JPH01222768A - Bioreactor - Google Patents

Bioreactor

Info

Publication number
JPH01222768A
JPH01222768A JP4770988A JP4770988A JPH01222768A JP H01222768 A JPH01222768 A JP H01222768A JP 4770988 A JP4770988 A JP 4770988A JP 4770988 A JP4770988 A JP 4770988A JP H01222768 A JPH01222768 A JP H01222768A
Authority
JP
Japan
Prior art keywords
membrane
cells
bioreactor
culture medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4770988A
Other languages
Japanese (ja)
Other versions
JPH0659206B2 (en
Inventor
Masahiko Yamaguchi
正彦 山口
Hidenori Mitsui
秀則 三井
Toshifumi Fukunaga
俊史 福永
Minoru Sanai
佐内 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP4770988A priority Critical patent/JPH0659206B2/en
Publication of JPH01222768A publication Critical patent/JPH01222768A/en
Publication of JPH0659206B2 publication Critical patent/JPH0659206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To meet the cell culture of a large scale by providing the bioreactor with the membrane for feeding the culture medium and the other membrane for exchanging the gases using porous hollow fiber membranes which are made hydrophilic by treatment as the membrane for feeding culture medium to make it possible to feed a sufficient amount of oxygen gas to the culture medium and the cells. CONSTITUTION:The culture medium is fed through the membrane 8 and the cells are proliferated on the membrane 8 and the outer space of the membrane 8. In addition, the bioreactor 14 is provided with the other membrane 9 for exchanging gases inside, while the membrane 8 for supplying the medium is constituted with porous hollow fibers which is made hydrophilic by treatment. As a result, sufficient amount of oxygen-containing gas and pH-controlling gas are supplied sufficiently to the culture medium and the cells to grow and proliferate the cells without any trouble whereby the process according the present invention can meet satisfactorily a large scale of cell culture.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、細胞を生育させる為のバイオリアクターに係
り、更に詳しくは大規模に細胞培養を行なう為のバイオ
リアクターに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a bioreactor for growing cells, and more specifically to a bioreactor for culturing cells on a large scale.

[従来の技術] 微生物または細胞を培養する培養槽を用いる培養装置に
おいて、培養の容積効率を高めるための手段の一つとし
て、培地への通気ガス供給を増大させることが知られて
おり、この場合、一般に培地の激しい攪拌が行なわれる
[Prior Art] In a culture device using a culture tank for culturing microorganisms or cells, it is known that one way to increase the volumetric efficiency of culture is to increase the supply of aeration gas to the culture medium. In this case, vigorous agitation of the medium is generally performed.

一方、中空糸膜を用いて細胞を培養する。いわゆるホロ
ーファイバー法と呼ばれる培養方法が知られている。
Meanwhile, cells are cultured using a hollow fiber membrane. A culture method called the so-called hollow fiber method is known.

[発明が解決しようとする課題] しかしながら、通気ガス供給を増大させる方法において
は、培地中への通気バブリングによる泡立ちによって細
胞と気泡とか接触することや、攪拌による機械的なスト
レスが細胞に加わるために、細胞、特に動物細胞などの
脆弱な細胞が死滅損傷する慮れがあるなどの問題がある
[Problems to be Solved by the Invention] However, in the method of increasing the supply of aeration gas, bubbles come into contact with the cells due to aeration bubbling into the medium, and mechanical stress is applied to the cells due to stirring. Another problem is that cells, especially fragile cells such as animal cells, may be killed or damaged.

一方、ホローファイバー法と呼ばれる培養方法にあって
は、第3図に示すようにホローファイバーバイオリアク
ターとガス交換器が分離して設けられているため、02
及びpHm整用ガスの供給が不十分で、大規模な細胞培
養には適していないという問題がある。この点を説明す
ると、ホローファイバーバイオリアクターにおいては、
中空糸膜の外側にいる細胞に厳密に制御される培地を送
る必要があるが、バイオリアクター14とガス交換器1
7が分離して設けられている場合、第3図に示すように
、バイオリアクター14の前(又は後)において培地の
pH,DoをPHセンサー13及びDOOリング19て
測定し、その信号に応じてガス交換器’17よりガスを
送り込むが、細胞が急激に増殖した場合、バイオリアク
ター14に入り込む培地のpH値、Do値が異なること
になる。これは細胞により培地中のグルコース等が消費
されるためである。従って、バイオリアクター14の前
においてPH値、Do値を測定したとしても、単に目安
程度にしかならず、その値の信号によりガス交換を行な
ってもあまり意味がないことになるのである。
On the other hand, in the culture method called the hollow fiber method, the hollow fiber bioreactor and gas exchanger are installed separately, as shown in Figure 3.
Also, there is a problem that the supply of pH adjustment gas is insufficient, making it unsuitable for large-scale cell culture. To explain this point, in a hollow fiber bioreactor,
Although it is necessary to deliver a strictly controlled medium to the cells outside the hollow fiber membrane, the bioreactor 14 and gas exchanger 1
7 is provided separately, as shown in FIG. 3, the pH and Do of the culture medium are measured before (or after) the bioreactor 14 using the PH sensor 13 and the DOO ring 19, and the However, if cells rapidly proliferate, the pH value and Do value of the medium entering the bioreactor 14 will differ. This is because glucose and the like in the medium are consumed by the cells. Therefore, even if the PH value and Do value are measured in front of the bioreactor 14, they will only serve as a guideline, and there is little point in performing gas exchange based on the signals of these values.

