may be particularly limited as long as the particles can be stably dispersed in the electrically insulating liquid described below, but the average particle size may be 0.0/~
0.00 μm or more preferably 0.00 μm to /00 μm is used. The metal alkoxides or derivatives thereof used in the present invention are as follows:
adley, R. C. Mehrotra, D. P.
Co-authored by Gaur) Academic Press/9
Various alkoxides described in ``g.
Alkoxides such as Zr or derivatives thereof containing alkyl groups, vinyl groups, etc., Ba-Ti, Sr-
T i. , P b-T i , P b-T i
-Zr, Li-Nb and other complex alkoxides or derivatives thereof. Among the,
Lower alkoxides such as 81 methoxy, ethoxy, propoxy, and pyroxy are preferably used from the viewpoint of reaction rate, ease of handling, and availability on an industrial scale.

又、これらアルコキサイドが、微粒子を被覆することに
支障を生じない限り、部分的に加水分解して、複量化し
て(・でも良い。
In addition, these alkoxides may be partially hydrolyzed and multimerized (.) as long as this does not cause any problem in coating the fine particles.

金属アルコキサイドの加水分解は、一般にアルコキサイ
ドを溶解したアルコール溶液とアルコル水溶液とを混合
することによって行なわれるが、アルコール水溶液中に
前記微粒子を分散させ、加水分解速度を適宜調整するこ
とによって、電気絶縁性被膜を前記微粒子の表面に析出
させることができる。加水分解速度は、通常、反応系内
のアルコキサイドと水のモル比、濃度および必要に応じ
て加えられる触媒(酸又はアルカリ)量等によって調整
される。電気絶縁性被膜を得るための条件は、前記微粒
子の種類、粒度分布やアルコキサイドの種類によって異
なるため一概には決定できな〜・が、例えばS i. 
( OC2H5 )4 , T i (○C2H5 )
4 , Z r ( OC2H5 )4の場合は、通常
、[: H2 0 ] / Cアルコキザイド〕が/〜
/00、アルコキザイドの濃度(mo1%)がo, o
 t − s、水の濃度(mo1%)が0.7〜/Oの
範囲から選ばれる。又、この反応はさらにアルコキザイ
ドのアルコール溶液を加えることにより繰り返すことが
可能であり、反応回数を増やすことにより膜厚を厚くす
ることもできる。
Hydrolysis of metal alkoxides is generally carried out by mixing an alcohol solution in which the alkoxide is dissolved and an alcohol aqueous solution, but by dispersing the fine particles in an alcohol aqueous solution and adjusting the hydrolysis rate appropriately, electrical insulation properties can be achieved. A coating can be deposited on the surface of the microparticles. The hydrolysis rate is usually adjusted by the molar ratio and concentration of alkoxide and water in the reaction system, the amount of catalyst (acid or alkali) added as necessary, and the like. Conditions for obtaining an electrically insulating film cannot be determined unconditionally because they vary depending on the type of fine particles, particle size distribution, and type of alkoxide, but, for example, Si.
(OC2H5)4, T i (○C2H5)
4, Zr(OC2H5)4, usually [:H20]/C alkoxide] is /~
/00, the concentration of alkoxide (mo1%) is o, o
t − s, the concentration of water (mol 1%) is selected from the range of 0.7 to /O. Further, this reaction can be repeated by further adding an alcohol solution of alkoxide, and the film thickness can be increased by increasing the number of reactions.

電気絶縁性被膜の膜厚は直接測定することは困難である
が、微粒子の添加量、粒径、アルコキサイドの添加量か
ら計算することができる。
Although it is difficult to directly measure the thickness of the electrically insulating film, it can be calculated from the amount of fine particles added, the particle size, and the amount of alkoxide added.

