JPH0257173A - Liquid immersion type oxygen enriching aerator - Google Patents

Liquid immersion type oxygen enriching aerator

Info

Publication number
JPH0257173A
JPH0257173A JP63208097A JP20809788A JPH0257173A JP H0257173 A JPH0257173 A JP H0257173A JP 63208097 A JP63208097 A JP 63208097A JP 20809788 A JP20809788 A JP 20809788A JP H0257173 A JPH0257173 A JP H0257173A
Authority
JP
Japan
Prior art keywords
oxygen
hollow
hollow fiber
air
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208097A
Other languages
Japanese (ja)
Inventor
Masao Sakashita
坂下 雅雄
Tsutomu Kaneda
勉 金田
Bunji Shimomura
文二 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63208097A priority Critical patent/JPH0257173A/en
Priority to GB8911213A priority patent/GB2221917B/en
Publication of JPH0257173A publication Critical patent/JPH0257173A/en
Priority to US07/493,716 priority patent/US5116504A/en
Priority to US07/494,869 priority patent/US4975190A/en
Priority to GB9122613A priority patent/GB2253212B/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • B01D71/481Polyarylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/208Membrane aeration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/547Hydroxy compounds containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/02Means for regulation, monitoring, measurement or control, e.g. flow regulation of foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain the subject apparatus, having a structure of many bundled hollow yarns with oxygen-enriching performance and capable of feeding air in a high oxygen concentration into a culture solution with low foaming and evaporation by dipping the bundle in the culture solution and feeding compressed air thereto. CONSTITUTION:Hollow yarns 2 having oxygen-enriching performance are arranged around a hollow pipe 3 for introducing air and both ends of the hollow yarns 2, together with the hollow pipe 3, are sealed in joining parts 5 and 9. The one joining part 5 is closed with a cap and the hollow pipe 3 and the hollow yarns 2 are communicated to connect the other joining part 9 through a cap 11 to an air conduit pipe 13. The air conduit pipe 13 and hollow pipe 3 for introducing air are respectively provided with pressure control valves 14 and 15. The hollow yarns are preferably formed from an aromatic polyamide or polyarylate having heat resistance, since thermal sterilization can be carried out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は動物細胞、植物細胞、および好気性微生物の培
養液の通気装置に関するものであり、とくに、培養液中
に浸漬した酸素富化性能を有する中空糸を介して酸素富
化空気を培養液中に通気させることにより細胞の大量か
つ高密度培養を可能とする液浸型の酸素富化通気装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an aeration device for a culture solution of animal cells, plant cells, and aerobic microorganisms, and in particular, it has oxygen enrichment performance when immersed in the culture solution. The present invention relates to an immersion-type oxygen-enriched aeration device that enables large-scale, high-density culture of cells by aerating oxygen-enriched air into a culture medium through hollow fibers.

従来の技術 動物細胞、植物細胞、および好気性微生物が液状あるい
は懸濁状細胞培養液中で成長と増殖をするには、細胞の
要求に応じた固形表面を提供するとともに、栄養成分の
供給、有害代謝物の除去、および酸素の供給が必要であ
り、これらが細胞培養制限因子となっている。したがっ
て、細胞および微生物の大量かつ高密度培養を工業的に
達成するためには、これらの培養制限因子の障害を解決
しなければならない。さらに、これらの制限因子のうち
、酸素の供給が最も改良の期待されているものである。
BACKGROUND OF THE INVENTION The growth and multiplication of animal cells, plant cells, and aerobic microorganisms in liquid or suspension cell cultures requires the provision of a solid surface that meets the needs of the cells, as well as the provision of nutrients and nutrients. Removal of harmful metabolites and supply of oxygen are necessary, and these are limiting factors for cell culture. Therefore, in order to industrially achieve large-scale, high-density culture of cells and microorganisms, the obstacles of these culture-limiting factors must be overcome. Furthermore, among these limiting factors, the supply of oxygen is the one that is most promising for improvement.

一方、細胞培養方法とは特定細胞種のみの成長と増殖を
目的とするものであり、異種細胞あるいは雑菌の混入と
増殖は確実に排除されなければならない。すなわち、目
的細胞種の導入に前もって、培養装置と培養液とは完全
な無菌、素生物状態とする必要がある。このような無菌
化の方法゛として、エチレンオキシドによる滅菌、次亜
塩素酸塩水溶液等による薬剤滅菌、あるいは高圧水蒸気
滅菌が知られている。これらの滅菌方法のうち、高圧水
蒸気滅菌方法は、滅菌操作後の洗浄と廃棄物対策を必要
としないことから、工業的に最も好ましいものである。
On the other hand, cell culture methods are aimed at growing and multiplying only specific cell types, and the contamination and proliferation of foreign cells or bacteria must be reliably excluded. That is, before introducing the target cell type, the culture device and the culture medium must be completely sterile and in an organism state. As such sterilization methods, sterilization using ethylene oxide, chemical sterilization using an aqueous hypochlorite solution, and high-pressure steam sterilization are known. Among these sterilization methods, the high-pressure steam sterilization method is industrially the most preferred because it does not require cleaning after the sterilization operation or waste management.

したがって、細胞培養における酸素の供給を目的とする
通気装置は、これらの滅菌方法のうちのいずれか、好ま
しくは高圧水蒸気滅菌操作が可能な装置であることを前
提としなければならない。
Therefore, an aeration device for the purpose of supplying oxygen in cell culture must be capable of one of these sterilization methods, preferably a device capable of high-pressure steam sterilization.

