JPH0257454B2 - - Google Patents

Info

Publication number
JPH0257454B2
JPH0257454B2 JP25732087A JP25732087A JPH0257454B2 JP H0257454 B2 JPH0257454 B2 JP H0257454B2 JP 25732087 A JP25732087 A JP 25732087A JP 25732087 A JP25732087 A JP 25732087A JP H0257454 B2 JPH0257454 B2 JP H0257454B2
Authority
JP
Japan
Prior art keywords
tube
bending
pipe
layer
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25732087A
Other languages
Japanese (ja)
Other versions
JPH0199725A (en
Inventor
Masaaki Takagishi
Tatsumi Shiraishi
Yoichi Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP25732087A priority Critical patent/JPH0199725A/en
Publication of JPH0199725A publication Critical patent/JPH0199725A/en
Publication of JPH0257454B2 publication Critical patent/JPH0257454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • B21D35/007Layered blanks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は各種配管系に使用する二層曲げ管の製
造方法に関し、特に、真直な二層管を曲げ加工す
る方法に関する。 〔従来の技術〕 近年、化学プラント、原子力及び火力プラント
配管のエルボ結合などに代え溶接継手をなるべく
少なくすることにより、信頼性とコスト低減にす
こぶる有利な高周波曲げ管の需要が急増してき
た。 上記のような背景において、特に高腐食性の配
管系には高合金鋼、非鉄金属管が用いられてい
る。しかし、該金属管は原材料費が高く、製造方
法も難しいため、クラツド管等の内外異質の金属
によつて構成された二層の断面を有する二層管が
実用化されている。一般的には、外管に炭素鋼
を、内管にステンレス鋼、ニツケル合金、チタン
等を用いた二層管が多いが、最近では外管がジル
コニウム合金、内管が純ジルコニウムの二層管も
ある。 二層構造の曲げ管を製造する従来の方法は、予
め外管と内管とを接合したクラツド管等の二層構
造の直管を製造し、これを高周波曲げ加工する方
法である。即ち、真直な二層管を、高周波誘導子
により環状に局部的に加熱しながら、該加熱部を
該管の軸方向に移動させ、且つ同時に該加熱部に
曲げモーメントを連続的に加えることにより、該
加熱部を塑性変形させて該二層管を順次曲げ加工
する方法である。 〔発明が解決しようとする問題点〕 ところが、従来の曲げ加工方法によつて曲げ管
を製造する場合、外管のみならず内管も高温とな
り、加熱、冷却の過程で外管、内管ともに膨脹、
収縮を行うが、その際に内管と外管の膨脹係数の
差から剥離現象を生じ、曲げ管の外管と内管との
間に隙間が生じるという問題があつた。また、こ
のように内管と外管とを接合した二層管に対して
さえ、曲げ加工時に剥離を生じることがあるの
で、単に外管内に内管を挿入してなる二層管(従
つて外管と内管との間には隙間が生じている)に
対して高周波曲げ加工を施した場合には、外管、
内管間の隙間を無くすことができず、従つて、実
用上、この方法では曲げ加工を行うことができな
い。 更に、曲げ加工時の加熱により、内管が高温に
なつて表面が酸化するとか、不安定温度にまで昇
温し、相変態が生じるとか、炭化物、窒化物など
の析出物が生じ、異相なども発生し、腐食性を損
なうことがあるという問題もあつた。 本発明は、かかる従来の問題点に鑑みて為され
たもので、内管と外管との間が密着した二層管で
あろうと、内管と外管との間に隙間を有する二層
管であろうと、その二層管に対して、内管と外管
との間を密着させながら、曲げ加工を行うことの
可能な二層間の曲げ加工方法を提供することを目
的とする。 〔問題点を解決するための手段〕 上記目的を達成するために為された本発明は、
内外異質の金属によつて構成された二層の断面を
有する二層管を、環状に局部的に加熱しながら、
該加熱部を該管の軸方向に移動させ、且つ同時に
該加熱部に曲げモーメントを連続的に加えること
により、該加熱部を塑性変形させて該二層管を順
次曲げ加工する方法において、該二層管の曲げ加
工中、該二層管内部に流体を充満若しくは流動さ
せ且つ該二層管の内管が外側に向かつて塑性変形
するように前記流体を加圧すると共に、加熱直後
の前記加熱部を外側から冷却して、外管を内方に
向かつて収縮させることを特徴とする二層管の曲
げ加工方法を要旨とする。 以下、図面を参照して本発明を詳細に説明す
る。 第1図及び第2図は本発明の二層管曲げ加工方
法の実施に使用する装置の例を示すもので、1は
曲げ加工すべき真直な二層管であり、外管11と
内管12とからなる。本発明に使用する二層管1
は外管11と内管12とが冶金的或いは機械的に
接合したものに限らず、単に外管11内に内管1
2を挿入し、両者間に多少隙間が生じているもの
でもよい。2は該二層管1を支持案内する案内ロ
ーラ、3は、前記二層管1をその外周から局部的