被膜の膜厚は通常、QθS〜/μmの範囲から選ばれ、
粒子/アルコキサイドの添加量比や加水分解の反応回数
を増減することにより適当な膜厚を得ることができる。
The film thickness of the coating is usually selected from the range of QθS ~/μm,
An appropriate film thickness can be obtained by increasing/decreasing the particle/alkoxide ratio and the number of hydrolysis reactions.

表面に電気絶縁性物質の被膜を形成された微粒子は、ア
ルコール溶液中から適当な方法により分離し、乾燥して
合或時の揮発成分を完全に除去する。この際の温度は粒
子が焼結しない様、boo℃程度以下、特に望ましくは
/Oθ〜300℃程度である。
The fine particles whose surfaces are coated with an electrically insulating material are separated from the alcohol solution by an appropriate method and dried to completely remove volatile components during coalescence. The temperature at this time is about 0.degree. C. or lower, preferably about /O.theta. to 300.degree. C. so as not to sinter the particles.

次に、本発明において使用するのに好適な電気絶縁性液
体はシリコーン油、トランス油、エンジンオイル、エス
テル、2価アルコールなど上記微粒子を安定、に分散で
き、かつ絶縁抵抗の高いものが適当である。
Next, electrically insulating liquids suitable for use in the present invention include silicone oil, transformer oil, engine oil, ester, dihydric alcohol, etc., which can stably disperse the above-mentioned fine particles and have high insulation resistance. be.

電気絶縁性液体に対し前記微粒子の量は通常&vol%
〜夕θvol%が用いられ、好ましくは/ O vol
%〜11 0 vol%である。分散方法はボールミル
や超音波分散で代表される一般的な混合分散方法が使用
できる。
The amount of the fine particles is usually &vol% with respect to the electrically insulating liquid.
~O vol% is used, preferably /O vol
% to 110 vol%. As the dispersion method, general mixing and dispersion methods such as ball mill and ultrasonic dispersion can be used.

このような方法により表面を電気絶縁性物質で被覆した
導電性粒子を電気絶縁性液体中に分散させてなる流体に
電界を印加するならば、電気絶縁性被膜により粒子相互
の絶縁が保たれるため、粒子は電荷の移動により分極し
、前述のメカニズムにより電気粘性効果を示すことが可
能となるのである。
If an electric field is applied to a fluid made by dispersing conductive particles whose surfaces are coated with an electrically insulating substance in an electrically insulating liquid using this method, the electrically insulating coating will maintain the insulation between the particles. Therefore, the particles become polarized due to the movement of charges, and it becomes possible to exhibit the electrorheological effect by the above-mentioned mechanism.

電気粘性効果の測定方法は共軸2重円筒型回転粘度計を
使用し内外円筒間に電圧を印加したときの同一剪断速度
( / 4 2 sec−” )における剪断応力の増
加量を求め粘度変イしに換算した。
The method for measuring the electrorheological effect is to use a coaxial double-cylinder rotational viscometer to apply a voltage between the inner and outer cylinders, find the increase in shear stress at the same shear rate (/42 sec-''), and calculate the viscosity change. It was converted to

電気粘性流体は印加する電圧により流動特性を制御でき
るので、今後コンピュター制御めメカトロニクス分野へ
の展開が期待される。具体的な応用例について幾つかの
例を上げる。自動車産業においてはクラッチ、トルクコ
ンバータ、バルブ、ショックアブソバー ブレーキシス
テム、パワーステアリング等の応用部品が考えられてい
る。また産業用ロボットの分野においても、各種アクチ
ュエータに応用されつつある。
Since the flow characteristics of electrorheological fluids can be controlled by applying voltage, it is expected that they will be used in computer-controlled mechatronics fields in the future. Here are some examples of specific applications. In the automobile industry, application parts such as clutches, torque converters, valves, shock absorbers, brake systems, and power steering are being considered. It is also being applied to various actuators in the field of industrial robots.