培養液中に酸素を供給する方法としては、古くからフィ
ルター等により除菌した空気の気泡通気(バブルエアレ
ーション)が採用されている。かかる気泡通気において
、酸素の溶解は液体中を上昇する気泡表面で起こるため
、酸素の溶解速度を増大するためには通気量の増大とと
もに微細気泡を発生させる工夫が必要である。また、別
途調整した通常空気より酸素濃度の高い酸素富化空気を
気泡通気することによっても溶存酸素濃度を高めること
ができるが、大部分の富化空気は溶解せずに放出され、
工業的には採用しにくい。
As a method of supplying oxygen to the culture solution, bubble aeration of air that has been sterilized using a filter or the like has been used for a long time. In such bubble aeration, the dissolution of oxygen occurs on the surface of the bubbles rising in the liquid, so in order to increase the rate of oxygen dissolution, it is necessary to increase the amount of aeration and to generate fine bubbles. The dissolved oxygen concentration can also be increased by bubbling separately adjusted oxygen-enriched air with a higher oxygen concentration than normal air, but most of the enriched air is released without being dissolved.
Difficult to adopt industrially.

細胞培養において、気泡通気は最も簡便な酸素供給方法
で高圧水蒸気滅菌が可能なものであるが、いくつかの解
決すべき課題が指摘されている。
In cell culture, bubble aeration is the simplest oxygen supply method and enables high-pressure steam sterilization, but several issues have been pointed out that need to be resolved.

第1は、気泡通気にともなう激しい発泡である。一般に
細胞培養液は高粘度液体であり、培養容器の底部から導
入された気泡は培養溶液表面」二に長時間破裂せずに存
在し、その結果、培養溶液容積に比較してより大きな培
養容器容積を必要とする。
The first is intense foaming due to bubble ventilation. In general, cell culture solution is a high viscosity liquid, and air bubbles introduced from the bottom of the culture container remain on the culture solution surface for a long time without bursting, resulting in a larger culture container compared to the culture solution volume. Requires volume.

第2の解決すべき課題は、培養容器の底部で発生せしめ
た気泡が液中を上昇して最終的に破裂するまでの過程に
おいて、気泡と接触した細胞が損傷を受けることである
。特に、細胞膜の機械的強度に乏しい動物細胞において
は、気泡との接触による顕著な損傷が指摘されている。
The second problem to be solved is that cells that come into contact with the bubbles are damaged during the process in which the bubbles generated at the bottom of the culture container rise through the liquid until they finally burst. In particular, it has been pointed out that animal cells, whose cell membranes have poor mechanical strength, suffer significant damage due to contact with air bubbles.

第3の気泡通気にともなう解決すべき課題は、培養液の
蒸発損失である。この培養液の損失は培養期間が長期に
わたる動物および植物細胞の培養において顕著であり、
培養液に含まれる不揮発成分の濃縮と液面の低下を補正
するために適宜水と培養液の補充が必要となる。
The third problem to be solved with bubble aeration is evaporation loss of the culture solution. This loss of medium is noticeable in animal and plant cell cultures with long culture periods;
In order to correct the concentration of non-volatile components contained in the culture solution and the drop in the liquid level, it is necessary to replenish water and culture solution as appropriate.

気泡通気にともなう上述の障害を抑制する手段として、
従来より、種々の方法が提案されている。例えば、特開
昭6:l’−195278号公報において、培養液表面
に酸素を含む気体を吹き付けながら培養する方法が提案
されている。かかる吹き付は給気方法は、気泡発生にと
もなう障害を排除できる利点を有するものの、気体と培
養液の接触面は培養液表面に限定され、培養容器の深さ
方向の増大は給気量の不足を招くため、細胞培養のスケ
ールアップが困難である。
As a means of suppressing the above-mentioned problems associated with bubble ventilation,
Conventionally, various methods have been proposed. For example, Japanese Patent Application Laid-Open No. 6:195278 proposes a method of culturing while blowing oxygen-containing gas onto the surface of the culture solution. Although this air supply method has the advantage of eliminating problems caused by air bubble generation, the contact surface between the gas and the culture medium is limited to the surface of the culture medium, and the increase in the depth direction of the culture container reduces the amount of air supply. Scaling up cell culture is difficult because of the shortage.

気体と培養液の接触面積が大きく、かつ気泡発生の抑制
が可能な酸素供給方法は、培養液中に浸漬された膜を介
して、酸素を含む気体を培養液中に拡散させることであ
る。例えば、特開昭61−100190号公報において
、表面緻密層を有しない多孔質中空糸膜を介して培養液
中へ給気する無気泡ガスイング方法と装置が提案されて
いる。しかし、かかる多孔質中空糸膜は酸素富化機能を
持たないため、通常空気を導入する限り溶存酸素濃度は
空気平衡値を越えることはできず、溶存酸素の増大には
別途調整された酸素富化空気を供給しなければならない
An oxygen supply method that provides a large contact area between the gas and the culture solution and can suppress the generation of bubbles is to diffuse oxygen-containing gas into the culture solution through a membrane immersed in the culture solution. For example, JP-A-61-100190 proposes a bubble-free gas swing method and device for supplying air into a culture solution through a porous hollow fiber membrane having no surface dense layer. However, such porous hollow fiber membranes do not have an oxygen enrichment function, so as long as normal air is introduced, the dissolved oxygen concentration cannot exceed the air equilibrium value. oxidized air must be supplied.

酸素富化機能を有する素材を用いた培養液中への給気方
法も提案されており、例えば特公昭6023834号公
報において、シリコンゴム酸のチュブを介して、培養液
中に気体を拡散させる培養方法が開示されている。しか
し、肉厚のチューブが使用されるため、大きい気体透過
速度を期待することができず、その結果、供給する気体
も酸素に限定され、また細胞培養のスケールアップも難
しい。
A method of supplying air into the culture medium using a material with an oxygen enrichment function has also been proposed. A method is disclosed. However, since a thick tube is used, a high gas permeation rate cannot be expected, and as a result, the gas supplied is limited to oxygen, and it is difficult to scale up cell culture.