に環状に加熱する、冷却タンク及びスプレーノズ
ルを有する高周波誘導子からなる均熱コイル、4
は先端部にクランプ5を備えた回転自在の曲げア
ーム、6は二層管1の後端を支持し且つ矢印A方
向に押す管端支持台、7は二層管1の後端に取付
けられた流体入口、8は二層管1の先端に取付け
られた流体出口である。流体入口7には、二層管
1内に内面加圧用の流体、例えば水を供給し且つ
加圧するための加圧供給装置(図示せず)が連結
されており、一方流体出口8には、二層管1内を
加圧状態に保つことができるよう弁(図示せず)
が連結されている。9は均熱コイル3からスプレ
ーされる冷却水、10は管内に充満した流体であ
る。 次に、上記装置を用いた本発明の曲げ加工方法
を説明する。二層管1の先端を曲げアーム4のク
ランプ5に固定し、後端を管端支持台6に固定
し、流体入口7より管内に流体10を供給して充
満させ、且つ加圧する。これによつて第2図に矢
印Bで示すように管内面に流体10による内圧が
作用する。ここで、この内圧は内管12が半径方
向に塑性変形して外管11の内面に密着させられ
るように選定されている。なお、この際、流体出
口8を閉じ二層管1内部に流体10が充満した状
態にしておいてもよいし、或いは適量の流体が流
れでるようにし二層管1内部を流体10が流動す
る状態としておいてもよい。 二層管1内面に内部の流体10による内圧を作
用させた状態において、均熱コイル3により二層
管1を局部的に高温加熱すると共にその近傍に冷
却水9を噴射し、同時に二層管1を矢印Aで示す
方向に推進させる。これにより、二層管1の二点
鎖線によるハツチングで示す部分が環状に加熱さ
れ、且つこの加熱部分に曲げアーム4による曲げ
モーメントが作用するので、この加熱部が塑性変
形して湾曲し、且つその直後に該加熱部が冷却水
9によつて冷却され、塑性変形しなくなる。かく
して、真直な二層管1が連続的に曲げられる。 〔作用〕 上記の曲げ加工において、均熱コイル3によつ
て二層管1を局部的に加熱すると、その加熱部分
は一旦膨脹し拡径するが、その後、冷却水9によ
つて冷却することにより、収縮し縮径する。今、
第4図に示すように、二層管1内に加圧用の流体
を何等充満させず、従つて、内圧をかけることな
く曲げ加工を行つた場合には、外管11、内管1
2共に高温に加熱され、その後冷却されることに
なり、外管11、内管12共に膨脹及び収縮を行
う。ところが、外管、内管の加熱速度、冷却速度
の違い及び線膨脹係数の違い等により、膨脹、収
縮量が異なり、その結果、例え外管11と内管1
2とが密着した構造の二層管であつても、外管1
1と内管12とが剥離し、両者間に隙間13が生
じることがある。しかし、本発明では第3図に示
すように、内部に充満した流体10による内圧を
加えているので、例え外管11と内管12との間
に隙間があつた二層管1であつても、加熱前の直
管部において内管12が変形して外管11内面に
押付けられ、また、均熱コイル3直下の加熱部に
おいて外管11の熱膨脹による拡径に対して内管
の熱膨脹による拡径が少なくても、内管12が塑
性変形して外管11内面に密着する。更に、その
直後の冷却水9による冷却により、外管11が熱
収縮して縮径するが、内管12は内圧を受けてい
るのであまり縮径せず、従つて外管11が内管1
2に、より強固に緊着する。かくして、外管11
と内管12とを強固に緊着した二層構造の曲げ管
が製造される。更に、製造された二層曲げ管は、
外管の縮径により内管外面に緊着した構造である
ので、内管は外管によつて締め付けられており、
このため、内管表面に圧縮の残留応力が発生して
いる。この圧縮残留応力は耐応力腐食割れに効果
大である。 また、二層管1に内部から圧力を付加しながら
曲げ加工することで、通常の高周波曲げ加工によ
る曲げ管形状の変化、即ち楕円化を極力小さくな
らしめる作用もある。 以上に管内の流体によつて内圧を加えながら曲
げ加工する際の作用を説明したが、管内に充満或
いは流動させる流体は、内圧を加えるためのみな
らず、内管冷却にも使用することができる。即
ち、管内に供給する流体10の温度及び流量を適
当に調整することにより、内管12の温度を外管
11よりも低い所望の温度に調整することができ
る。内管12を冷却すると、均熱コイル3による
加熱時に内管12の温度上昇を抑制して、内管内
面の酸化、組織変化等を防止する。前記したよう
に、一般的には、外管に炭素鋼を、内管にステン
レス鋼、ニツケル合金、チタン等を用いた二層管
が多いが、最近では外管がジルコニウム合金、内
管が純ジルコニウムの二層管もある。これらの内
管は、約400℃以上の高温になると析出物、異相
が生じるため、孔食、粒界腐食、応力腐食割れ等
に対する感受性も高くなり、酸化も進み、耐食性
が悪くなる。このため、内管12を内部の流体1
0で冷却し、加熱部においても、内管温度が酸化
や組織変化を生じない温度に、例えば400℃以下
に保つことが好ましい。 なお、上記の説明において、曲げ加工時に加え
る内圧は、加熱前の直管部分において内管12を
塑性変形させて外管11の内面に密着させること
のできる圧力として説明したが、これは好適な場
合であつて本発明はこの場合に限定されるもので
はない。内管に加える内圧は少なくとも、加熱直
後の冷却水9による冷却によつて外管11が縮径
した後、その内面に内管を密着させるように内管
を塑性変形させることができる程度のものであれ
ばよい。また、内管に内圧を加えるために使用す
る流体は必ずしも水等の液体に限らず、気体であ
つてもよい。 〔実施例〕 次に本発明の実施例について説明する。第1図
に示す高周波曲げ加工装置を用いて次に示す処理
を行つた。
