JPH0257057B2 - - Google Patents

Info

Publication number
JPH0257057B2
JPH0257057B2 JP18994083A JP18994083A JPH0257057B2 JP H0257057 B2 JPH0257057 B2 JP H0257057B2 JP 18994083 A JP18994083 A JP 18994083A JP 18994083 A JP18994083 A JP 18994083A JP H0257057 B2 JPH0257057 B2 JP H0257057B2
Authority
JP
Japan
Prior art keywords
aromatic
polyimide
acid
aromatic diamine
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18994083A
Other languages
Japanese (ja)
Other versions
JPS6081154A (en
Inventor
Yoshio Takeuchi
Yoshio Yamamura
Takao Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP58189940A priority Critical patent/JPS6081154A/en
Publication of JPS6081154A publication Critical patent/JPS6081154A/en
Publication of JPH0257057B2 publication Critical patent/JPH0257057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

【発明の詳现な説明】 高機胜性の耐熱材料ずしお、近幎芳銙族ポリむ
ミドが果たす圹割は倧きい。
DETAILED DESCRIPTION OF THE INVENTION In recent years, aromatic polyimides have played a major role as highly functional heat-resistant materials.

芳銙環を分子内に䞀぀たたは二぀以䞊有する芳銙
族テトラカルボン酞の二無氎物ず芳銙環を分子内
に䞀぀たたは二぀以䞊有する芳銙族ゞアミンずの
重瞮合反応によ぀お補造される芳銙族ポリむミド
は䞀般的には次に瀺す構造を有し、補膜したフむ
ルムの匷床の芳点から、䟋えば−クロルプノ
ヌルを溶媒ずし、50℃に斌いお枬定する察数粘床
が2.0以䞊特に2.0〜4.0皋床にたで重瞮合されたポ
リマヌが実甚に䟛されおいる。
Manufactured by a polycondensation reaction between an aromatic tetracarboxylic acid dianhydride having one or more aromatic rings in the molecule and an aromatic diamine having one or more aromatic rings in the molecule. Aromatic polyimides generally have the following structure, and from the viewpoint of the strength of the formed film, the logarithmic viscosity measured at 50°C using P-chlorophenol as a solvent is 2.0 or more, especially 2.0 or more. Polymers polycondensed to about 4.0 are in practical use.

䜆し、R′は芳銙環を含む残基である。 しかし、芳銙族ポリむミドは、高機胜性を芁求
される材料であるために、特に耐熱性絶瞁フむル
ムなどの分野では、芳銙族ポリむミドの性胜に察
する芁求が厳しく、補膜したフむルム䞭の小量の
ゲルの存圚、或いは、埮小ピンホヌルの存圚など
で芏栌倖品ずしお廃棄される量も少なくない。た
た補膜時には、フむルム䞡端は機械の把みしろず
なるため、埌に切断しお廃棄されおいるが、芳銙
族ポリむミドの原料である芳銙族テトラカルボン
酞二無氎物及び芳銙族ゞアミンは、ずもに非垞に
高䟡な化孊品であ぀お、これら廃棄される郚分が
芳銙族ポリむミドの補造コストに及がす圱響は倧
きい。
(However, R and R' are residues containing an aromatic ring.) However, since aromatic polyimide is a material that requires high functionality, aromatic There are strict requirements for the performance of polyimide, and a considerable amount of polyimide is discarded as non-standard products due to the presence of a small amount of gel or minute pinholes in the formed film. Also, during film production, both ends of the film serve as gripping margins for the machine, so they are later cut and discarded, but both aromatic tetracarboxylic dianhydride and aromatic diamine, which are raw materials for aromatic polyimide, are extremely These are expensive chemicals, and these discarded parts have a large impact on the manufacturing cost of aromatic polyimide.

これらの芳銙族ポリむミドは、アルカリ共存䞋
での加熱によ぀お分解するこずは知られおいる
が、完党に芳銙族テトラカルボン酞及び芳銙族ゞ
アミンの単量䜓単䜍にたで分解し、これを再び重
瞮合反応に䟛するこずの可胜な瞮合原料ずする方
法は知られおいない。
It is known that these aromatic polyimides are decomposed by heating in the presence of an alkali, but they are completely decomposed into monomer units of aromatic tetracarboxylic acid and aromatic diamine, which can then be reused. There is no known method for using it as a condensation raw material that can be subjected to a polycondensation reaction.