一方、優れた酸素富化性能と高い気体透過速度を有する
酸素富化膜としては、たとえば特公昭5851321に
提示されているように、ポリシロキサン系薄膜と多孔質
担体との複合膜が知られており、酸素富化器として既に
実用化されている。かかるポリシロキサン系酸素富化膜
を細胞培養液中に浸漬して、通常空気を酸素富化空気に
転換し、かつ無気泡条件で給気することは原理的には可
能であるものの、ポリシロキサン薄膜の低い耐熱性の故
に、装置と培養液をオートクレーブにより加圧水蒸気滅
菌することができず、細胞培養における酸素富化空気の
供給手段として装置化されていない。
On the other hand, as an oxygen enrichment membrane having excellent oxygen enrichment performance and high gas permeation rate, a composite membrane of a polysiloxane thin film and a porous carrier is known, as disclosed in Japanese Patent Publication No. 5851321. It has already been put into practical use as an oxygen enricher. Although it is theoretically possible to convert ordinary air into oxygen-enriched air by immersing such a polysiloxane-based oxygen-enriched membrane in a cell culture solution and to supply air under bubble-free conditions, polysiloxane Because of the low heat resistance of the thin film, the device and culture medium cannot be sterilized with steam under pressure in an autoclave, and it has not been used as a means for supplying oxygen-enriched air in cell culture.

細胞培養方法における従来の酸素供給手段を上述したが
、培養液中の溶存酸素濃度を高めると同時に、気泡発生
による障害を抑制し、さらに工業的にも可能な給気方法
であって、かつ高圧水蒸気滅菌が可能なものとして、本
発明者らは特願昭63117087において一般式(A
)で表されるポリアミドおよび一般式(B)で表される
ポリアリレートからなる酸素富化膜を介して酸素富化空
気を通気する細胞培養方法を提唱した。
The conventional oxygen supply means for cell culture methods have been described above, and it is an air supply method that increases the dissolved oxygen concentration in the culture medium, suppresses problems caused by bubble generation, and is also industrially possible. The present inventors proposed the general formula (A
) proposed a cell culture method in which oxygen-enriched air is aerated through an oxygen-enriched membrane made of a polyamide represented by the formula (B) and a polyarylate represented by the general formula (B).

発明が解決しようとする課題 本発明の目的は、耐熱性に優れ高圧水蒸気滅菌が可能な
酸素富化膜を介して酸素富化空気を液状あるいは懸濁状
細胞培養液中に拡散せしめ、酸素供給にともなう培養液
の発泡と蒸発を軽減するとともに、高い溶存酸素濃度環
境で動物細胞、植物細胞、好気性微生物の大量かつ高密
度培養を可能にする液浸型の酸素富化通気装置を提供す
ることである。
Problems to be Solved by the Invention The purpose of the present invention is to diffuse oxygen-enriched air into a liquid or suspended cell culture medium through an oxygen-enriched membrane that has excellent heat resistance and is capable of high-pressure steam sterilization. To provide an immersion-type oxygen-enriching aeration device that reduces foaming and evaporation of a culture solution caused by culture fluid, and enables large-scale, high-density culture of animal cells, plant cells, and aerobic microorganisms in an environment with high dissolved oxygen concentration. That's true.

課題を解決するための手段 本発明は、 1、酸素富化性能を有する中空糸(2)がそれより長さ
が長い空気導入用中空管(3)のまわりに配置され、中
空糸(2)の両端部は中空管(3)とともに樹脂体(4
,8)により接合部(5,9)にシールされ、そのシー
ルされた一方の接合部(5)において中空糸(2)と中
空管(3)は閉鎖された空洞部(7)に開口して中空糸
(2)への空気導入口を形成し、他方の接合部(9)に
おいては中空糸(2)が圧力調整バルブ(14)に接続
した空気導出口(13)と貫通した中空管(3)の側面
を固定するグランドシール部(12)とを有する開放さ
れた空洞部(11)に開口した中空糸酸素富化膜の組立
体から成り、細胞培養液中に浸漬して酸素富化空気を培
養液中に通気できることを特徴とする液浸型の酸素富化
通気装置。
Means for Solving the Problems The present invention provides the following features: 1. A hollow fiber (2) having oxygen enrichment performance is arranged around a hollow pipe (3) for introducing air that is longer than the hollow fiber (2). ) are both ends of the hollow tube (3) and the resin body (4).
, 8) to the joints (5, 9), and at one of the sealed joints (5), the hollow fiber (2) and the hollow tube (3) open into the closed cavity (7). to form an air inlet to the hollow fiber (2), and at the other joint (9), the hollow fiber (2) connects to an air outlet (13) connected to the pressure regulating valve (14) and an air inlet to the hollow fiber (2). It consists of an assembly of hollow fiber oxygen enrichment membranes opening into an open cavity part (11) having a gland seal part (12) that fixes the side surface of a hollow tube (3), and is immersed in a cell culture solution. A liquid immersion type oxygen-enriching aeration device characterized by being able to aerate oxygen-enriched air into a culture solution.