以下、実施例により本発明を具体的に説明す?が、本発
明はその要旨を越えないかぎり、以下の実施例に限定さ
れるものではない。
Hereinafter, the present invention will be specifically explained with reference to Examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof.

〔実施例/〕〔Example/〕

アルミニウム粉(平均粒径3oμm)/!rgをエタノ
ールλク友9 u 9、!gwt%アンモニア水30.
gtji,蒸留水.2 +, 00gを混合した溶液に
加え、これにエチルシリヶート2友66g、エタノール
9λ!Ajjを混合した溶液を加え、4時間攪拌を続げ
た。この混合液を静置し上澄みを捨て、残った粒子なg
jt′CA時間真空乾燥させた。得られた粒子を走査型
電子顕微鏡、エネルギー分散型X線分析装置で観察した
ところ、アルミニウム粉の表面にはシリヵ9被膜が形成
されていた。被膜の膜厚は直接測定することは困難であ
るが、粒子を直径30μmの球、添加したエチルシリケ
ートが全てシリヵとして粒子表面に均一に析出したと仮
定して計算すると0.//μmとなった。
Aluminum powder (average particle size 3oμm)/! rg to ethanol λ Ku friend 9 u 9,! gwt% ammonia water 30.
gtji, distilled water. 2 +, 00g to the mixed solution, to which 66g of ethyl silicate and 9λ of ethanol! A mixed solution of Ajj was added and stirring was continued for 4 hours. Let this mixture stand, discard the supernatant, and remove the remaining particles.
It was vacuum dried for a period of time. When the obtained particles were observed using a scanning electron microscope and an energy dispersive X-ray analyzer, it was found that a silica 9 film was formed on the surface of the aluminum powder. Although it is difficult to directly measure the thickness of the coating, it is calculated by assuming that the particles are spheres with a diameter of 30 μm and that all the added ethyl silicate is deposited uniformly on the particle surface as silica. //μm.

前記シリカで被覆されたアル■ニウム粉i o.o o
 ,!9 ヲシリコーンオイル(東レ シリコ?ンsH
200  /Ocs)32.33fjに加え,プラスチ
ックボール■ルを用いて分散混合した。
The silica-coated aluminum powder io. o o
,! 9 Silicone oil (Toray silicone sH)
200/Ocs) 32.33fj and was dispersed and mixed using a plastic bowl.

こうして得られた本発明の電気粘性流体について、共軸
二重円筒型回転粘度計を使用し、内外円筒間に電圧を印
加したときの同一剪断速度(/A2g−’)における剪
断応力を測定(電極間距M / mu, i& s s
℃)した結果、電界を印加しない場合の八度′(初期粘
度)2.7ボイズが、/.lIKV−π『1の電界を印
加するとl3.!ポイズ〔比較例/〕 アルミニウム粉(平均粒径3oμm ) / 0.0 
0gリコーンオイル32.33fiに加え、プラスチッ
クボールミルを用いて分散混合した。得られた流体に0
. ’l KV−mm−’の電界を印加するとショート
し、電気粘性効果を示さなかった。
For the electrorheological fluid of the present invention thus obtained, the shear stress at the same shear rate (/A2g-') was measured using a coaxial double cylinder rotational viscometer ( Inter-electrode distance M/mu, i&ss
As a result, 8°' (initial viscosity) 2.7 voids when no electric field is applied is /. When an electric field of lIKV-π'1 is applied, l3. ! Poise [Comparative example/] Aluminum powder (average particle size 3oμm) / 0.0
In addition to 32.33 fi of 0g silicone oil, the mixture was dispersed and mixed using a plastic ball mill. 0 to the resulting fluid
.. When an electric field of 'l KV-mm-' was applied, a short circuit occurred and no electrorheological effect was exhibited.