その理由は、加氎分解によるむミド結合の解離
の際には、カルボキシル基の脱離反応が䌎なうこ
ず、たたカルボキシル基の脱離を匕き起さない皋
床の枩和な分解条件の䞋では、むミド結合の解離
が完党に終了せず、ポリむミドのオリゎマヌが残
留するこず、曎には回収される芳銙族テトラカル
ボン酞、芳銙族ゞアミンの着色耐色が著るし
いこずなどである。ポリむミドオリゎマヌの存圚
は、回収物のメタノヌル䞍溶分ずしお確認するこ
ずが出来る。
The reason for this is that when imide bonds are dissociated by hydrolysis, an elimination reaction of carboxyl groups accompanies, and under mild decomposition conditions that do not cause elimination of carboxyl groups, imide bonds are The dissociation of bonds is not completed completely and polyimide oligomers remain, and furthermore, the recovered aromatic tetracarboxylic acid and aromatic diamine are significantly colored (brown). The presence of polyimide oligomers can be confirmed as methanol-insoluble components of the recovered material.

回収原料に混入するカルボキシル基の脱離によ
぀お生じた芳銙族テトラカルボン酞、芳銙族ゞカ
ルボン酞等の脱炭酞成分、及びポリむミドオリゎ
マヌ等は、重瞮合反応の阻害物質であ぀お、これ
らが0.05以䞊混入した回収原料を甚いるず、重
瞮合反応で察数粘床が2.0以䞊の芳銙族ポリむミ
ドを補造するこずは䞍可胜である。
Decarboxylation components such as aromatic tetracarboxylic acid and aromatic dicarboxylic acid, which are generated by the elimination of carboxyl groups mixed into the recovered raw material, and polyimide oligomers are inhibitors of the polycondensation reaction, and these are substances that inhibit the polycondensation reaction. If recovered raw materials containing more than % of the raw materials are used, it is impossible to produce an aromatic polyimide with a logarithmic viscosity of 2.0 or more through a polycondensation reaction.

本発明者らは、重瞮合反応性が高く、芳銙族ポ
リむミド原料ずしお再䜿甚可胜な芳銙族テトラカ
ルボン酞二無氎物及び芳銙族ゞアミンの回収方法
に぀いお鋭意研究した結果、本発明を完成した。
The present inventors completed the present invention as a result of intensive research into a method for recovering aromatic tetracarboxylic dianhydride and aromatic diamine, which have high polycondensation reactivity and can be reused as raw materials for aromatic polyimide.

すなわち、本発明は、成圢品ずしお䜿甚䞍胜ず
な぀た芳銙族ポリむミドから加氎分解によ぀お芳
銙族テトラカルボン酞二無氎物および芳銙族ゞア
ミンを同時に回収する方法においお、芳銙族ポリ
むミドのポリむミド単䜍に察し4.0〜4.8倍モルの
アルカリの共存䞋150〜230℃の枩床でむミド結合
が実質的に残存しない皋床にたで芳銙族ポリむミ
ドを加氎分解し埗られた反応物を濟過しお芳銙族
テトラカルボン酞のアルカリ氎溶液液ず濟
滓ずしおの芳銙族ゞアミンずに分離した埌、濟滓
にはさらに酞氎溶液を加えお芳銙族ゞアミンの酞
氎溶液液ずし、該液および液をそれぞ
れ掻性炭ず接觊させ、その埌、それぞれ䞭和圓量
以䞊の酞およびアルカリを投入しお芳銙族テトラ
カルボン酞および芳銙族ゞアミンを析出させ、そ
れぞれ濟過分離し、芳銙族テトラカルボン酞はさ
らに加熱脱氎しお二無氎物ずしお回収するこずを
特城ずする芳銙族テトラカルボン酞二無氎物およ
び芳銙族ゞアミンの回収方法に関する。
That is, the present invention provides a method for simultaneously recovering an aromatic tetracarboxylic dianhydride and an aromatic diamine by hydrolysis from an aromatic polyimide that can no longer be used as a molded product. Aromatic polyimide is hydrolyzed at a temperature of 150 to 230°C in the presence of 4.0 to 4.8 times the mole of alkali to the extent that substantially no imide bonds remain, and the resulting reaction product is filtered to obtain aromatic tetracarboxylic acid. After separating into an alkaline aqueous solution (liquid A) and an aromatic diamine as a filter cake, an acid aqueous solution is further added to the filter cake to form an acid aqueous solution of aromatic diamine (liquid B), and the liquids A and B are respectively separated. The aromatic tetracarboxylic acid and the aromatic diamine are precipitated by contacting with activated carbon, and then the aromatic tetracarboxylic acid and the aromatic diamine are precipitated by adding acid and alkali in an amount equal to or more than the neutralization equivalent.The aromatic tetracarboxylic acid is further heated and dehydrated to precipitate the aromatic tetracarboxylic acid and the aromatic diamine. The present invention relates to a method for recovering aromatic tetracarboxylic dianhydrides and aromatic diamines, which is characterized in that they are recovered as anhydrides.