2、酸素富化性能を有する中空糸(2)と空気導入中空
管(3)とが中空糸の両端で樹脂体(4,8)により接
合部(5,9)にシールされ、さらに、両接合部間の酸
素富化空気の透過部(1)の中空糸全体が0.05 g
 m以上の孔径を有する多孔質管状体内に位置して中空
糸と培養液流体とが直接に接触することから保護され、
酸素富化空気が該多孔質管状体の細孔を介してを培養液
中に通気できることを特徴とする上記第1項記載の液浸
型の酸素富化通気装置。
2. A hollow fiber (2) having oxygen enrichment performance and an air introduction hollow tube (3) are sealed to a joint (5, 9) by a resin body (4, 8) at both ends of the hollow fiber, and further, The entire hollow fiber of the oxygen-enriched air permeation section (1) between both joints weighs 0.05 g.
located in a porous tubular body having a pore diameter of m or more to protect the hollow fibers from direct contact with the culture fluid;
2. The immersion type oxygen-enriching aeration device according to item 1 above, wherein oxygen-enriched air can be aerated into the culture medium through the pores of the porous tubular body.

3、前記の酸素富化性能を有する中空糸が一般式(A)
で表されるポリアミドあるいは一般式(B)で表される
ポリアリレートを素材とすることを特徴とする上記第1
項記載の液浸型の酸素富化通気装置、である。
3. The hollow fiber having the above-mentioned oxygen enrichment performance has the general formula (A)
The above-mentioned first material is made of a polyamide represented by the formula (B) or a polyarylate represented by the general formula (B).
This is a liquid immersion type oxygen enriched aeration device as described in Section 1.

ここで、nは繰り返し単位数を示す。Here, n indicates the number of repeating units.

以下図面に基づき本発明の液浸型の酸素富化通気装置を
さらに詳細に説明する。
EMBODIMENT OF THE INVENTION The liquid immersion type oxygen-enriched aeration device of the present invention will be explained in more detail below based on the drawings.

本発明に用いられる酸素富化性能を有する中空糸は、前
述の一般式(A)で表されるポリアミドあるいは一般式
(B)で表されるポリアリレートを素材として、湿式法
により外径3〜0.1 l1rs、内径2.8〜0.0
5mmに紡糸された耐熱性に優れたものであり、 12
7℃の水蒸気滅菌操作によっても酸素富化性能が劣化し
ない高い耐熱性を持つことを特徴とする。
The hollow fibers having oxygen enrichment performance used in the present invention are made of polyamide represented by the above-mentioned general formula (A) or polyarylate represented by general formula (B), and are produced by a wet method with an outer diameter of 3 to 3. 0.1 l1rs, inner diameter 2.8~0.0
It is spun to 5 mm and has excellent heat resistance. 12
It is characterized by high heat resistance, with its oxygen enrichment performance not deteriorating even after steam sterilization at 7°C.

本装置において、空気導入用中空管は心棒としても機能
するものであり、本装置の構造を維持できる機械的強度
と耐熱性、および後述の樹脂体と密着するものであれば
特に素材を指定しないが、ステンレス管等の非腐食性の
金属チューブが好ましく用いられ、外径1/4インチ以
下の肉薄のステンレス管は、構造維持に十分の機械的強
度が期待でき、かつ、本装置を培養槽内でラセン状等任
意の形状に変型することも可能であるため、最適に中空
管として用いられる。
In this device, the hollow tube for introducing air also functions as the core, and the material must be specially specified as long as it has mechanical strength and heat resistance that can maintain the structure of this device, and that it will come into close contact with the resin body described below. However, non-corrosive metal tubes such as stainless steel tubes are preferably used. Thin stainless steel tubes with an outer diameter of 1/4 inch or less are expected to have sufficient mechanical strength to maintain the structure and are suitable for cultivating this device. Since it can be deformed into any shape, such as a spiral shape, inside the tank, it is optimally used as a hollow tube.

数本から数千水の酸素富化中空系をそれより長さが長い
1本の中空管のまわりに配置して、中空糸の両端部と中
空管をシールして接合部を形成するが、シール用樹脂体
には機械的硬度と耐熱性に優れた包埋材、たとえばエポ
キシ系硬化樹脂、接合部材にはシール用樹脂体それ自体
、他の耐熱性樹脂、あるいは金属製の接合部材が用いら
れる。
Several to thousands of oxygen-enriched hollow systems of water are placed around a longer hollow tube to form a joint by sealing the ends of the hollow fibers and the hollow tube. However, the sealing resin body is made of an embedding material with excellent mechanical hardness and heat resistance, such as epoxy-based hardened resin, and the joining member is made of the sealing resin itself, another heat-resistant resin, or a metal joining member. is used.

中空糸への空気導入口となる接合部、すなわち第1図の
接合物(5)の末端において中空糸は開口して開口面(
6)を形成するが、中空管の開口面はこれに同一である
か、あるいは数層鵬凹凸してもよい。
The hollow fiber opens at the joint that becomes the air inlet to the hollow fiber, that is, at the end of the joint (5) in Figure 1, and the opening surface (
6), the opening surface of the hollow tube may be the same as this, or it may be uneven in several layers.

接合部(5)と閉鎖された空洞部(7)、および接合部
(9)と解放された空洞部(11)との接合方式は、1
0kg/ cta2の耐圧性と取り外しの容易さがあれ
ば特に指定しないが、勾配つきのねじが最も簡便に用い
られる。また、接合部(9)の中空糸開口面(10)を
貫通した中空管と開放された空洞部(11)の接合には
Oリング等が用いられ、空洞部(11)と中空糸部が分
離可能な接合方式である。
The joining method between the joint (5) and the closed cavity (7) and between the joint (9) and the open cavity (11) is 1.
Although it is not specified as long as it has a pressure resistance of 0 kg/cta2 and is easy to remove, a beveled screw is most conveniently used. Further, an O-ring or the like is used to connect the hollow tube passing through the hollow fiber opening surface (10) of the joint part (9) and the open cavity part (11), and the hollow part (11) and the hollow fiber part This is a separable joining method.