〔実施例2〕 半導体シリコン(平均粒径2sμm ) /よθOgに
実施例/と同様の方法でシリヵの被膜な形威した。実施
例/の場合と同様に被膜の膜厚を計算したところθ./
/μmであった。
[Example 2] A silica film was formed on semiconductor silicon (average particle size 2 s μm) /YθOg in the same manner as in Example. When the film thickness of the film was calculated in the same manner as in Example 1, it was found to be θ. /
/μm.

該粒子/0.0θgをシリコーンオイル/ A, 3 
9gに加え、分散混合した。
The particles/0.0θg silicone oil/A, 3
9g and dispersed and mixed.

こうして得られた本発明の電気粘性流体につL・て実施
例/と同様の測定を行なった結果、初期粘度0.gボイ
ズが/, A KV−mm−”の電界を印加するとグ.
gポイズに増加した。/.乙KV−mm−’印加時の抵
抗率はλ.O×/09Ω・のであった。
The thus obtained electrorheological fluid of the present invention was measured in the same manner as in Example 1 and found to have an initial viscosity of 0. When an electric field of /, A KV-mm-'' is applied to the g-boise, g.
It increased to g poise. /. The resistivity when applying KV-mm-' is λ. It was O×/09Ω·.

〔比較例4〕 半導体シリコン(平均粒径4Sμm ) / 0. 0
 0gをシリコーンオイル/ 4. 0 3 gに加え
、分散混合した。
[Comparative Example 4] Semiconductor silicon (average particle size 4 S μm) / 0. 0
0g silicone oil/4. 0 3 g and dispersed and mixed.

得られた流体は初期粘度0.4ポイズがo.gKV・m
m−’の電界を印加すると+,gボイズに増加したが、
/ KV−run−”の電界を印加するとショートした
。0. g KV−mm−’印加時の抵抗率はク.ク×
/θ7Ω・粧であった。
The obtained fluid had an initial viscosity of 0.4 poise. gKV・m
When an electric field of m-' was applied, the voids increased to +,g, but
/ KV-run-'' was applied, causing a short circuit.The resistivity when applying 0.g KV-mm-' was K.K.
/θ7Ω.

〔実施例3〕 グラファイト(平均粒径/0μl ) / t. 0 
0gに実施例/と同様の方法でシリカの被暎を形威した
。実施例/の場合と同様に被膜の膜厚を計算したところ
o.Ogμmであった。
[Example 3] Graphite (average particle size/0 μl)/t. 0
A sample of 0 g of silica was coated with silica in the same manner as in Example. When the film thickness of the coating was calculated in the same manner as in Example 1, it was o. It was Ogμm.

該粒子j, o o gをシリコーンオイルJ 3. 
.3!igに加え、分散混合した。
The particles j, o o g are mixed with silicone oil J3.
.. 3! ig and dispersed and mixed.

こうして得られた本発明の電気粘性流体について、実施
例/と同様の測定を行なった結果、初期粘度/./ボイ
ズが、2, O KV−mm−’の電界を印加するとク
.乙ポイズに増加した。:l,OKV・mm−’印加時
の抵抗率は2#X/09Ω・鼾であった。
The thus obtained electrorheological fluid of the present invention was measured in the same manner as in Example 1, and the initial viscosity/. / Boise applies an electric field of 2,0 KV-mm-', then K. Otsu Poise has increased. The resistivity when applying :l, OKV·mm-' was 2#X/09Ω·snoring.

〔比較例3〕 グラファイト(平均粒径/Oμm)h,oθgをシリコ
ーンオイル.2 3.3 j 9に加え、分散混合した
[Comparative Example 3] Graphite (average particle size/Oμm) h, oθg was mixed with silicone oil. 2 3.3 j In addition to 9, it was dispersed and mixed.

得られた流体にθH 2 KV−mm−’の電界を印加
するとショートし、電気粘性効果を示さなかった。
When an electric field of θH 2 KV-mm-' was applied to the obtained fluid, a short circuit occurred and no electrorheological effect was exhibited.