この発明に䜿甚される芳銙族ポリむミドに぀い
おは耐熱性を有するものであれば制限はない。
The aromatic polyimide used in this invention is not limited as long as it has heat resistance.

本発明の方法を具䜓的に説明するず、芳銙族ポ
リむミド及びポリむミド単䜍に察しお4.0〜4.8倍
モルの苛性゜ヌダ、苛性カリ或いは、アンモニア
等のアルカリ、及び氎をオヌトクレヌブのような
耐圧反応噚に仕蟌み、気盞郚を窒玠或いは炭酞ガ
ス等の䞍掻性ガスで眮換したのち、150〜230℃の
範囲の枩床に加熱昇枩しお実質的にむミド結合が
存圚しなくなるたで、該ポリむミドを加氎分解す
る。
To specifically explain the method of the present invention, an alkali such as caustic soda, caustic potash, or ammonia, and water in an amount of 4.0 to 4.8 times the mole of aromatic polyimide and polyimide units are charged into a pressure-resistant reactor such as an autoclave, and the air is heated. After replacing the phase with an inert gas such as nitrogen or carbon dioxide, the polyimide is hydrolyzed by heating to a temperature in the range of 150 to 230°C until substantially no imide bonds are present.

加氎分解によ぀お生成した芳銙族テトラカルボ
ン酞は、アルカリ塩ずしお氎溶液䞭に存圚し、芳
銙族ゞアミンは、冷华埌、オヌトクレヌブ底郚に
沈柱しおいるので濟別する。濟液には掻性炭によ
る脱色凊理を加えたのち、塩酞、硫酞等の無機酞
やギ酞、酢酞等の有機酞を加えお液を酞性ずし芳
銙族テトラカルボン酞を析出させ、濟過氎掗しお
也燥するこずによ぀お回収される。ここで、芳銙
族テトラカルボン酞のアルカリ溶液からの析出の
際に、䞭和圓量以䞊の酞を加えお液を酞性ずする
こずは、混入したゞアミン成分を陀去するために
特に必芁である。回収された芳銙族テトラカルボ
ン酞は、䞍掻性ガス気流䞭で加熱脱氎し、芳銙族
テトラカルボン酞二無氎物ずした埌、芳銙族ポリ
むミド原料ずしお䜿甚するこずが出来るが、無氎
化工皋の前或いは埌で粟補操䜜を加えおも良い。
この様にしお、芏栌倖の芳銙族ポリむミドから、
90以䞊の高い収率で、芳銙族テトラカルボン酞
二無氎物を回収するこずが出来る。
The aromatic tetracarboxylic acid produced by hydrolysis is present in the aqueous solution as an alkali salt, and the aromatic diamine is precipitated at the bottom of the autoclave after cooling and is filtered out. After decolorizing the filtrate with activated carbon, add an inorganic acid such as hydrochloric acid or sulfuric acid or an organic acid such as formic acid or acetic acid to acidify the liquid to precipitate aromatic tetracarboxylic acid, filter, wash with water, and dry. collected by. Here, during the precipitation of the aromatic tetracarboxylic acid from the alkaline solution, it is particularly necessary to make the solution acidic by adding an acid in an amount equal to or more than the neutralization equivalent in order to remove the mixed diamine component. The recovered aromatic tetracarboxylic acid is heated and dehydrated in an inert gas stream to form aromatic tetracarboxylic dianhydride, which can then be used as a raw material for aromatic polyimide. A purification operation may be added later.
In this way, from substandard aromatic polyimide,
Aromatic tetracarboxylic dianhydride can be recovered with a high yield of 90% or more.

䞀方、加氎分解埌、濟別された沈柱は、芳銙族
ゞアミンであるが、異物の陀去及び脱色のため次
の凊理を行なう。
On the other hand, the precipitate filtered out after hydrolysis is aromatic diamine, and is subjected to the following treatment to remove foreign substances and decolorize it.