[Industrial Field of Application] The present invention relates to a method for manufacturing a double-layer bent pipe for use in various piping systems, and particularly to a method for bending a straight double-layer pipe. [Prior Art] In recent years, there has been a rapid increase in demand for high-frequency bent pipes, which are extremely advantageous in terms of reliability and cost reduction, by reducing welded joints as much as possible in place of elbow joints in chemical, nuclear, and thermal power plant piping. Against the above background, high alloy steel and non-ferrous metal pipes are used particularly for highly corrosive piping systems. However, since the cost of raw materials for such metal tubes is high and the manufacturing method is difficult, two-layer tubes such as clad tubes having a two-layer cross section made of different metals on the inside and outside have been put into practical use. Generally speaking, there are many double-layer tubes that use carbon steel for the outer tube and stainless steel, nickel alloy, titanium, etc. for the inner tube, but recently, double-layer tubes that use a zirconium alloy for the outer tube and pure zirconium for the inner tube are becoming popular. There is also. A conventional method for manufacturing a bent pipe with a double-layer structure is to manufacture a straight pipe with a double-layer structure such as a clad pipe in which an outer pipe and an inner pipe are joined together in advance, and then subject the straight pipe to high-frequency bending. That is, by locally heating a straight two-layer tube in an annular manner using a high-frequency inductor, by moving the heating section in the axial direction of the tube, and at the same time continuously applying a bending moment to the heating section. This is a method of sequentially bending the two-layer pipe by plastically deforming the heating section. [Problems to be solved by the invention] However, when manufacturing bent pipes using the conventional bending method, not only the outer pipe but also the inner pipe become hot, and both the outer pipe and the inner pipe become hot during the heating and cooling process. expansion,
When shrinking, a peeling phenomenon occurs due to the difference in expansion coefficients between the inner tube and the outer tube, resulting in a gap between the outer tube and the inner tube of the bent tube. Furthermore, even in a double-layered tube in which the inner tube and the outer tube are joined together in this way, peeling may occur during bending. There is a gap between the outer tube and the inner tube).