さらに、従来のホローファイバー法の場合、02の供給
が培地だけに行なわれているため、細胞が酸素不足にな
り死滅するという問題もあった。
Furthermore, in the case of the conventional hollow fiber method, since 02 is supplied only to the medium, there is also the problem that cells become deficient in oxygen and die.

[課題を解決するための手段] そこで、本発明は上記従来技術の欠点に鑑み、なされた
もので、02ガスの供給が培地たけてなく細胞にも十分
になされる、大規模な細胞培養に適したバイオリアクタ
ーを提供することを目的とするものである。そして、そ
の目的は、本発明によれば、培地供給膜を介して培養液
を供給し、該培地供給膜上及び該培地供給膜の外部空間
で細胞を増殖するバイオリアクターにおいて、該バイオ
リアクター内に前記培地供給膜とともにガス交換用の膜
を配設し、且つ前記培地供給膜は親水イビ処理した多孔
性中空糸膜からなるものであることを特徴とするバイオ
リアクター、により達成することができる。
[Means for Solving the Problems] Therefore, the present invention has been made in view of the drawbacks of the prior art described above, and is suitable for large-scale cell culture where 02 gas is supplied not only to the culture medium but also to the cells. The purpose is to provide a suitable bioreactor. According to the present invention, the purpose is to provide a bioreactor in which a culture solution is supplied through a medium supply membrane and cells are grown on the medium supply membrane and in the external space of the medium supply membrane. This can be achieved by a bioreactor characterized in that a membrane for gas exchange is disposed together with the medium supply membrane, and the medium supply membrane is made of a porous hollow fiber membrane treated with hydrophilic Ibi. .

[作用] 本発明のバイオリアクターにおいては、バイオリアクタ
ー内に配設した培地供給膜の内側に培地を流し、該膜の
細孔を通じて培地供給膜の外側に培地をにじみ出させ、
培地供給膜の外側に植え込んである細胞を増殖させる。
[Function] In the bioreactor of the present invention, a medium is caused to flow inside a medium supply membrane disposed in the bioreactor, and the medium is oozed out to the outside of the medium supply membrane through the pores of the membrane.
The cells implanted on the outside of the medium supply membrane are grown.

その際、同じく、バイオリアクター内に前記培地供給膜
と共に配設したガス交換膜の内側を通って送られてくる
ガスが、ガス交換膜を介して培地供給膜よりにじみ出た
培地と接触するようになっており、0□が培地に供給さ
れるほか、培地供給膜の外側に植え込まれた細胞にも0
2を供給する。
At that time, the gas sent through the inside of the gas exchange membrane disposed together with the medium supply membrane in the bioreactor also comes into contact with the medium seeped out from the medium supply membrane through the gas exchange membrane. In addition to supplying 0□ to the culture medium, 0□ is also supplied to the cells implanted outside the culture medium supply membrane.
Supply 2.

また、本発明の培地供給膜は親水化処理したものである
ため、透水量を大きくすることができる。
Moreover, since the culture medium supply membrane of the present invention has been subjected to a hydrophilic treatment, the amount of water permeation can be increased.

[実施例] 以下、本発明を図示の実施例に基いて詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図は本発明のバイオリアクターの構造の一例を示し
た縦斯面図である。筒状容器7の内部には培地供給11
88よびガス交換膜9を構成する多数の中空糸膜が配設
されており、該筒状容器7の両端部において、該筒状容
器7の内面と前記培地供給膜8およびガス交換膜9の外
面が、ポリウレタン樹脂等のボッティング材からなる支
持部材lOにより気密に支持されるとともに、培地供給
膜8およびガス交換膜9の両端部は、該筒状容器7の両
端側に開口している。
FIG. 1 is a longitudinal sectional view showing an example of the structure of the bioreactor of the present invention. A culture medium supply 11 is provided inside the cylindrical container 7.
88 and a large number of hollow fiber membranes constituting the gas exchange membrane 9 are arranged, and at both ends of the cylindrical container 7, the inner surface of the cylindrical container 7 and the medium supply membrane 8 and the gas exchange membrane 9 are connected to each other. The outer surface is airtightly supported by a support member lO made of a botting material such as polyurethane resin, and both ends of the culture medium supply membrane 8 and gas exchange membrane 9 are open to both ends of the cylindrical container 7. .