たず沈柱を塩酞、硫酞、ギ酞、酢酞等の酞氎溶
液ずし、掻性炭による脱色凊理を加えお濟過す
る。次いで濟液に苛性゜ヌダ、苛性カリ、アンモ
ニア等のアルカリを加えお、液をアルカリ性ずす
る。析出した芳銙族ゞアミンを濟過、氎掗、也燥
しお回収する。ここで、芳銙族ゞアミンの酞性溶
液からの析出の際に、䞭和圓量以䞊のアルカリを
加えお液をアルカリ性ずするこずは、混入したカ
ルボン酞成分を陀去するために特に必芁である。
この様にしお、芏栌倖の芳銙族ポリむミドから、
90以䞊の収率で芳銙族ゞアミンを回収するこず
が出来る。回収された芳銙族ゞアミンは、そのた
た重瞮合の原料ずしお甚いるこずが出来るが、も
ちろん昇華粟補等の粟補操䜜を加えおも良い。
First, the precipitate is made into an aqueous acid solution such as hydrochloric acid, sulfuric acid, formic acid, acetic acid, etc., and the solution is decolorized with activated carbon and filtered. Next, an alkali such as caustic soda, caustic potash, or ammonia is added to the filtrate to make the liquid alkaline. The precipitated aromatic diamine is collected by filtration, washing with water, and drying. Here, when the aromatic diamine is precipitated from the acidic solution, it is particularly necessary to make the solution alkaline by adding an alkali equivalent to or more than the neutralization equivalent in order to remove the mixed carboxylic acid component.
In this way, from substandard aromatic polyimide,
Aromatic diamines can be recovered with a yield of over 90%. The recovered aromatic diamine can be used as it is as a raw material for polycondensation, but of course a purification operation such as sublimation purification may be added.

この発明においお加氎分解に甚いるアルカリ
は、苛性゜ヌダ、苛性カリ、或いはアンモニアな
どで良いが、䜿甚量はポリむミド単䜍に察し、
4.0倍モル以䞊添加するこずが必芁であり、これ
より少ないず分解反応が完党に進行せず、ポリむ
ミド結合を有する䜎分子量オリゎマヌが生成す
る。たた、過剰の䜿甚は脱炭酞反応を促進させる
ため奜たしくなく、ポリむミド単䜍に察し4.0〜
4.8倍モル皋床が最適である。加氎分解の際の氎
の量は、生成する芳銙族テトラカルボン酞のアル
カリ塩を溶解させるのに必芁な量があれば良い
が、䞀般的には、仕蟌んただポリむミドの重量に
察しお〜20倍量皋床あれば充分である。
In this invention, the alkali used for hydrolysis may be caustic soda, caustic potash, or ammonia, but the amount used is based on the polyimide unit.
It is necessary to add 4.0 times the mole or more; if it is less than this, the decomposition reaction will not proceed completely and a low molecular weight oligomer having a polyimide bond will be produced. In addition, excessive use is undesirable because it promotes decarboxylation reaction, and 4.0 to 4.0
Approximately 4.8 times the molar amount is optimal. The amount of water during hydrolysis is sufficient as long as it is sufficient to dissolve the alkali salt of aromatic tetracarboxylic acid produced, but generally it is 5 to 20% water based on the weight of the polyimide that has not yet been charged. About twice the amount is sufficient.

たた、この発明においおポリむミドを加氎分解
する際に実質的にむミド結合が存圚しなくなるた
での分解時間は、加氎分解の枩床によ぀お異な
り、150℃で時間、170℃で時間、200℃で3.5
時間、230℃で2.5時間が適圓である。
In addition, in this invention, when hydrolyzing polyimide, the decomposition time until imide bonds are substantially no longer present varies depending on the hydrolysis temperature: 150°C for 7 hours, 170°C for 5 hours, 200°C at 3.5
Appropriate time is 2.5 hours at 230°C.

以䞋に実斜䟋および比范䟋を瀺す。 Examples and comparative examples are shown below.