It is not possible to eliminate the gap between the inner tubes, and therefore, in practice, bending cannot be performed using this method. Furthermore, due to the heating during bending, the inner tube may reach a high temperature and the surface may oxidize, the temperature may rise to an unstable temperature and phase transformation may occur, precipitates such as carbides and nitrides may be formed, and foreign phases may occur. There was also a problem in that the corrosion properties could be impaired. The present invention has been made in view of such conventional problems.Whether it is a two-layered tube in which the inner tube and the outer tube are in close contact with each other, or a two-layered tube with a gap between the inner tube and the outer tube. An object of the present invention is to provide a method for bending two layers of a two-layered tube, which can be bent while bringing the inner tube and outer tube into close contact with each other. [Means for solving the problems] The present invention has been made to achieve the above object.
While locally heating a two-layer pipe with a two-layer cross section made up of different metals on the inside and outside,
In the method of sequentially bending the two-layer pipe by moving the heating part in the axial direction of the pipe and simultaneously continuously applying a bending moment to the heating part, the heating part is plastically deformed. During the bending process of the double-layered pipe, the inside of the double-layered pipe is filled with or flows, and the fluid is pressurized so that the inner pipe of the double-layered pipe is plastically deformed toward the outside, and the heating is performed immediately after heating. The gist of this invention is a method for bending a two-layer tube, which is characterized by cooling the outer tube from the outside and shrinking the outer tube inward. Hereinafter, the present invention will be explained in detail with reference to the drawings. 1 and 2 show an example of an apparatus used to carry out the double-layer pipe bending method of the present invention, in which 1 is a straight double-layer pipe to be bent, an outer pipe 11 and an inner pipe. It consists of 12. Double-layer pipe 1 used in the present invention
is not limited to a case in which the outer tube 11 and the inner tube 12 are joined metallurgically or mechanically;
2 may be inserted, with a slight gap between the two. 2 is a guide roller that supports and guides the two-layer tube 1; 3 is a soaking coil consisting of a high-frequency inductor having a cooling tank and a spray nozzle, which locally heats the two-layer tube 1 in an annular manner from its outer periphery; 4
is a rotatable bending arm equipped with a clamp 5 at the tip; 6 is a tube end support that supports the rear end of the two-layer tube 1 and pushes it in the direction of arrow A; and 7 is attached to the rear end of the two-layer tube 1. 8 is a fluid outlet attached to the tip of the double-layer tube 1. The fluid inlet 7 is connected to a pressurizing supply device (not shown) for supplying and pressurizing a fluid for internal pressure, such as water, into the double-layer tube 1, while the fluid outlet 8 is connected to A valve (not shown) to keep the inside of the double-layer pipe 1 under pressure