培地供給膜8とガス交換膜9は、筒状容器7内において
、中心部にガス交換膜9、その外側に培地供給膜8が配
置され、各々気液が通過し得る多数の透孔12を有する
隔壁11によって分離されて設けられている。
In the cylindrical container 7, the culture medium supply membrane 8 and the gas exchange membrane 9 are arranged such that the gas exchange membrane 9 is disposed in the center and the culture medium supply membrane 8 is disposed outside of the gas exchange membrane 9, and each has a large number of through holes 12 through which gas and liquid can pass. They are separated by a partition wall 11 having a partition wall 11.

また、ボート5は、使用済みの栄養培地と細胞産生物を
バイオリアクターから取り出すボートであり、ボート6
は、ガスの供給量及び濃度を制御するセンサーの導入口
である。尚、Oリング19は、外部との気密性保持およ
びガスと培地とを混合させないために設けられている。
In addition, boat 5 is a boat for removing used nutrient medium and cell products from the bioreactor, and boat 6
is an inlet for a sensor that controls the gas supply amount and concentration. Note that the O-ring 19 is provided to maintain airtightness with the outside and to prevent gas and culture medium from mixing.

以上の構成において、培地Aは培地人口2より培地供給
膜8の中空糸膜内に入り、膜にかかる圧力により、少量
培地供給膜8の外側ににじみ出し、残りの培地は培地出
口3より筒状容器7を出る。一方、空気などのガスBは
、ガス人口1よりガス交換膜9の中空糸膜内に入り、ガ
ス交換膜9を介し隔壁11の透孔12を通して培地にガ
スを供給し、残余のガス及び交換したガスがガス出口4
より筒状容器7を出る。
In the above configuration, the medium A enters the hollow fiber membrane of the medium supply membrane 8 through the medium population 2, and a small amount of medium oozes out to the outside of the medium supply membrane 8 due to the pressure applied to the membrane, and the remaining medium is released from the medium outlet 3 through the tube. exit the shaped container 7. On the other hand, gas B such as air enters the hollow fiber membrane of the gas exchange membrane 9 through the gas population 1, and is supplied to the culture medium through the gas exchange membrane 9 through the through holes 12 of the partition wall 11, and the remaining gas and exchange The gas that is
The liquid then exits the cylindrical container 7.

本発明のバイオリアクターを構成している培地供給膜8
の基体は、種々の重合体よりなる多孔性中空糸であって
、その重合体としては、例えばセルロースアセテート、
ポリスルホン、ポリアクリロニトリル、弗素ポリマー、
ポリオレフオン(ポリプロピレン、ポリエチレン等)な
どが挙げられる。
Culture medium supply membrane 8 constituting the bioreactor of the present invention
The substrate is a porous hollow fiber made of various polymers, such as cellulose acetate,
polysulfone, polyacrylonitrile, fluoropolymer,
Examples include polyolefins (polypropylene, polyethylene, etc.).

培地供給膜8たる多孔性中空糸膜の壁膜には、栄養分及
び細胞の老廃物、代謝生産物などは透過するが、細胞は
透過しない大きさの細孔が多数設けられている。細胞自
体を浮遊させて培養させる場合、細孔の大きさは、細胞
の大きさにより決定されることになるが、一般に、平均
孔径が10JLm以下、好ましくは8gm以下が適当で
ある。
The wall of the porous hollow fiber membrane serving as the culture medium supply membrane 8 is provided with a large number of pores that are large enough to allow nutrients, cell wastes, metabolic products, etc. to pass therethrough, but not cells. When the cells themselves are cultured in suspension, the size of the pores will be determined by the size of the cells, but in general, an appropriate average pore size is 10 JLm or less, preferably 8 gm or less.

又、培地供給膜8は親水化処理をしたものであるため、
透水量を大きくすることができる。
In addition, since the culture medium supply membrane 8 has been subjected to hydrophilic treatment,
Water permeability can be increased.

親木化処理の方法としては、次のものが挙げられる。Examples of methods for parent tree processing include the following.