〔実施例グ〕[Example G]

β−アルミナ(平均粒径/Oμm)/k,00gに実施
例/と同様の方法でシリカの被膜な形−11− −12 威した。実施例/の場合と同様に被膜の膜厚を計算した
ところ0.0gμmであった。
β-alumina (average particle size/Oμm)/k, 00g was coated with silica in the same manner as in Example. The thickness of the coating was calculated in the same manner as in Example 1 and was found to be 0.0 gμm.

該粒子/θ:oogをシリコーンオイル/ g, 2 
.!l−gに加え、分散混合した。
The particles/θ: oog to silicone oil/g, 2
.. ! 1-g and dispersed and mixed.

こうして得られた本発明の電気粘性流体は、2S℃で測
定を行なった結果、初期粘度/,0ボイズが、ユ. O
 KV−mu−”の電界を印加すると/.!iポイズに
増加した。この時の抵抗率は9.7×/ 09Ω・備で
あった。また7.2θ℃で測定を行なった結果、初期粘
度0, 2ポイズがu.OKV・mm−’の電界を印加
すると、乙クポイズに増加した。この時の抵抗率は’7
, ? X / 09Ω・αであった。
The thus obtained electrorheological fluid of the present invention was measured at 2S°C, and as a result, the initial viscosity was /,0 voids. O
When an electric field of KV-mu-'' was applied, the resistance increased to /.!i poise.The resistivity at this time was 9.7 When the viscosity was 0.2 poise, when an electric field of u.OKV・mm-' was applied, it increased to Otsukpoise.The resistivity at this time was '7'.
, ? It was X/09Ω・α.

〔比較例グ〕[Comparative example]

β−アルミナ(平均粒径/Oμn−r)/o.00gを
シリコーンオイル/乙,slIgに加え、分散混合した
。こうして得られた電気粘性流体は43℃で測定を行な
った結果、初期粘度θ.2ボイズが2, O KV−m
m−’の電界を印加するとo. gポイズに増加した。
β-alumina (average particle size/Oμn-r)/o. 00g was added to silicone oil/Otsu, slIg and dispersed and mixed. The electrorheological fluid thus obtained was measured at 43°C and found to have an initial viscosity of θ. 2 voices are 2, O KV-m
When an electric field of m-' is applied, o. It increased to g poise.

この時の抵抗率は友1,×/09Ω・薇であった。また
/20℃で測定を行なった結果、初期粘度O.lポイズ
がユ.oK■・朋−1の電界を印加すると+,rポイズ
に増加した。この時の抵抗率は3,OX/09Ω・αで
あった。
The resistivity at this time was 1,×/09Ω·V. Also, as a result of measurement at 20°C, the initial viscosity was O. l Poise is Yu. When an electric field of oK■.ho-1 was applied, it increased to +, r poise. The resistivity at this time was 3.OX/09Ω·α.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のごとく、従来の先行技術で開示されてち
・る組或物にくらべて、広い温度範囲におL・て安定な
電気粘性効果を示す電気粘性流体を与える。
As described above, the present invention provides an electrorheological fluid that exhibits a stable electrorheological effect over a wider temperature range than the compositions disclosed in the prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第/図は本発明の実施例/の電気粘性流体の印加電界に
たち・する増粘効果を示すグラフであり、横軸は印加電
圧( KV−mrrr−’ )、縦軸は粘度( poi
se )である。
Figure 1 is a graph showing the thickening effect of an electrorheological fluid according to an embodiment of the present invention due to an applied electric field, where the horizontal axis is the applied voltage (KV-mrrr-') and the vertical axis is the viscosity (poi).
se).