are connected. Reference numeral 9 indicates cooling water sprayed from the soaking coil 3, and reference numeral 10 indicates fluid filling the pipe. Next, a bending method of the present invention using the above-mentioned apparatus will be explained. The tip of the two-layer tube 1 is fixed to the clamp 5 of the bending arm 4, the rear end is fixed to the tube end support 6, and the tube is filled with fluid 10 from the fluid inlet 7 and pressurized. As a result, internal pressure due to the fluid 10 acts on the inner surface of the tube as shown by arrow B in FIG. Here, this internal pressure is selected so that the inner tube 12 is plastically deformed in the radial direction and brought into close contact with the inner surface of the outer tube 11. At this time, the fluid outlet 8 may be closed to leave the inside of the two-layer tube 1 filled with the fluid 10, or the fluid 10 may be allowed to flow inside the two-layer tube 1 by allowing an appropriate amount of fluid to flow out. It may be set as a state. With the internal pressure of the internal fluid 10 acting on the inner surface of the double-layered pipe 1, the double-layered pipe 1 is locally heated to a high temperature by the soaking coil 3, and cooling water 9 is injected into the vicinity, and at the same time, the double-layered pipe 1 in the direction shown by arrow A. As a result, the part of the double-layered pipe 1 indicated by the hatched double-dashed line is heated in an annular manner, and the bending moment by the bending arm 4 acts on this heated part, so that this heated part plastically deforms and curves. Immediately after that, the heating section is cooled by the cooling water 9 and no longer undergoes plastic deformation. In this way, the straight two-layer pipe 1 is continuously bent. [Function] In the above bending process, when the two-layer pipe 1 is locally heated by the soaking coil 3, the heated part expands and expands in diameter, but is then cooled by the cooling water 9. As a result, it contracts and becomes smaller in diameter. now,
As shown in FIG. 4, when the two-layer tube 1 is not filled with any pressurizing fluid and therefore bent without applying internal pressure, the outer tube 11, the inner tube 1
Both the outer tube 11 and the inner tube 12 are heated to a high temperature and then cooled, and both the outer tube 11 and the inner tube 12 expand and contract. However, due to differences in the heating rate and cooling rate of the outer tube and the inner tube, as well as differences in linear expansion coefficients, the amount of expansion and contraction differs, and as a result, even if the outer tube 11 and the inner tube 1
Even if it is a two-layer tube with a structure in which the outer tube 1 and the outer tube 1 are in close contact with each other,
1 and the inner tube 12 may peel off, creating a gap 13 between them. However, in the present invention, as shown in FIG. 3, internal pressure is applied by the fluid 10 filled inside, so even if the double-layered pipe 1 has a gap between the outer pipe 11 and the inner pipe 12, Also, the inner tube 12 is deformed and pressed against the inner surface of the outer tube 11 in the straight tube section before heating, and the inner tube is thermally expanded due to the diameter expansion of the outer tube 11 in the heating section directly below the soaking coil 3. Even if the diameter expansion is small, the inner tube 12 is plastically deformed and comes into close contact with the inner surface of the outer tube 11. Furthermore, by cooling with the cooling water 9 immediately after that, the outer tube 11 thermally contracts and its diameter decreases, but the inner tube 12 does not contract much in diameter because it is under internal pressure.
2. It attaches more firmly. Thus, the outer tube 11
A bent tube with a two-layer structure in which the inner tube 12 and the inner tube 12 are tightly bonded is manufactured. Furthermore, the manufactured double-layer bent pipe is
The structure is such that the outer tube is tightly attached to the outer surface of the inner tube by reducing its diameter, so the inner tube is tightened by the outer tube.