中空糸の前接合部間の酸素富化空気の透過部(1)の中
空糸が培養液に接触して酸素富化空気を液中に通気でき
るが、透過部(1)の中空糸全体を多孔質管状体内に位
置して中空糸が攬はんされている培養液流体と直接に接
触することから保護し、多孔質管状体の細孔を介して通
気してもよい。
The hollow fibers of the oxygen-enriched air permeation section (1) between the front joints of the hollow fibers come into contact with the culture solution and can aerate oxygen-enriched air into the liquid, but the entire hollow fiber of the permeation section (1) The hollow fibers may be located within the porous tubular body to protect them from direct contact with the medium fluid in which they are being squeezed and vented through the pores of the porous tubular body.

かかる多孔質管状体には、フッ素樹脂製多孔質管が軽量
性と形状変形性から最適であるが、金属管あるいはセラ
ミック管でもよく、いずれの材質のものでも0.05g
m以上の細孔径、好ましくは0.2 g m以上で11
01L以下の細孔径であり、液中で酸素富化空気が通過
するバブリング圧が1気圧以下、好ましくは0.5気圧
以下の多孔質管状体が用いられる。
For such a porous tubular body, a porous tube made of fluororesin is most suitable due to its light weight and shape deformability, but a metal tube or a ceramic tube may also be used, and the weight of either material is 0.05 g.
11 with a pore size of 0.2 g m or more, preferably 0.2 g m or more
A porous tubular body having a pore diameter of 0.01 L or less and a bubbling pressure at which oxygen-enriched air passes through the liquid is 1 atm or less, preferably 0.5 atm or less is used.

本発明の液浸型の酸素富化通気装置は、培養液中に酸素
富化性能を有する中空糸を浸漬し、培養液中の溶存酸素
濃度を高めて細胞の高密度培養を可能にするとともに、
気泡発生にともなう障害を軽減できることを特徴とする
。本装置が培養槽に固定されて培養液中への酸素富化空
気の通気に用いられる場合、第1図に示した接合部(9
)と空洞部(7)の間が培養槽内に位置する。
The immersion-type oxygen-enriching aeration device of the present invention immerses hollow fibers with oxygen-enriching performance in a culture solution, increases the dissolved oxygen concentration in the culture solution, and enables high-density culture of cells. ,
It is characterized by being able to reduce problems associated with bubble generation. When this device is fixed to a culture tank and used for aeration of oxygen-enriched air into the culture medium, the joint (9) shown in Figure 1 is used.
) and the cavity (7) are located within the culture tank.

培養槽と接合部(9)との固定方法は培養槽C・l容量
と形状によって多様であり、その要求に応して接合部を
加工する必要があるが、容量がlOリットル以下の研究
開発用あるいは中間プラント級の小型培養槽の場合には
、特に加工することなしに培養槽上部の機器設置口にシ
リコーンゴムバンキングにより容易に固定できる。第2
図は、シリコーンゴムバッキング(17)を用いて小型
培養槽の機器設置用の枝管(18)へ固定する方法を例
示している。
There are various ways to fix the culture tank and the joint (9) depending on the capacity and shape of the culture tank, and it is necessary to process the joint according to the requirements, but research and development with a capacity of 10 liters or less In the case of a small culture tank for commercial or intermediate plant level, it can be easily fixed to the equipment installation opening at the top of the culture tank with silicone rubber banking without any special processing. Second
The figure illustrates a method of fixing a small culture tank to a branch pipe (18) for equipment installation using a silicone rubber backing (17).

J8養液量の増大とともに酸素富化通気に必要な中空糸
数も必然的に増大し、その結果培養槽との固可部も強固
であることが必要であるが、培養槽の固定方式を予め接
合部(9)の構造に付与することにより容易に解決され
る。たとえば第3図に示すように、Oリングによる締め
付は方法を採用する場合、中空糸が数千水束ねられた開
口部直径が50+s+*以上の液浸型の酸素富化通気装
置とすることができる。
J8 As the amount of nutrient solution increases, the number of hollow fibers required for oxygen-enriched aeration inevitably increases, and as a result, the part that connects it to the culture tank needs to be strong, but it is necessary to determine the method of fixing the culture tank in advance. This can be easily solved by adding to the structure of the joint (9). For example, as shown in Figure 3, when using the O-ring tightening method, use a liquid immersion type oxygen-enriching aeration device with an opening diameter of 50+s+* or more, in which several thousand hollow fibers are bundled. Can be done.

作用 本発明の液浸型の酸素富化通気装置を用いて培養液中に
酸素富化空気を通気する過程は、第1図の圧力調整バル
ブ(15)から中空管(3)、ついで閉鎖された空洞部
(7)を経由して開口面(6)から中空糸(2)内に導
入された通常空気の少量部が酸素富化空気として培養液
中に拡散するものであり、中空糸内に導入された空気の
大部分は開口面(10)を経由して圧力調整バルブ(1
4)から装置外に排出される。
Function: The process of aerating oxygen-enriched air into the culture medium using the immersion-type oxygen-enriched aeration device of the present invention involves passing the pressure regulating valve (15) to the hollow tube (3) in FIG. A small portion of the normal air introduced into the hollow fiber (2) from the opening surface (6) via the hollow part (7) that is Most of the air introduced into the chamber passes through the opening surface (10) and passes through the pressure regulating valve (10).
4) is discharged from the device.