Claims (1)

【特許請求の範囲】[Claims] (1)揮発成分を含まない導電性微粒子を電気絶縁性液
体中に分散してなる電気粘性流体であって、前記微粒子
の表面に、金属アルコキサイド又はその誘導体の加水分
解・重合反応による電気絶縁性の被膜を形成したことを
特徴とする電気粘性流体。
(1) An electrorheological fluid formed by dispersing conductive fine particles containing no volatile components in an electrically insulating liquid, in which the surface of the fine particles has an electrically insulating property due to the hydrolysis/polymerization reaction of a metal alkoxide or its derivative. An electrorheological fluid characterized by forming a film of.
JP1151004A 1989-06-14 1989-06-14 Fluid having electroviscous effect Pending JPH0316910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151004A JPH0316910A (en) 1989-06-14 1989-06-14 Fluid having electroviscous effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151004A JPH0316910A (en) 1989-06-14 1989-06-14 Fluid having electroviscous effect

Publications (1)

Publication Number Publication Date
JPH0316910A true JPH0316910A (en) 1991-01-24

Family

ID=15509186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151004A Pending JPH0316910A (en) 1989-06-14 1989-06-14 Fluid having electroviscous effect

Country Status (1)

Country Link
JP (1) JPH0316910A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259838A (en) * 1995-03-22 1996-10-08 Dainippon Printing Co Ltd Nonelectroconductive carbonaceous powder and its production
JPH09309710A (en) * 1996-05-23 1997-12-02 Dainippon Printing Co Ltd Nonconductive carbonaceous powder and its production
US5954992A (en) * 1996-07-26 1999-09-21 Tdk Corporation Hexagonal Z type magnetic oxide sintered material, method for making and impedance device
JP2003212534A (en) * 2002-01-23 2003-07-30 Ube Nitto Kasei Co Ltd Conductive silica particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259838A (en) * 1995-03-22 1996-10-08 Dainippon Printing Co Ltd Nonelectroconductive carbonaceous powder and its production
JPH09309710A (en) * 1996-05-23 1997-12-02 Dainippon Printing Co Ltd Nonconductive carbonaceous powder and its production
US5954992A (en) * 1996-07-26 1999-09-21 Tdk Corporation Hexagonal Z type magnetic oxide sintered material, method for making and impedance device
JP2003212534A (en) * 2002-01-23 2003-07-30 Ube Nitto Kasei Co Ltd Conductive silica particle

Similar Documents

Publication Publication Date Title
US5549849A (en) Conductive and exothermic fluid material
US5714084A (en) Electrorheological magnetic fluid and process for producing the same
Otsubo et al. Electrorheological properties of suspensions of inorganic shell/organic core composite particles
JPH0687967B2 (en) Method for producing a dispersion of composite particles
EP0361931B1 (en) Non-aqueous electro-rheological fluid
JPH01198696A (en) Electric flowable fluid
Zabet et al. Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings
EP0453614A1 (en) Electrorheological fluids
EP0387857B1 (en) Electroviscous fluid
JPH0316910A (en) Fluid having electroviscous effect
WO2016119290A1 (en) Use of star-shaped/multi-arm block copolymer in preparation of mixture containing nano-particles
Kim et al. Liquid‐Suspended and Liquid‐Bridged Liquid Metal Microdroplets
Kaide et al. Preparation of magnetorheological fluid using stabilizing additives
JPH0393898A (en) Electrically viscous fluid
JP3041831B2 (en) Electric field responsive fluid
Parand et al. Sequential RTV/(TiO 2/SiO 2) nanocomposite deposition for suppressing the leakage current in silicone rubber insulators
US5639296A (en) Thixotropic particles suspensions and method for their formation
JP2005053752A (en) Modified graphite particle and paint with which the modified graphite particle is compounded
JPH01164823A (en) Electric viscous fluid
JPH04164996A (en) Electroviscous fluid
JPH03119098A (en) Electroviscous fluid
JP2534169B2 (en) Electrorheology-fluid composition
Aslamazova et al. The Effect of Zinc Oxide on the Physical and Mechanical Properties of Elastic Polymers
US5607617A (en) Electroviscous fluids
EP0341737B1 (en) Electroviscous fluid