実斜䟋  3′4′−ビプニルテトラカルボン酞
二無氎物以䞋BPDAず略蚘する及びゞアミ
ノゞプニル゚ヌテル以䞋DADEず略蚘する
の重瞮合によ぀お補造された芳銙族ポリむミド の補膜時の把みしろ郚分〔50℃に斌ける察数粘床
ηinhが3.5である〕を30、苛性゜ヌダ11.5
ポリむミド単䜍に察し4.4倍モル、蒞留氎300ml
を内容積430mlのオヌトクレヌブに仕蟌んだ。気
盞郚を窒玠眮換した埌昇枩お190℃で時間撹拌
しお加氎分解し、冷华埌オヌトクレヌブ内容物を
濟別した。濟液には粉末掻性炭を添加しお30
分撹拌しおから濟過しお掻性炭を分離し、濟液に
濃塩酞40mlを加えた。析出した沈柱を濟過、氎掗
しお60℃で䞀倜枛圧也燥し、䞀郚をメチル゚ステ
ル化した埌、元玠分析及びガスクロヌマス分析し
お、3′4′−ビプニルテトラカルボン
酞以䞋BPTAず略蚘するであるこずを確認
した。曎に、゚ステル化した埌のガスクロ分析で
は、脱炭酞成分の濃床は0.014ず埮量であ぀た。
たた回収されたBPDAはメタノヌルに完党に溶
解し、埮量の䞍溶分も含たないこずから、ポリむ
ミド結合を有するオリゎマヌを党く含たないこず
が確認された。窒玠気流䞭、240℃で16時間
BPTAを加熱脱氎しお、BPDAずした埌の回収
率は、仕蟌んだ芳銙族ポリむミドに察し、92.6
であ぀た。
Example 1 3,3',4,4'-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as BPDA) and diaminodiphenyl ether (hereinafter abbreviated as DADE)
Aromatic polyimide produced by polycondensation of 30g of gripping margin during film formation [logarithmic viscosity (ηinh) at 50℃ is 3.5], 11.5g of caustic soda
(4.4 times the mole per polyimide unit), 300ml of distilled water
was placed in an autoclave with an internal volume of 430 ml. After the gas phase was purged with nitrogen, the temperature was raised to 190° C. and the mixture was stirred for 4 hours for hydrolysis. After cooling, the contents of the autoclave were filtered. Add 1 g of powdered activated carbon to the filtrate and
After stirring for several minutes, the activated carbon was separated by filtration, and 40 ml of concentrated hydrochloric acid was added to the filtrate. The precipitate was filtered, washed with water, dried under reduced pressure at 60°C overnight, and a portion was methyl esterified. Elemental analysis and gas chromatography analysis revealed that 3,3',4,4'-biphenyltetracarboxylic acid ( (hereinafter abbreviated as BPTA). Furthermore, gas chromatography analysis after esterification revealed that the concentration of the decarboxylated component was as small as 0.014%.
In addition, the recovered BPDA was completely dissolved in methanol and did not contain any insoluble matter, so it was confirmed that it did not contain any oligomers having polyimide bonds. 16 hours at 240℃ in nitrogen flow
The recovery rate after heating and dehydrating BPTA to form BPDA was 92.6% based on the charged aromatic polyimide.
It was hot.

曎に、加氎分解埌、濟別した固圢物に30mlの濃
塩酞及び270mlの蒞留氎を加えお溶解し、粉末掻
性炭を加えお30分撹拌した埌、掻性炭を濟過
分離した。濟液に苛性゜ヌダ15を投入しお撹拌
し、析出した沈柱を濟過、氎掗しお60℃で䞀倜枛
圧也燥し、癜色粉状物を埗た。
Further, after the hydrolysis, 30 ml of concentrated hydrochloric acid and 270 ml of distilled water were added to the filtered solid to dissolve it, and 1 g of powdered activated carbon was added and stirred for 30 minutes, after which the activated carbon was separated by filtration. 15 g of caustic soda was added to the filtrate and stirred, and the precipitate precipitated was filtered, washed with water, and dried under reduced pressure at 60° C. overnight to obtain a white powder.

䞀郚を元玠分析及びガスクロ分析しお、玔枠な
DADEであるこずを確認した。回収率は91.1で
あ぀た。
Elemental analysis and gas chromatography analysis of a portion revealed that the frame was pure.
It was confirmed that it was DADE. The recovery rate was 91.1%.

以䞊の様にしお回収したBPDA5.8820ミリ
モルDADE4.0120ミリモルを特開昭55−
65227号公報に蚘茉の方法によ぀お、−クロル
プノヌル91.6を溶媒ずしお160℃で時間重
瞮合したずころ、50℃に斌ける察数粘床ηinh
が、2.83を瀺す芳銙族ポリむミドが埗られた。こ
の倀は充分満足出来る皋、高瞮合したこずを瀺
す。
5.88 g (20 mmol) of BPDA and 4.01 g (20 mmol) of DADE recovered in the manner described above were
When polycondensation was performed at 160°C for 1 hour using 91.6 g of P-chlorophenol as a solvent by the method described in Publication No. 65227, the logarithmic viscosity (ηinh) at 50°C was
An aromatic polyimide having a value of 2.83 was obtained. This value indicates that condensation was sufficiently high.