かかる本装置の運転条件において、中空糸内の圧力は1
0気圧以下、好ましくは5〜2気圧であり、かつ酸素富
化に有効な空気供給量と空気供給に必要な動力費の軽減
から、全供給空気量に対する中空糸を透過する酸素富化
空気量の比すなわち流量比が115〜l/20であるよ
うに圧力調整バルブ(14,15)で調整されることが
好ましい。
Under such operating conditions of this device, the pressure inside the hollow fiber is 1
The amount of oxygen-enriched air that permeates through the hollow fibers relative to the total amount of supplied air is 0 atm or less, preferably 5 to 2 atm, and is effective for oxygen enrichment and reduces the power cost required for air supply. It is preferable that the pressure regulating valves (14, 15) be used to adjust the ratio, that is, the flow rate ratio, to be 115 to 1/20.

また、この流量比と酸素富化に有効な中空糸の表面積、
および中空糸の酸素富化性能に応じて、空気供給用の中
空管の内径が予め決められている。たとえば40℃、3
気圧の空気を流量比l/20で導入する場合、一般式(
A)で表されるポリアミドを素材とする中空糸では、酸
素濃度34%の酸素富化空気が膜面積1m″当りの酸素
供給速度1.9×1O−3NrrI″/時で通気するこ
とができ、この時中空糸内に供給すべき1.2X 10
−” Nd/時の空気量は1/8インチの中空管で十分
対応できる。
In addition, this flow rate ratio and the surface area of the hollow fiber effective for oxygen enrichment,
The inner diameter of the hollow tube for air supply is determined in advance according to the oxygen enrichment performance of the hollow fiber. For example, 40℃, 3
When introducing atmospheric pressure air at a flow rate ratio of 1/20, the general formula (
In the hollow fiber made of polyamide represented by A), oxygen-enriched air with an oxygen concentration of 34% can be passed through at an oxygen supply rate of 1.9 x 1 O-3 NrrI''/hour per 1 meter of membrane area. , 1.2X 10 to be supplied into the hollow fiber at this time
-''Nd/hr air volume can be adequately handled by a 1/8 inch hollow tube.

かかる1m″表面積を有する酸素富化通気装置は、直径
0.5mmの中空糸約650本を有効長1mに束ね、開
口面の直径1c11どして第1図に示した構成とすれば
よく、酸素要求量3 X 10” g 02/細胞・時
のヒト細胞約1012個への通気、あるいは細胞密度1
07/Cll3として0.1rn’の培養液に酸素を供
給できる。
Such an oxygen-enriching aeration device having a surface area of 1 m'' may be constructed by bundling approximately 650 hollow fibers with a diameter of 0.5 mm to an effective length of 1 m and having an opening surface diameter of 1c11 as shown in FIG. 1. Oxygen demand 3
Oxygen can be supplied to the culture solution of 0.1rn' as 07/Cll3.

本発明で得られた液浸型の酸素富化通気装置は、酸素富
化性能を有する中空糸を培養液中に浸漬し、培養液中へ
酸素富化空気を供給して高い溶存酸素環境での細胞培養
を可能にするとともに、気泡通気にともなう細胞損傷と
培養液蒸発の障害を解決して、動物細胞、植物細胞、好
気性微生物の大量かつ高密度培養を可能とする通気装置
を提供し、さらに、耐熱性に優れた中空糸素材を用いる
ことにより、培養液と酸素富化膜を含む培養容器全体を
高圧水蒸気滅菌することをも可能とするものである。
The immersion type oxygen-enriched aeration device obtained by the present invention immerses hollow fibers with oxygen-enriching performance in a culture solution and supplies oxygen-enriched air into the culture solution to create a high dissolved oxygen environment. The present invention provides an aeration device that enables large-scale, high-density culture of animal cells, plant cells, and aerobic microorganisms by solving the problems of cell damage and culture solution evaporation caused by bubble aeration. Furthermore, by using a hollow fiber material with excellent heat resistance, it is also possible to sterilize the entire culture container including the culture solution and the oxygen-enriched membrane with high-pressure steam.

実施例 以下に本発明の実施例を挙げるが、本発明はこれらに限
定されるものではない。
EXAMPLES Examples of the present invention are listed below, but the present invention is not limited thereto.

実施例1 一般式(A)で表されるポリアミドを素材とする外径0
.7層鵬、内径0.5肩層の中空糸20本を1/16イ
ンチのステンレス中空管のまわりに配置し、ステンレス
製の接合部内に熱硬化性エポシキ樹脂で固定し、酸素富
化有効長1.2mがラセン状に変形させた液浸型の酸素
富化通気装置を作製し、かくはん器と溶存酸素濃度計を
付置した2リツトルの純水を含むガラス製培養器に第2
図に示した方法で固定して模擬培養装置を組み立て40
℃の恒温に保持した。
Example 1 Outer diameter 0 made of polyamide represented by general formula (A)
.. 20 7-layer hollow fibers with an inner diameter of 0.5 shoulder layer are arranged around a 1/16 inch stainless steel hollow tube and fixed with thermosetting epoxy resin within the stainless steel joint, making it effective for oxygen enrichment. An immersion-type oxygen-enriching aeration device with a length of 1.2 m deformed into a spiral shape was fabricated, and a second glass incubator containing 2 liters of pure water was equipped with a stirrer and a dissolved oxygen concentration meter.
Assemble the simulated culture device by fixing it as shown in the figure 40
The temperature was maintained constant at ℃.

木液浸型の酸素富化通気装置に3気圧(ゲイジ圧)に加
圧した空気を6 X 10−3 Nrn”7時で導入し
たとき、溶存酸素濃度として10ppmを得た。本発明
の液浸型の酸素富化通気装置を用いることにより、通常
空気の気泡通気で達成される溶存酸素濃度(40℃にて
8.5ppm)より高い値が得られた。
When air pressurized to 3 atm (gauge pressure) was introduced into a wood liquid immersion type oxygen enrichment aeration device at 6 x 10-3 Nrn'' at 7 o'clock, a dissolved oxygen concentration of 10 ppm was obtained.The liquid of the present invention By using an immersion-type oxygen enrichment aeration device, a higher dissolved oxygen concentration (8.5 ppm at 40° C.) was obtained than normally achieved with air bubble aeration.