培地供給膜である疎水性多孔性中空糸膜の表面に、カル
ボキシメチルエチルセルロース、グリセリン脂肪酸エス
テル、ヒドロキシプロピルメチルセルロースアセテート
サクシネート、ヒドロキシプロピルメチルセルロースフ
タレート、ポリ(2−ヒドロキシエチルメタクリレート
)、エチレンオキサイドグラフトナイロン、6/66/
610ナイロンターポリマー、8−タイプ可溶性ナイロ
ン(メトキシナイロン)等の親水化剤をコーティングす
る方法が挙げられる。
On the surface of the hydrophobic porous hollow fiber membrane that is the culture medium supply membrane, carboxymethylethylcellulose, glycerin fatty acid ester, hydroxypropylmethylcellulose acetate succinate, hydroxypropylmethylcellulose phthalate, poly(2-hydroxyethyl methacrylate), ethylene oxide grafted nylon, 6/66/
Examples include a method of coating with a hydrophilic agent such as 610 nylon terpolymer or 8-type soluble nylon (methoxy nylon).

即ち、培地供給膜8は、水の透過係数(tJL/m2・
hr・mmHg)がio以上、好ましくは100以上と
することが好ましい。一方、上限は特にないが、20.
000以下、好ましくは10,000以下が望まれる。
That is, the culture medium supply membrane 8 has a water permeability coefficient (tJL/m2·
hr·mmHg) is preferably io or more, preferably 100 or more. On the other hand, there is no particular upper limit, but 20.
000 or less, preferably 10,000 or less.

さらに、培地供給膜8としては、栄養分や細胞の老廃物
などの分子量の小さい化合物は透過するが、分子量の大
きい化合物は透過しない膜、例えば限外濾過膜を使用す
ることも可能である。
Further, as the culture medium supply membrane 8, it is also possible to use a membrane, such as an ultrafiltration membrane, which allows small molecular weight compounds such as nutrients and cellular wastes to pass through, but does not allow large molecular weight compounds to pass through.

本発明のバイオリアクターを構成しているガス交換11
99としては、種々の重合体よりなるものであればよく
、例えばセルロース、ポリアクリルニトリル、ポリカー
ボネート、ポリフッ化ビニリデン、ポリメチルメタクリ
レート、ポリエチレン。
Gas exchange 11 constituting the bioreactor of the present invention
99 may be made of various polymers, such as cellulose, polyacrylonitrile, polycarbonate, polyvinylidene fluoride, polymethyl methacrylate, and polyethylene.

ポリプロピレン、シリコーンゴム等およびそれらの変成
素材などが挙げられる。
Examples include polypropylene, silicone rubber, and modified materials thereof.

又、ガス交換膜9は、ガス透過能を有することが必要で
ある。即ち、ガス交換膜9は、ガスの透過係数(m文/
■2・hr・mmHg)が10以上、好ましくは100
以上であることが有利である。
Further, the gas exchange membrane 9 needs to have gas permeability. That is, the gas exchange membrane 9 has a gas permeability coefficient (m /
■2・hr・mmHg) is 10 or more, preferably 100
It is advantageous that the above is the case.

さらに、ガス交換膜9としては、単位体積当りの膜面積
が小さくできる中空糸膜が好ましい。特に、高い透過能
を有する多孔質膜がよく、その中でもポリオレフィン系
多孔質膜が好ましい。
Further, as the gas exchange membrane 9, a hollow fiber membrane is preferable because it can have a small membrane area per unit volume. In particular, porous membranes with high permeability are preferred, and polyolefin porous membranes are particularly preferred.

なお、第1図においては、説明の便宜のため同心状で、
その中心部にガス交換膜9、その外側に培地供給膜8を
設け、各々隔壁11により分離された構成としたが、ガ
スを十分に培地に供給するためには、筒状容器7内にお
いてガス交換膜9および培地供給膜8が混在した構成の
ものがより好ましい。
In addition, in FIG. 1, for convenience of explanation, the shapes are concentric,
A gas exchange membrane 9 is provided in the center, and a culture medium supply membrane 8 is provided on the outside thereof, separated by a partition wall 11. However, in order to sufficiently supply gas to the culture medium, it is necessary to A configuration in which the exchange membrane 9 and the culture medium supply membrane 8 are mixed is more preferable.

また、細胞を増殖させるためには、細菌による汚染をな
くすことが絶対的に必要であり、ガス交換膜9としてポ
リプロピレン多孔質膜、培地供給膜8としてポリエーテ
ルサルホン限外濾過膜、筒状容器7としてポリカーボネ
ート製の容器、支持部材10としてポリウレタン樹脂な
どを用いることにより、バイオリアクター全体が高温高
圧蒸気滅菌が可能である構成とすることがより好ましい
In addition, in order to proliferate cells, it is absolutely necessary to eliminate bacterial contamination, so a polypropylene porous membrane is used as the gas exchange membrane 9, a polyethersulfone ultrafiltration membrane is used as the medium supply membrane 8, and a cylindrical It is more preferable to use a polycarbonate container as the container 7 and a polyurethane resin as the support member 10 so that the entire bioreactor can be sterilized with high temperature and high pressure steam.