ηinh.lnηη。 ここで ηポリむミド溶液の粘床 η。溶媒−クロルプノヌルの粘床 ポリむミドの濃床100 埗られたポリむミドから特開昭55−65227号公報
に蚘茉の方法によ぀お厚さ30Όのフむルムを䜜成
し、匕匵匷床および䌞び砎断時を枬定したず
ころ、各々23.9Kgmm2、83であ぀た。
ηinh.=ln(η/η.)/c where η: Viscosity η of the polyimide solution. : Viscosity of solvent (P-chlorophenol) C: Concentration of polyimide (g/100g) A film with a thickness of 30Ό was prepared from the obtained polyimide by the method described in JP-A-55-65227, and When the strength and elongation (at break) were measured, they were 23.9 Kg/mm 2 and 83%, respectively.

実斜䟋  実斜䟋ず同様に、芳銙族ポリむミドの芏栌倖
フむルム30を150℃で時間加氎分解しお、
BPDA及びDADEをそれぞれ回収率91.1、93.3
で埗た。回収したBPDA䞭の脱炭酞成分の濃
床は0.011ず充分に䜎く、ポリむミドオリゎマ
ヌは党く含有しおいなか぀た。これらの回収原料
を甚いお、実斜䟋ず同様に重瞮合したずころ、
50℃斌ける察数粘床は3.02ず充分満足出来る倀を
瀺し、ポリむミドフむルムの匕匵匷床および䌞び
は24.1Kgmm2、および85であ぀た。
Example 2 In the same manner as in Example 1, 30 g of a substandard aromatic polyimide film was hydrolyzed at 150°C for 7 hours.
Recovery rates for BPDA and DADE were 91.1% and 93.3%, respectively.
Obtained in %. The concentration of the decarboxylated component in the recovered BPDA was sufficiently low at 0.011%, and it did not contain any polyimide oligomer. When polycondensation was carried out in the same manner as in Example 1 using these recovered raw materials,
The logarithmic viscosity at 50°C was 3.02, which was a fully satisfactory value, and the tensile strength and elongation of the polyimide film were 24.1 Kg/mm 2 and 85%.

実斜䟋  230℃の枩床で、2.5時間芳銙族ポリむミドの加
氎分解を行ない、塩酞の代りにギ酞を甚いたほか
は、実斜䟋ず同様にしお、BPDA及びDADE
をそれぞれ回収率93.4、92.6で埗た。
Example 3 BPDA and DADE were prepared in the same manner as in Example 1, except that aromatic polyimide was hydrolyzed at a temperature of 230°C for 2.5 hours and formic acid was used instead of hydrochloric acid.
were obtained with recoveries of 93.4% and 92.6%, respectively.

回収したBPDA䞭の脱炭酞成分の濃床は0.018
ず䜎く、ポリむミドオリゎマヌは党く含有しお
いなか぀た。これらの回収原料を甚いお、実斜䟋
ず同様に重瞮合したずころ、50℃に斌ける察数
粘床は2.97ず充分満足出来る倀を瀺し、ポリむミ
ドフむルムの匕匵匷床は23.6Kgmm2、䌞びは82
であ぀た。
The concentration of decarboxylated components in the recovered BPDA is 0.018
%, and contained no polyimide oligomer at all. When polycondensation was carried out in the same manner as in Example 1 using these recovered raw materials, the logarithmic viscosity at 50°C was 2.97, which was a fully satisfactory value, and the polyimide film had a tensile strength of 23.6 Kg/mm 2 and an elongation of 82%
It was hot.

比范䟋  苛性゜ヌダ26.2ポリむミド単䜍に察し10倍
モルを甚いたほかは、実斜䟋ず党く同様の実
隓を行ない、BPTA及びDADEをそれぞれ回収
率92.4、92.1で埗た。回収したBPTAの分析
の結果、ポリむミドオリゎマヌは存圚しなか぀た
が、脱炭酞成分の濃床は0.43ず高か぀た。曎
に、実斜䟋ず同様に重瞮合したずころ、重瞮合
物の察数粘床は1.63ず䜎く、満足出来る倀では無
か぀た。ポリむミドフむルムの匕匵匷床は13.7
Kgmm2、䌞びは45であ぀た。
Comparative Example 1 The same experiment as in Example 1 was conducted except that 26.2 g of caustic soda (10 times the mole relative to the polyimide unit) was used, and BPTA and DADE were obtained with a recovery rate of 92.4% and 92.1%, respectively. Analysis of the recovered BPTA revealed that polyimide oligomers were not present, but the concentration of decarboxylated components was as high as 0.43%. Furthermore, when polycondensation was carried out in the same manner as in Example 1, the logarithmic viscosity of the polycondensate was as low as 1.63, which was not a satisfactory value. The tensile strength of polyimide film is 13.7
Kg/mm 2 and elongation was 45%.