実施例2 実施例1に示した酸素富化通気装置の中空糸部を最大孔
径3.5 μmのフッ素樹脂製多孔質管で保護し、第1
図の構成と同じ液浸型の酸素富化通気装置を、植物カル
ス培養に用いられるMS培値2リットルを含むガラス製
培養槽に実施例1と同一の方法で固定し、 123℃で
1時間の高圧水蒸気滅菌処理後ニンジンのカルスを投入
し、25℃、導入空気圧3気圧(ゲイジ圧)、空気流量
6X10−3Nm’/時の条件で培養を1週間継続した
。培養液中の溶存酸素濃度は12ppmに維持され、カ
スル量は6倍に増大した。また中空糸へのカルスの付着
は多孔質管により保護された。
Example 2 The hollow fiber part of the oxygen enrichment aeration device shown in Example 1 was protected with a fluororesin porous tube with a maximum pore diameter of 3.5 μm, and the first
An immersion-type oxygen-enriching aeration device having the same configuration as shown in the figure was fixed in a glass culture tank containing 2 liters of MS medium used for plant callus culture in the same manner as in Example 1, and heated at 123°C for 1 hour. After high-pressure steam sterilization, carrot callus was introduced, and culture was continued for one week at 25° C., an air pressure of 3 atm (gauge pressure), and an air flow rate of 6×10 −3 Nm′/hour. The dissolved oxygen concentration in the culture solution was maintained at 12 ppm, and the amount of castor increased sixfold. In addition, the adhesion of callus to the hollow fibers was protected by the porous tube.

発明の効果 動物細胞、植物細胞、および好気性微生物の細胞培養に
おいて、本発明の液浸型の酸素富化通気装置を用いて培
養液中に酸素富化空気を供給する細胞培養方法は、培養
液中の溶存酸素濃度を高めることができるとともに、従
来の気泡通気による細胞損傷と培養液の蒸発損失の障害
を解決することができ、細胞培養の大量かつ高密度化を
可使にするものである。
Effects of the Invention In cell culture of animal cells, plant cells, and aerobic microorganisms, the cell culture method for supplying oxygen-enriched air into the culture solution using the immersion type oxygen-enriched aeration device of the present invention is In addition to increasing the dissolved oxygen concentration in the solution, it also solves the problems of cell damage and evaporation loss of the culture solution caused by conventional bubble aeration, making it possible to culture cells in large quantities and at high density. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液浸型の酸素富化通気装置の立面図、第2図は
装置の固定方法例を示す断面図、第3図は装置の他の固
定方法例を示す断面図である。 1・・・酸素富化有効中空糸部、2・・・中空糸、3・
・・中空管、4・・・樹脂体、5・・・接合部、6・・
・開口面、7・・・閉鎖された空洞部、8・・・樹脂体
、9・・・接合部、1o・・・開口面、11φ・φ開放
された空洞部、12・・・中空管シール部、13・φ・
空気導出口、14・・・圧力調整バルブ、15・・・圧
力調整バルブ、16・・e多孔質管状体、17・・・シ
リコーンゴムバッキング、18・・・培養槽機器設置口
、I9・・・0リング。
FIG. 1 is an elevational view of a liquid immersion type oxygen enrichment aeration device, FIG. 2 is a sectional view showing an example of a method for fixing the device, and FIG. 3 is a sectional view showing another example of a method for fixing the device. DESCRIPTION OF SYMBOLS 1... Oxygen enrichment effective hollow fiber part, 2... Hollow fiber, 3...
...Hollow tube, 4...Resin body, 5...Joint part, 6...
・Opening surface, 7...Closed cavity, 8...Resin body, 9...Joint part, 1o...Opening surface, 11φ/φ open cavity, 12...Hollow Pipe seal part, 13・φ・
Air outlet, 14... Pressure adjustment valve, 15... Pressure adjustment valve, 16... e Porous tubular body, 17... Silicone rubber backing, 18... Culture tank equipment installation port, I9...・0 ring.

Claims (1)