第2図は本発明のバイオリアクターを用いた細胞培養方
式を示したもので、pHセンサー13及びDo(溶存酸
素)センサー18を備えたバイオリアクター14、培地
タンク15、pHセンサーおよび潅流物の流速を制御す
るポンプldから成る系を示している。一方、第3図は
従来のバイオリアクターとガス交換器を用いた細胞培養
方式を示したもので、第2図と相違するのはガス交換器
17がバイオリアクター14内秤包含されておらず、外
部に設置されている点である。
FIG. 2 shows a cell culture system using the bioreactor of the present invention, which includes a bioreactor 14 equipped with a pH sensor 13 and a Do (dissolved oxygen) sensor 18, a medium tank 15, a pH sensor, and a flow rate of perfusate. This figure shows a system consisting of a pump ld that controls the pump ld. On the other hand, FIG. 3 shows a conventional cell culture method using a bioreactor and a gas exchanger. The difference from FIG. 2 is that the gas exchanger 17 is not included in the bioreactor 14, and The point is that it is installed outside.

そこで、以下、本発明を第2図および第3図に基いて行
なった実施結果について、より具体的に説明する。
Therefore, the results of implementing the present invention based on FIGS. 2 and 3 will be described in more detail below.

(実施例) 培地供給膜として、内径300pm、外径4001Lm
、平均孔径0.3gm、空隙率68%の、グリセリン脂
肪酸エステルにて被覆してなるポリプロピレン多孔質中
空糸1142.500本、ガス交換膜として、内径30
0JLm、外径400pm、平均孔径0.21Lm、空
隙率65%のポリプロピレン多孔質中空糸JIQ2,5
00本からなるバイオリアクターを、使用した。(有効
膜面積はどちらとも0.5m”である。) バイオリアクター14およびPHセンサー13、DO(
溶存酸素)センサー18、CO□センサー(図示せず)
および培地夕・ンク15、ポンプ16をシリコーンチュ
ーブにて接続し、閉鎖回路とした。回路内をブライミン
グし、全回路をそのまま、25分間高圧蒸気滅菌を行な
った。
(Example) As a culture medium supply membrane, the inner diameter is 300 pm and the outer diameter is 4001 Lm.
, 1142.500 polypropylene porous hollow fibers coated with glycerin fatty acid ester, with an average pore diameter of 0.3 gm and a porosity of 68%, and an inner diameter of 30 as a gas exchange membrane.
Polypropylene porous hollow fiber JIQ2,5 with 0JLm, outer diameter 400pm, average pore diameter 0.21Lm, porosity 65%
A bioreactor consisting of 0.00 was used. (Effective membrane area is 0.5 m'' for both.) Bioreactor 14 and PH sensor 13, DO (
dissolved oxygen) sensor 18, CO□ sensor (not shown)
The culture medium tank 15 and pump 16 were connected with silicone tubes to form a closed circuit. The inside of the circuit was brimmed, and the entire circuit was sterilized using high-pressure steam for 25 minutes.

滅菌終了後回路を37℃の恒温槽内に設置し、基礎培地
として、無血清のイーグル(Eagle’ s) ME
M−E(Minimum Es5ential Med
ium−Eagle)培地(ペニシリンカリウムlO万
単位/し、硫酸カナマイシン100mg/Lを含む)を
80+sJL/sinにて48時間循環した後、10%
FBS(Fetal BovineSerum)  (
子牛の血清)を含むMEM−E培地に交換した。
After sterilization, the circuit was placed in a thermostat at 37°C, and serum-free Eagle's ME was used as the basal medium.
M-E (Minimum Es5nential Med
ium-Eagle) medium (containing penicillin potassium 10,000 units/L and kanamycin sulfate 100 mg/L) at 80+sJL/sin for 48 hours, 10%
FBS (Fetal Bovine Serum) (
The medium was replaced with MEM-E medium containing (calf serum).