比范䟋  実斜䟋の方法で、130℃、15時間の加氎分解
を行な぀お、BPTA67.3、DADE55.1を回収
した。BPTAの分析の結果、脱炭酞成分の濃床
は0.00であ぀たが、ポリむミドオリゎマヌが
7.3も混入しおいた。回収したBPTAを無氎化
しおBPDAずした埌、実斜䟋ず同様に重瞮合
したが、反応埌の粘床は党く䞊昇しなか぀た。
Comparative Example 2 Hydrolysis was carried out at 130° C. for 15 hours using the method of Example 1, and 67.3% of BPTA and 55.1% of DADE were recovered. As a result of BPTA analysis, the concentration of decarboxylated components was 0.00%, but polyimide oligomer
It was also contaminated by 7.3%. The recovered BPTA was anhydrified to form BPDA, and then polycondensed in the same manner as in Example 1, but the viscosity after the reaction did not increase at all.

比范䟋  実斜䟋ず同様にしお250℃、時間の加氎分
解を行ない、BPTA、DADEをそれぞれ94.6、
94.1の回収率で埗た。BPTAの分析の結果、ポ
リむミドオリゎマヌは混入しおいなか぀たが、脱
炭酞成分の濃床が1.65もあ぀た。重瞮合テスト
の結果、50℃での察数粘床は1.16たた、ポリむミ
ドフむルムの匕匵匷床は7.6Kgmm2、䌞びは23
ず䜎く、満足出来る倀ではなか぀た。
Comparative Example 3 Hydrolysis was carried out at 250°C for 1 hour in the same manner as in Example 1, and BPTA and DADE were reduced to 94.6% and 94.6%, respectively.
A recovery rate of 94.1% was obtained. Analysis of BPTA revealed that no polyimide oligomer was mixed in, but the concentration of decarboxylated components was 1.65%. As a result of the polycondensation test, the logarithmic viscosity at 50℃ was 1.16, the tensile strength of the polyimide film was 7.6 Kg/mm 2 , and the elongation was 23%.
This was a low and unsatisfactory value.

Claims (1)

【特蚱請求の範囲】[Claims]  成圢品ずしお䜿甚䞍胜ずな぀た芳銙族ポリむ
ミドから加氎分解によ぀お芳銙族テトラカルボン
酞二無氎物および芳銙族ゞアミンを同時に回収す
る方法においお、芳銙族ポリむミドのポリむミド
単䜍に察し4.0〜4.8倍モルのアルカリの共存䞋
150〜230℃の枩床でむミド結合が実質的に残存し
ない皋床にたで芳銙族ポリむミドを加氎分解し、
埗られた反応物を濟過しお芳銙族テトラカルボン
酞のアルカリ氎溶液液ず濟滓ずしおの芳銙
族ゞアミンずに分離した埌、濟滓にはさらに酞氎
溶液を加えお芳銙族ゞアミンの酞氎溶液液
ずし、該液および液をそれぞれ掻性炭ず接觊
させ、その埌、それぞれ䞭和圓量以䞊の酞および
アルカリを投入しお芳銙族テトラカルボン酞およ
び芳銙族ゞアミンを析出させ、それぞれ濟過分離
し、芳銙族テトラカルボン酞はさらに加熱脱氎し
お二無氎物ずしお回収するこずを特城ずする芳銙
族テトラカルボン酞二無氎物および芳銙族ゞアミ
ンの回収方法。
1 In a method for simultaneously recovering aromatic tetracarboxylic dianhydride and aromatic diamine by hydrolysis from aromatic polyimide that can no longer be used as a molded product, 4.0 to 4.8 times the molar amount per polyimide unit of the aromatic polyimide. in the presence of alkali
Hydrolyzing aromatic polyimide at a temperature of 150 to 230°C to the extent that virtually no imide bonds remain,
After filtering the obtained reaction product and separating it into an alkaline aqueous solution of aromatic tetracarboxylic acid (liquid A) and an aromatic diamine as a filter cake, an acid aqueous solution is further added to the filter cake to separate the aromatic diamine acid. Aqueous solution (B solution)
Then, the A liquid and the B liquid are brought into contact with activated carbon, and then acid and alkali in an amount equal to or more than the neutralization equivalent are added to precipitate aromatic tetracarboxylic acid and aromatic diamine. A method for recovering aromatic tetracarboxylic dianhydride and aromatic diamine, which comprises further heating and dehydrating the tetracarboxylic acid to recover the dianhydride.
JP58189940A 1983-10-13 1983-10-13 Recovering process Granted JPS6081154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58189940A JPS6081154A (en) 1983-10-13 1983-10-13 Recovering process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58189940A JPS6081154A (en) 1983-10-13 1983-10-13 Recovering process