Therefore, compressive residual stress is generated on the inner tube surface. This compressive residual stress is highly effective in preventing stress corrosion cracking. Further, by bending the double-layered tube 1 while applying pressure from the inside, there is also an effect of minimizing changes in the shape of the bent tube, that is, ovalization, caused by ordinary high-frequency bending. Above we have explained the effect of bending while applying internal pressure using the fluid inside the pipe, but the fluid that fills or flows inside the pipe can be used not only for applying internal pressure but also for cooling the inner pipe. . That is, by appropriately adjusting the temperature and flow rate of the fluid 10 supplied into the tube, the temperature of the inner tube 12 can be adjusted to a desired temperature lower than that of the outer tube 11. Cooling the inner tube 12 suppresses the temperature rise of the inner tube 12 during heating by the soaking coil 3, thereby preventing oxidation, structural changes, etc. on the inner surface of the inner tube. As mentioned above, most double-layer tubes are made of carbon steel for the outer tube and stainless steel, nickel alloy, titanium, etc. for the inner tube, but recently, the outer tube is made of zirconium alloy and the inner tube is made of pure metal. There are also double-layered zirconium tubes. When these inner tubes reach high temperatures of about 400°C or higher, precipitates and foreign phases are generated, which increases their susceptibility to pitting corrosion, intergranular corrosion, stress corrosion cracking, etc., and also promotes oxidation, resulting in poor corrosion resistance. For this reason, the inner pipe 12 is
It is preferable that the temperature of the inner tube is maintained at a temperature at which oxidation and structural changes do not occur, for example, 400° C. or lower, even in the heating section. In the above explanation, the internal pressure applied during the bending process was described as a pressure that can plastically deform the inner tube 12 in the straight tube portion before heating and bring it into close contact with the inner surface of the outer tube 11. However, the present invention is not limited to this case. The internal pressure applied to the inner tube is at least to the extent that the inner tube can be plastically deformed so that the inner tube is brought into close contact with the inner surface of the outer tube 11 after its diameter is reduced by cooling with the cooling water 9 immediately after heating. That's fine. Further, the fluid used to apply internal pressure to the inner tube is not necessarily limited to a liquid such as water, but may be a gas. [Example] Next, an example of the present invention will be described. The following processing was performed using the high frequency bending apparatus shown in FIG.

【表】 曲げ加工半径:1365mm(5D:Dは外径) 曲げ加工推進スピード:1mm/S 冷却方式:外面スプレー水冷 曲げ加工時の管内への流体供給: (1) 無(比較例I,) (2) 無加圧通水(比較例,
) (3) 50Kg/cm2水圧(実施例
I) (4) 70Kg/cm2水圧(実施例
) 以上の条件にて曲げ加工を行い、その際の外表
温度(℃)、内管の厚みの中央部の温度(℃)を
測定し、且つ得られた曲げ管について、外管と内
管との最大間隙(mm)、偏平率(%)、内表残留応
力(Kg/mm2)を測定して、第1表に示す結果を得
た。第1表に示すように、比較例I,の機械的
接合の二層管曲げで内圧付加がない場合、外管と
内管に間隙が発生した。これに対し、水圧で内圧
50Kg/cm2付加しながら曲げ加工した本発明の実施
例Iは、内管温度、剥離性、偏平率、残留応力も
優れた値を示した。 また、圧延クラツド鋼管では、比較例の管内
流体供給無の従来法の曲げ加工でも剥離現象は生
じなかつたが、形状、残留応力の点で十分とは言
えない。比較例、実施例の処理品は両方とも
曲管としての性能は持つているが、水圧70Kg/cm2
をかけて曲げ加工した実施例が形状、残留応力
の値とも優れていた。