ヒーラ()IeLa)細胞を中空糸膜外側の空間に5×
106セル(cell)/mJ1を接種(イノキュレー
ト)した。接種後、4時間は培地を循環させずに、1時
間ごとにバイオリアクターを90度づつ回転させて、中
空糸膜外側の空間に均一にヒーラ(lIeLa)細胞を
分散させた。その後、培地を40 vs見/■in、4
時間循環した後、80sl/■inに流量を上げた。同
様に細胞増殖用の培地のpHを7.4に保持するように
空気(1000cc/i+in) 、炭酸ガス(50c
c/win)をガス交換膜の内側に流入した。
HeLa ()IeLa) cells were placed 5x in the space outside the hollow fiber membrane.
106 cells/mJ1 were inoculated. After inoculation, the bioreactor was rotated 90 degrees every hour without circulating the medium for 4 hours to uniformly disperse HeLa cells in the space outside the hollow fiber membrane. After that, the culture medium was incubated at 40 vs/■in, 4
After circulating for an hour, the flow rate was increased to 80 sl/in. Similarly, to maintain the pH of the cell growth medium at 7.4, air (1000cc/i+in) and carbon dioxide gas (50cc
c/win) flowed into the inside of the gas exchange membrane.

29、の培地を3日おきに15日間交換し、培地槽内の
グルコース濃度、酸素分圧、炭酸ガス分圧を測定した。
The medium of No. 29 was exchanged every 3 days for 15 days, and the glucose concentration, oxygen partial pressure, and carbon dioxide gas partial pressure in the medium tank were measured.

166日目り、2日おきに培地交換を行ない、31日後
に装置を停止した。
On the 166th day, the medium was replaced every two days, and the apparatus was stopped after 31 days.

装置停止後、培地供給膜内なPBS (リン酸緩衝液)
(−) 、0.25%トリプシンへと順次置換し、各1
5分37℃で培養した後、浮遊させて細胞を回収し、細
胞数を算定した。又、同様に培地供給膜内をPBS(−
)、2%ゲルタールアルデヒドへと順次置換し、2.5
%グルタールアルヒデドにて一昼夜固定した後、PBS
(−)にて水洗後、1%オスニウム酸にて染色し、以後
凍結乾燥を行ない、金蒸着後SEM (走査型電子顕微
鏡)観察を行なった。
After stopping the device, remove PBS (phosphate buffer) in the medium supply membrane.
(-), 0.25% trypsin, each 1
After culturing at 37°C for 5 minutes, the cells were collected by suspension and the number of cells was calculated. Similarly, the inside of the medium supply membrane was filled with PBS (-
), sequentially replaced with 2% geltaraldehyde, 2.5
After fixing with % glutaralhyde overnight, PBS
After washing with water (-), staining with 1% osnic acid, freeze-drying was performed, and after gold deposition, SEM (scanning electron microscope) observation was performed.

培地のグルコース濃度は初期値100■g/dJ1に調
整した。培養開始後6日間(2回の培地交換)は顕著な
グルコース濃度の減少は認められなかった。
The glucose concentration of the medium was adjusted to an initial value of 100 g/dJ1. No significant decrease in glucose concentration was observed for 6 days after the start of culture (medium exchanged twice).

9日目より徐々にグルコース濃度の減少を認め、155
日目は3日間で100−g/diから20−g/d又に
減少した。以後、166日目ら2日おきの測定では、1
00■g/d文から30 yag/diへとほぼ一定の
減少であった。
From day 9, a gradual decrease in glucose concentration was observed, and 155
Day 1 decreased from 100-g/di to 20-g/d over 3 days. From then on, measurements taken every two days from the 166th day showed that 1
There was a nearly constant decrease from 00 g/d to 30 yag/di.

酸素分圧、炭酸ガス分圧は終始各々的150.20m■
Hgとほぼ一定値をとり、pHの変動は7.36から7
.40の間で安定していた。
Oxygen partial pressure and carbon dioxide partial pressure were 150.20m from beginning to end.
Hg is almost constant, and pH fluctuates from 7.36 to 7.
.. It remained stable between 40 and 40.

31日間培養の細胞数は6X10’セル(cells)
/ tafLであった。
The number of cells cultured for 31 days is 6X10' cells.
/tafL.

SEMによる観察では、中空糸膜上に付着した細胞は、
膜の内部に入り込んで成長するとともに、外側に向って
も成長していた。膜の内部に入り込んだ細胞には、さほ
ど立体的な成長は認められなかったが、膜の外部に向っ
て成長した細胞では、細胞同士が隣接しあい、生体内に
おいて形成している3次元構造に似た成長を示した。
Observation by SEM shows that the cells attached to the hollow fiber membrane are
It was growing inside the membrane, and also growing outward. Cells that had entered the inside of the membrane did not show much three-dimensional growth, but in cells that grew toward the outside of the membrane, the cells were adjacent to each other, forming a three-dimensional structure formed in vivo. showed similar growth.