Publications (2)

Publication Number Publication Date
JPS6081154A JPS6081154A (en) 1985-05-09
JPH0257057B2 true JPH0257057B2 (en) 1990-12-03

Family

ID=16249749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58189940A Granted JPS6081154A (en) 1983-10-13 1983-10-13 Recovering process

Country Status (1)

Country Link
JP (1) JPS6081154A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450876A (en) * 1987-08-21 1989-02-27 Ube Industries Production of high-purity biphenyltetracarboxylic acid dianhydride
JP3087993B2 (en) * 1988-06-25 2000-09-18 宇郚興産株匏䌚瀟 Method for producing aromatic polyamic acid
JP4985085B2 (en) * 2007-05-10 2012-07-25 東掋玡瞟株匏䌚瀟 Decomposition and recovery method of polyimide
JP5029222B2 (en) * 2007-08-28 2012-09-19 東掋玡瞟株匏䌚瀟 Decomposition and recovery method of polyimide
JP4952441B2 (en) * 2007-08-28 2012-06-13 東掋玡瞟株匏䌚瀟 Decomposition and recovery method of polyimide
JP2013087148A (en) * 2011-10-14 2013-05-13 Toray Ind Inc Method for alkaline hydrolysis of polyimide and method for recovery of low molecular weight compound and metal from polyimide metal laminate
KR101492894B1 (en) 2012-06-12 2015-02-12 가부시킀가읎샀 나까타 윔팅 Compound containing imido group, solution of compound containing imido group and method for producing of compound containing imido group
KR101643071B1 (en) 2013-11-27 2016-08-10 가부시킀가읎샀 나칎타 윔팅 Solution of compound containing imido group and method for producing of polyimide film derived from solution of compound containing imido group
WO2019181145A1 (en) 2018-03-20 2019-09-26 株匏䌚瀟仲田コヌティング Aqueous treatment agent, method for producing aqueous treatment agent, and method of using aqueous treatment agent

Also Published As

Publication number Publication date
JPS6081154A (en) 1985-05-09

Similar Documents

Publication Publication Date Title
JPH0257057B2 (en)
Hsiao et al. Synthesis and properties of polyimides, polyamides and poly (amide‐imide) s from ether diamine having the spirobichroman structure
US5440009A (en) Recovery of cyclic arylene sulfide oligomers
CN113717136A (en) High-yield green safe synthesis method of 3,3',4,4' -biphenyl tetracarboxylic dianhydride
JP2971325B2 (en) Macrocyclic polyimide oligomer and method for producing the same
US3529017A (en) Alkaline hydrolysis of polyimides
JPH0248571B2 (en)
JPS63215727A (en) Manufacture of polyimide
JPS6152172B2 (en)
SU1136748A3 (en) Method of obtaining polymides
US4376195A (en) Method of preparing high purity polyamic acids for use in electronic circuitry
JPH07300524A (en) Production of particulate polyimide, and particulate polyimide
US4824932A (en) Method of manufacturing thermoplastically processible aromatic polyamides and polyamidimides from bisamide
JP2971324B2 (en) Method for converting macrocyclic polyimide oligomer to linear polyimide
Vygodskii et al. Novel condensation functional polymers having highly basic groups
RU2793036C1 (en) Method for producing aromatic polyimides
JPS6327527A (en) Production of heat-resistant polymer
JPH02115228A (en) Aromatic polyamide for pulp
Liou Synthesis and properties of soluble aromatic polyimides from 2, 2′‐bis (3, 4‐dicarboxyphenoxy)‐1, 1′‐binaphthyl dianhydride and aromatic diamines
CN114656356B (en) Spiro biindane tetraacyl chloride and preparation method thereof, and composite membrane and preparation method thereof
JPS638418A (en) Production of heat-resistant polymer derived from aromatic diamine
JP2503079B2 (en) Method for producing biphenyltetracarboxylic dianhydride
RU2092499C1 (en) Method for production of polyimides
JP4570771B2 (en) Recovery of 2,6-naphthalenedicarboxylic acid from polyester
JP2827198B2 (en) Manufacturing method of particulate polyimide