[Table] Bending radius: 1365mm (5D: D is the outer diameter) Bending propulsion speed: 1mm/S Cooling method: External spray water cooling Fluid supply into the pipe during bending: (1) None (Comparative example I) (2) No-pressure water flow (comparative example,
) (3) 50Kg/ cm2 water pressure (Example I) (4) 70Kg/ cm2 water pressure (Example) Bending was performed under the above conditions, and the outer surface temperature (℃) and inner tube thickness were Measure the temperature (℃) at the center, and measure the maximum gap (mm) between the outer tube and the inner tube, the aspect ratio (%), and the inner surface residual stress (Kg/mm 2 ) of the obtained bent tube. The results shown in Table 1 were obtained. As shown in Table 1, when no internal pressure was applied during bending of the mechanically joined two-layer pipe in Comparative Example I, a gap was generated between the outer pipe and the inner pipe. In contrast, water pressure
Example I of the present invention, which was subjected to bending while applying 50 kg/cm 2 , showed excellent values in inner tube temperature, peelability, aspect ratio, and residual stress. Further, in the case of rolled clad steel pipes, no peeling phenomenon occurred even in the conventional bending process without fluid supply in the pipe in the comparative example, but this cannot be said to be sufficient in terms of shape and residual stress. Both the treated products of the comparative example and the example have the performance as curved pipes, but the water pressure is 70 kg/cm 2
The example in which the bending process was carried out by bending was superior in both shape and residual stress value.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明は二層管内に流
体を供給し、内圧をかけた状態で曲げ加工を行う
ものであるので、外管と内管との間に剥離を生じ
ることがなく、両者が強固に密着し且つ内管には
圧縮残留応力を持つた二層管を製造することがで
きる。しかも、曲げ加工を行う二層管は、外管と
内管とが確実に接合している必要はなく、多少隙
間があつても、曲げ加工時に両者を密着させるこ
とが可能であり、二層曲げ管の製造コストを下げ
ることが可能である。 なお、曲げ加工時に管内の流体によつて内管を
冷却することにより、内管の酸化や組織変化を抑
制して耐食性のよい二層管を製造することができ
る。
As explained above, in the present invention, fluid is supplied into the double-layered tube and bending is performed while applying internal pressure, so there is no separation between the outer tube and the inner tube. It is possible to manufacture a two-layered tube in which the two are tightly adhered and the inner tube has compressive residual stress. Moreover, when bending a double-layer pipe, the outer pipe and inner pipe do not need to be firmly joined; even if there is a slight gap, it is possible to bring them into close contact during the bending process. It is possible to reduce the manufacturing cost of bent pipes. Note that by cooling the inner tube with the fluid inside the tube during bending, oxidation and structural changes in the inner tube can be suppressed, and a two-layer tube with good corrosion resistance can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に使用する高周波曲
げ加工装置の一例を示す平面図、第2図は第1図
の装置で曲げ加工する状態を示す要部断面図、第
3図は本発明方法による曲げ加工を説明する要部
断面図、第4図は従来の方法による曲げ加工を説
明する要部断面図である。 1…二層管、2…案内ローラ、3…均熱コイ
ル、4…曲げアーム、5…クランプ、6…管端支
持台、7…流体入口、8…流体出口、9…冷却
水、10…流体、11…外管、12…内管。
FIG. 1 is a plan view showing an example of a high-frequency bending device used to carry out the method of the present invention, FIG. 2 is a cross-sectional view of a main part showing a state in which bending is performed using the device shown in FIG. 1, and FIG. FIG. 4 is a cross-sectional view of a main part explaining bending by a conventional method. DESCRIPTION OF SYMBOLS 1... Double layer pipe, 2... Guide roller, 3... Soaking coil, 4... Bending arm, 5... Clamp, 6... Tube end support stand, 7... Fluid inlet, 8... Fluid outlet, 9... Cooling water, 10... Fluid, 11...outer tube, 12...inner tube.