(比較例) 実施例に用いた培地供給膜及びガス交換膜と同一のもの
を用いて、それぞれ有効膜面積が0.5m2のバイオリ
アクターとガス交換器を第3図のように別々にして使用
した。
(Comparative example) Using the same culture medium supply membrane and gas exchange membrane as used in the example, a bioreactor and a gas exchanger each having an effective membrane area of 0.5 m2 were used separately as shown in Figure 3. did.

実施例と同様の操作で滅菌、ブライミング、細胞培養を
行なった。
Sterilization, briming, and cell culture were performed in the same manner as in Examples.

その結果、グルコース濃度は、実施例と同じように9日
目より徐々に低下したが、155日目らグルコース濃度
は、初期値の100 vsg/dfLから変化しなかっ
た。
As a result, the glucose concentration gradually decreased from the 9th day as in the example, but the glucose concentration did not change from the initial value of 100 vsg/dfL from the 155th day.

また、pHの変動は5.83から8.14の間で激しく
変動し、酸素分圧も同様に激しく変動した。
Furthermore, the pH fluctuated wildly between 5.83 and 8.14, and the oxygen partial pressure also fluctuated wildly.

15日目からグルコース濃度が変化しなかったのは、細
胞が死滅したためであり、バイオリアクター内の酸素分
圧を測定すると、はとんど0を示していた。
The glucose concentration did not change from day 15 onwards because the cells had died, and when the oxygen partial pressure inside the bioreactor was measured, it was mostly 0.

これは、バイオリアクター内の培地中の溶存酸素が、細
胞増殖に伴って消費され、はとんど酸素がなくなり、細
胞が死滅したものと推定される。
This is presumed to be because the dissolved oxygen in the medium in the bioreactor was consumed as the cells proliferated, and as a result, the cells died due to almost no oxygen remaining.

[発明の効果] 以上詳細に説明したように、本発明のバイオリアクター
によれば、バイオリアクター内に培地供給膜とともにガ
ス交換膜を配設し、且つ培地供給膜として親水化処理さ
れた多孔性中空糸膜な用いたので、02ガス及びpH調
整用ガスが培地及び細胞に十分に供給され、細胞の生育
、増殖を何ら支障なく行なうことができ、大規模な細胞
培養にも十分対応できる、という利点を有する。
[Effects of the Invention] As explained in detail above, according to the bioreactor of the present invention, a gas exchange membrane is disposed in the bioreactor together with a culture medium supply membrane, and a porous membrane treated to make it hydrophilic is used as the culture medium supply membrane. Since a hollow fiber membrane is used, 02 gas and pH adjustment gas are sufficiently supplied to the culture medium and cells, allowing cell growth and proliferation without any hindrance, and is fully compatible with large-scale cell culture. It has the advantage of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバイオリアクターの構造の一例を示し
た縦断面図、第2図は本発明のバイオリアクターを用い
た細胞培養方式を示す概要図、第3図は従来のバイオリ
アクターとガス交換器を用いた細胞培養方式を示した概
要図である。 7・・・筒状容器、8・・・培地供給膜、9・・・ガス
交換□膜、10・・・支持部材、11−・・隔壁、12
−・・透孔、13・−p Hセンサー、14・・・バイ
オリアクター、17−・・ガス交換器、18−DOセン
サー。
Fig. 1 is a vertical cross-sectional view showing an example of the structure of the bioreactor of the present invention, Fig. 2 is a schematic diagram showing a cell culture method using the bioreactor of the present invention, and Fig. 3 is a conventional bioreactor and a gas FIG. 1 is a schematic diagram showing a cell culture method using an exchanger. 7... Cylindrical container, 8... Culture medium supply membrane, 9... Gas exchange □ membrane, 10... Support member, 11-... Partition wall, 12
-...Through hole, 13--pH sensor, 14--Bioreactor, 17--Gas exchanger, 18-DO sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)培地供給膜を介して培養液を供給し、該培地供給
膜上及び該培地供給膜の外部空間で細胞を増殖するバイ
オリアクターにおいて、該バイオリアクター内に前記培
地供給膜とともにガス交換用の膜を配設し、且つ前記培
地供給膜は親水化処理した多孔性中空糸膜からなるもの
であることを特徴とするバイオリアクター。
(1) In a bioreactor in which a culture solution is supplied through a medium supply membrane and cells are grown on the medium supply membrane and in a space outside of the medium supply membrane, the medium supply membrane is used for gas exchange together with the medium supply membrane in the bioreactor. 1. A bioreactor, characterized in that the membrane is provided with a membrane, and the culture medium supply membrane is made of a porous hollow fiber membrane that has been subjected to a hydrophilic treatment.
JP4770988A 1988-03-01 1988-03-01 Bioreactor Expired - Lifetime JPH0659206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4770988A JPH0659206B2 (en) 1988-03-01 1988-03-01 Bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4770988A JPH0659206B2 (en) 1988-03-01 1988-03-01 Bioreactor