【特許請求の範囲】 1、酸素富化性能を有する中空糸(2)がそれより長さ
が長い空気導入用中空管(3)のまわりに配置され、中
空糸(2)の両端部は中空管(3)とともに樹脂体(4
、8)により接合部(5、9)にシールされ、そのシー
ルされた一方の接合部(5)において中空糸(2)と中
空管(3)は閉鎖された空洞部(7)に開口して中空糸
(2)への空気導入口を形成し、他方の接合部(9)に
おいては中空糸(2)が圧力調整バルブ(14)に接続
した空気導出口(13)と貫通した中空管(3)の側面
を固定するグランドシール部(12)とを有する開放さ
れた空洞部(11)に開口した中空糸酸素富化膜の組立
体から成り、細胞培養液中に浸漬して酸素富化空気を培
養液中に通気できることを特徴とする液浸型の酸素富化
通気装置。 2、酸素富化性能を有する中空糸(2)と空気導入中空
管(3)とが中空糸の両端で樹脂体(4、8)により接
合部(5、9)にシールされ、さらに、両接合部間の酸
素富化空気の透過部(1)の中空糸全体が0.05μm
以上の孔径を有する多孔質管状体内に位置して中空糸と
培養液流体とが直接に接触することから保護され、酸素
富化空気が該多孔質管状体の細孔を介して培養液中に通
気できることを特徴とする請求項1記載の液浸型の酸素
富化通気装置。 3、前記の酸素富化性能を有する中空糸が一般式(A)
で表されるポリアミドあるいは一般式(B)で表される
ポリアリレートを素材とすることを特徴とする請求項1
記載の液浸型の酸素富化通気装置。 ▲数式、化学式、表等があります▼…(A) ▲数式、化学式、表等があります▼…(B) ここで、nは繰り返し単位数を示す。
[Claims] 1. A hollow fiber (2) having oxygen enrichment performance is arranged around a longer hollow pipe (3) for introducing air, and both ends of the hollow fiber (2) are Along with the hollow tube (3), the resin body (4
, 8) to the joints (5, 9), and at one of the sealed joints (5), the hollow fiber (2) and the hollow tube (3) open into the closed cavity (7). to form an air inlet to the hollow fiber (2), and at the other joint (9), the hollow fiber (2) connects to an air outlet (13) connected to the pressure regulating valve (14) and an air inlet to the hollow fiber (2). It consists of an assembly of hollow fiber oxygen enrichment membranes opening into an open cavity part (11) having a gland seal part (12) that fixes the side surface of a hollow tube (3), and is immersed in a cell culture solution. A liquid immersion type oxygen-enriching aeration device characterized by being able to aerate oxygen-enriched air into a culture solution. 2. A hollow fiber (2) having oxygen enrichment performance and an air introduction hollow tube (3) are sealed to a joint (5, 9) by a resin body (4, 8) at both ends of the hollow fiber, and further, The entire hollow fiber of the oxygen-enriched air permeation part (1) between both joints is 0.05μm
The hollow fibers are located in a porous tubular body having a pore size of 100 to 100 mL or more, and the hollow fibers are protected from direct contact with the culture medium fluid, and oxygen-enriched air is introduced into the culture medium through the pores of the porous tubular body. The immersion type oxygen-enriching aeration device according to claim 1, characterized in that it is capable of aeration. 3. The hollow fiber having the above-mentioned oxygen enrichment performance has the general formula (A)
Claim 1, characterized in that the material is polyamide represented by or polyarylate represented by general formula (B).
The immersion type oxygen enrichment aeration device described. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(A) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(B) Here, n indicates the number of repeating units.
JP63208097A 1988-05-16 1988-08-24 Liquid immersion type oxygen enriching aerator Pending JPH0257173A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63208097A JPH0257173A (en) 1988-08-24 1988-08-24 Liquid immersion type oxygen enriching aerator
GB8911213A GB2221917B (en) 1988-05-16 1989-05-16 Organic polymer separation membrane having fluorene skeleton and oxygen enrichment device utilizing same
US07/493,716 US5116504A (en) 1988-05-16 1990-03-13 Organic polymer separation membrane having fluorene skeleton and oxygen enrichment device utilizing same
US07/494,869 US4975190A (en) 1988-05-16 1990-03-14 Organic polymer separation membrane having fluorene skeleton and oxygen enrichment device utilizing same
GB9122613A GB2253212B (en) 1988-05-16 1991-10-24 "organic polymer separation membrane having fluorene skeleton and oxygen enrichment device utilizing same"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208097A JPH0257173A (en) 1988-08-24 1988-08-24 Liquid immersion type oxygen enriching aerator

Publications (1)

Publication Number Publication Date
JPH0257173A true JPH0257173A (en) 1990-02-26

Family

ID=16550586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208097A Pending JPH0257173A (en) 1988-05-16 1988-08-24 Liquid immersion type oxygen enriching aerator

Country Status (1)

Country Link
JP (1) JPH0257173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062216A (en) * 2011-01-05 2011-03-31 Univ Of Tokyo Hollow fiber module for cell culture and method for cell culture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062216A (en) * 2011-01-05 2011-03-31 Univ Of Tokyo Hollow fiber module for cell culture and method for cell culture

Similar Documents

Publication Publication Date Title
US5686304A (en) Cell culture apparatus and method
DK168760B1 (en) Process for biologically and physically eliminating undesirable constituents from water, an installation for use in the process, and the use of the process for removing nitrate from water
US6209855B1 (en) Gas/liquid mixing apparatus and method
US8906688B2 (en) Cell expansion system and methods of use
US5149649A (en) Multi-layered porous hollow fiber membrane for use in cell culture
WO1993008307A1 (en) Pressure control system for a bioreactor
JPH0321149B2 (en)
JPS6312274A (en) Bioreactor
JPS63151306A (en) Device and method for mass transfer including biological and/or pharmacological medium
US5110741A (en) Aeration apparatus for the culture of mammalian cells
AU778141B2 (en) Method for cultivating cells, a membrane module, utilization of a membrane module and reaction system for cultivation of said cells
JPH0257173A (en) Liquid immersion type oxygen enriching aerator
US5112760A (en) Mass transfer membrane for oxygenation of animal cell reactors
JP2001333639A (en) Carbon dioxide fertilizing to plant using highly selectable separation membrane of carbon dioxide
JP3412364B2 (en) Cell culture device and cell culture method
JPH01222768A (en) Bioreactor
JPS5851888A (en) Method and apparatus for dialytically culturing algaes and non-photosynthetic microorganisms
JPS63240774A (en) Bioreactor
JPH05244930A (en) Photo-cultivation reaction tank and cultivation process
JP7152762B2 (en) Culture device and culture method
SU1161544A1 (en) Installation for growing microorganisms
JP2984748B2 (en) Method for culturing microorganisms using air-permeable membrane
JPH0353676Y2 (en)
JPS61227779A (en) Perfusion culture process
JPS60156378A (en) Culture medium of cell