Claims (1)

【特許請求の範囲】 1 内外異質の金属によつて構成された二層の断
面を有する二層管を、環状に局部的に加熱しなが
ら、該加熱部を該管の軸方向に移動させ、且つ同
時に該加熱部に曲げモーメントを連続的に加える
ことにより、該加熱部を塑性変形させて該二層管
を順次曲げ加工する方法において、該二層管の曲
げ加工中、該二層管内部に流体を充満若しくは流
動させ且つ該二層管の内管が外側に向かつて塑性
変形するように前記流体を加圧すると共に、加熱
直後の前記加熱部を外側から冷却して、外管を内
方に向かつて収縮させることを特徴とする二層管
の曲げ加工方法。 2 前記二層管内部に充満若しくは流動させる流
体によつて、内管内面の温度を外管より低温に保
持することを特徴とする特許請求の範囲第1項記
載の二層管の曲げ加工方法。 3 曲げ加工中、前記内管内面の温度を400℃以
下に保持し、内管内面の酸化と組織の劣化を防止
することを特徴とする特許請求の範囲第2項記載
の二層管の曲げ加工方法。
[Scope of Claims] 1. A two-layer tube having a cross section of two layers made of different metals inside and out, while locally heating it in an annular shape, moving the heating section in the axial direction of the tube, At the same time, in the method of sequentially bending the two-layer pipe by plastically deforming the heating part by continuously applying a bending moment to the heating part, during the bending process of the two-layer pipe, the inside of the two-layer pipe is The inner tube of the two-layer tube is filled with or flows fluid, and the fluid is pressurized so that the inner tube of the two-layer tube is plastically deformed toward the outside.The heating section immediately after heating is cooled from the outside, and the outer tube is turned inward. A method for bending a double-layered pipe, characterized by shrinking it as it approaches. 2. The method for bending a two-layered tube according to claim 1, characterized in that the temperature of the inner surface of the inner tube is maintained at a lower temperature than that of the outer tube by a fluid that is filled or made to flow inside the two-layered tube. . 3. Bending a double-layered pipe according to claim 2, characterized in that during the bending process, the temperature of the inner surface of the inner tube is maintained at 400° C. or lower to prevent oxidation of the inner surface of the inner tube and deterioration of the structure. Processing method.
JP25732087A 1987-10-14 1987-10-14 Method for bending double layer tube Granted JPH0199725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25732087A JPH0199725A (en) 1987-10-14 1987-10-14 Method for bending double layer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25732087A JPH0199725A (en) 1987-10-14 1987-10-14 Method for bending double layer tube

Publications (2)

Publication Number Publication Date
JPH0199725A JPH0199725A (en) 1989-04-18
JPH0257454B2 true JPH0257454B2 (en) 1990-12-05

Family

ID=17304722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25732087A Granted JPH0199725A (en) 1987-10-14 1987-10-14 Method for bending double layer tube

Country Status (1)

Country Link
JP (1) JPH0199725A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765285A (en) * 1995-08-09 1998-06-16 The B.F. Goodrich Company Method of bending a rigid thermoplastic pipe
DE102004038138B4 (en) * 2004-08-05 2007-06-06 Audi Ag Process for producing a hybrid pipe
JP5812293B2 (en) * 2012-10-04 2015-11-11 株式会社黒木工業所 Bend steel pipe manufacturing method
TR201902637T4 (en) * 2015-03-20 2019-03-21 Valme S R L Unico Socio Apparatus and method for producing a pipe for conveying abrasive materials such as concrete.

Also Published As

Publication number Publication date
JPH0199725A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
US4620660A (en) Method of manufacturing an internally clad tubular product
JP4448791B2 (en) Method and apparatus for improving residual stress in piping
EP0206048B1 (en) Thermoplastic method of reducing the diameter of a metal tube
US4842655A (en) Process for improving resistance of metal bodies to stress corrosion cracking
JPH11319958A (en) Bent clad tube and its manufacture
JPH02247085A (en) Thick-walled fine diameter fuel injection pipe and its manufacture
JPH0257454B2 (en)
JP3072244B2 (en) Pipe butt joining method
JPH045730B2 (en)
JPH0450128B2 (en)
EP2505677B1 (en) Method and apparatus for relieving stress in a pipeline
JP2000005816A (en) Multi-wound stainless steel pipe
US4772336A (en) Method of improving residual stress in circumferential weld zone
JP4857375B2 (en) Equipment for improving residual stress in piping
JPS6130626A (en) Heat treatment of metal tube
JPS63199075A (en) Method for welding metallic pipe
JPS6161915B2 (en)
JPH01197081A (en) Manufacture of high corrosion resistant double metal pipe
JP2577051B2 (en) Method of manufacturing multilayer curved tube
JPH03207522A (en) Manufacture of double pipe
JPH05278143A (en) Production of composite pipe
JPS5948695B2 (en) Double tube manufacturing method
CN107191686B (en) High-strength stainless steel composite steel pipe capable of being connected through end threads and manufacturing method thereof
JPH0741475B2 (en) Double tube manufacturing method
JPH0468054B2 (en)