Publications (2)

Publication Number Publication Date
JPH01222768A true JPH01222768A (en) 1989-09-06
JPH0659206B2 JPH0659206B2 (en) 1994-08-10

Family

ID=12782831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4770988A Expired - Lifetime JPH0659206B2 (en) 1988-03-01 1988-03-01 Bioreactor

Country Status (1)

Country Link
JP (1) JPH0659206B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743981A1 (en) * 1994-02-09 1996-11-27 Unisyn Technologies, Inc. High performance cell culture bioreactor and method
US5622857A (en) * 1995-08-08 1997-04-22 Genespan Corporation High performance cell culture bioreactor and method
US5958763A (en) * 1994-02-09 1999-09-28 Genespan Corporation Cell culture incubator
JP2000512122A (en) * 1995-06-07 2000-09-19 ダブリュー・アール・グレース・アンド・カンパニー−コーン Double fiber bioreactor
JP2009000100A (en) * 2007-05-23 2009-01-08 Mitsubishi Rayon Co Ltd Scaffold material for cell culture, method for producing the same and module for cell culture
US8557571B2 (en) 2004-12-27 2013-10-15 Fresenius Medical Care Deutschland Gmbh Reactor and reactor unit with hollow fibers
JP2014117190A (en) * 2012-12-13 2014-06-30 Mitsubishi Rayon Co Ltd Device, module and method for non-adherent cell cultivation
CN109153954A (en) * 2016-05-05 2019-01-04 泰尔茂比司特公司 Automated production and collection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743981A1 (en) * 1994-02-09 1996-11-27 Unisyn Technologies, Inc. High performance cell culture bioreactor and method
EP0743981A4 (en) * 1994-02-09 1999-09-08 Unisyn Technologies Inc High performance cell culture bioreactor and method
US5958763A (en) * 1994-02-09 1999-09-28 Genespan Corporation Cell culture incubator
JP2000512122A (en) * 1995-06-07 2000-09-19 ダブリュー・アール・グレース・アンド・カンパニー−コーン Double fiber bioreactor
US5622857A (en) * 1995-08-08 1997-04-22 Genespan Corporation High performance cell culture bioreactor and method
US8557571B2 (en) 2004-12-27 2013-10-15 Fresenius Medical Care Deutschland Gmbh Reactor and reactor unit with hollow fibers
JP2009000100A (en) * 2007-05-23 2009-01-08 Mitsubishi Rayon Co Ltd Scaffold material for cell culture, method for producing the same and module for cell culture
JP2014117190A (en) * 2012-12-13 2014-06-30 Mitsubishi Rayon Co Ltd Device, module and method for non-adherent cell cultivation
CN109153954A (en) * 2016-05-05 2019-01-04 泰尔茂比司特公司 Automated production and collection

Also Published As

Publication number Publication date
JPH0659206B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US4442206A (en) Method of using isotropic, porous-wall polymeric membrane, hollow-fibers for culture of microbes
AU687059B2 (en) High performance cell culture bioreactor and method
CA2678893C (en) Methods to control cell movement in hollow fiber bioreactors
US20030054544A1 (en) Oxygen enriched bioreactor and method of culturing cells
JPH0463584A (en) Bioreactor equipment
JPH0213365A (en) Hollow fiber bioreactor culture system and method
JPH03164169A (en) Cell culture
JP2017143775A (en) Cell culture apparatus using gas-impermeable tube and cell culture method
MXPA06013421A (en) Membrane bioreactor.
US5510257A (en) Hollow fiber immobilization with chopped microporous hollow fibers
JPS61227835A (en) Gas introducing apparatus and method and apparatus for culturing cell
JPH07121216B2 (en) Stirred bioreactor and incubator
JPH01222768A (en) Bioreactor
JP6848273B2 (en) Cell culture device
AU778141B2 (en) Method for cultivating cells, a membrane module, utilization of a membrane module and reaction system for cultivation of said cells
WO2016140213A1 (en) Cell culture method using hollow fiber module
JPS62130683A (en) Method and apparatus for culturing cell
JPH06102013B2 (en) Bioreactor
US5112760A (en) Mass transfer membrane for oxygenation of animal cell reactors
JP3412364B2 (en) Cell culture device and cell culture method
WO2001058501A1 (en) Apparatus and process for removal of carbon dioxide in a bioreactor system
JPS62138184A (en) Apparatus for continuous culture of microorganism
JP2984748B2 (en) Method for culturing microorganisms using air-permeable membrane
JPS60156378A (en) Culture medium of cell
JP2020171235A (en) Cell culture apparatus and bioreactor