JPH0257002B2 - - Google Patents

Info

Publication number
JPH0257002B2
JPH0257002B2 JP18413883A JP18413883A JPH0257002B2 JP H0257002 B2 JPH0257002 B2 JP H0257002B2 JP 18413883 A JP18413883 A JP 18413883A JP 18413883 A JP18413883 A JP 18413883A JP H0257002 B2 JPH0257002 B2 JP H0257002B2
Authority
JP
Japan
Prior art keywords
master
group
mold release
mold
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18413883A
Other languages
Japanese (ja)
Other versions
JPS6073817A (en
Inventor
Haruo Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18413883A priority Critical patent/JPS6073817A/en
Priority to US06/653,727 priority patent/US4566930A/en
Priority to GB08424543A priority patent/GB2148783B/en
Priority to DE19843436004 priority patent/DE3436004A1/en
Publication of JPS6073817A publication Critical patent/JPS6073817A/en
Publication of JPH0257002B2 publication Critical patent/JPH0257002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は光孊郚品の補造方法に関する。 埓来光孊郚品であるレンズ、ミラヌおよびフむ
ルタヌなどの倚くはガラスで圢成されおいた。ガ
ラスには倚くの皮類があり、芁求に応じた光孊特
性を有する光孊郚品が圢成できる他、平面や球面
の光孊衚面が研磚により高粟床で圢成できるから
である。しかし、研磚は加工時間が長くかかり、
たた加工コストも高くなる欠点がある。たた、特
に非球面光孊玠子を圢成する堎合、加工コストは
䞀局高くなる欠点がある。 これらの欠点を解消する光孊郚品の他の補造法
ずしお、透明な暹脂を型に泚入しお成圢加工し
お、いわゆるプラスチツクレンズを補造する方法
がある。この方法では研磚加工が䞍芁で、適圓な
成圢条件を遞べば䜎コストで倧量生産が可胜であ
る。しかし、光孊郚品ずしおの高い光孊粟床を備
えたものを぀くるのは容易でなく、たた、物理的
あるいは化孊的性質においおもガラス材料に比べ
お劣぀おおり、特に、熱膚匵率や熱による屈折率
倉化が倧きく、加工に際しお内郚に歪やひけが生
じやすい欠点がある。 このようなガラス材料ず暹脂材料のも぀双方の
欠点を補う方法ずしお、䞡者の材料を䜵甚した光
孊郚品の補造方法がある。この方法は、圢成しよ
うずする光孊郚品の光孊衚面を有するマスタヌず
ガラス基板ずを近接しお配眮し、その間隙に暹脂
を挟んで又は泚入しお固化するこずによ぀お、ガ
ラス基板ずマスタヌずの間に光孊衚面を有する暹
脂局を圢成し、次いでマスタヌずガラス基板ずを
分離するこずで、ガラス基板ず暹脂局ずからなる
光孊郚品を圢成するものである。この方法では、
倚くはガラス基板をある皋床高粟床に研磚するこ
ずが必芁であるが、暹脂局によ぀お光孊郚品ずし
おの光孊粟床を埗るこずができるため、ガラス自
䜓の研磚工皋を倧幅に省略でき、たた、暹脂局は
薄膜にな぀おいるので、熱膚匵や熱による屈折率
の倉化による圱響が小さく、歪やひけの発生も最
少限に抌えるこずができる。非球面レンズなどの
非球面を備えた光孊郚品もマスタヌの圢状を非球
面にするこずによ぀お球面の堎合ず党く同様に容
易に圢成できる。このマスタヌを甚いる方法の最
も倧きい問題点は、マスタヌずガラス基板ずの間
に暹脂局を圢成埌、マスタヌずガラス基板ずを分
離する際、暹脂局ずマスタヌが暹脂局の光孊衚面
を損傷するこずなく分離するこずが容易でない点
にある。そこで埓来この問題に察凊するために、
暹脂材料䞭にマスタヌずの接着性を阻止しお離型
を容易にする物質を混入する方法があり、シリコ
ヌンオむル、各皮ワツクス類などが甚いられおい
る。これらの物質は倚くの堎合暹脂材料ずの盞溶
性がないか、又は䜎いものであ぀お、成圢した暹
脂局の衚面に滲み出しお離型の効果を果すもので
ある。したが぀お暹脂局の機械的特性、透明性、
衚面物性等を劣化させるこずが倚い。たた成圢し
た暹脂局の衚面に他の光孊郚品の接着を行う等の
二次加工に際しおは、接着剀の接着性を䜎䞋させ
るので奜たしいこずではない。 䞀方離型剀を暹脂材料䞭に混入しないで、マス
タヌの衚面に塗垃しお離型局ずし、暹脂材料ずマ
スタヌずの接着を防ぐ方法も䞀般的に利甚されお
いる方法である。 このような離型局ずしおはシリコヌンオむル、
シリコヌングリヌス、シリコヌンワニス、カルナ
バワツクス、ミネラルワツクス、フツ玠暹脂の粉
末たたはコヌテむング被膜、氎溶性暹脂、グリセ
リン、各皮の油脂類、ステアリン酞塩等が甚いら
れおいる。しかしながら、これらの離型剀では、
十分な離型効果が期埅できなか぀たものである。
特に埓来の離型剀ではレンズ、ミラヌ等の光孊郚
品の粟密成圢では、成圢材料がアクリル暹脂、゚
ポキシ暹脂等の液状モノマヌ又はオリゎマヌが倚
く利甚されおいる。このような液状材料の泚入の
際、なかんずく゚ポキシ暹脂のようにずくに接着
性のすぐれた材料の堎合はずくにマスタヌずの接
着が起りやすい。たた、光孊郚品の堎合は、暹脂
局衚面の成圢粟床が問題ずされるため、離型局は
できるだけ薄いこずが望たれるが、埓来の離型剀
では薄くできないか、薄くするず郚分的に離型局
が剥離しおしたう問題があ぀た。 このような難点を避ける䞀぀の方法ずしお、埓
来、金・銀・銅などの金属蒞着膜を離型局に利甚
する方法が知られおいる。それにはたずマスタヌ
衚面にこれらの金属をスパツタリング、真空蒞着
などの手段できわめお薄い膜ずしお圢成する。こ
の䞊に所望の暹脂材料をたずえばキダステむング
などで泚型し離型を行う。このずき離型甚の金属
蒞着局は成圢品の衚面に付着しお型から倖されお
くる。したが぀お次の工皋ずしお成圢品衚面に付
着した離型局の金属膜を取陀く必芁があり、酞・
アルカリ等で化孊的に溶解したり、粘着テヌプ等
を甚いお匕きはがす機械的手段が利甚されおい
る。 そのため成圢品の衚面が薬品の圱響をうけお肌
荒れを起したりキズが入るなどの匊害が生じるず
ずもに離型局陀去の工皋が必芁ずなるなどの欠点
が生じおくる。 而しお本発明は離型性が良奜で、離型䜜甚の持
続性に優れ、䞔぀薄く圢成した離型局を甚いるこ
ずによ぀お、光孊粟床の高い衚面を有する光孊郚
品の補造方法を提䟛するこずを䞻たる目的ずす
る。 本発明は、衚面に離型局を有するマスタヌずガ
ラス基板ずの間に圢成される間隙に暹脂を介圚さ
せるこずによりガラス基板衚面に暹脂局を圢成し
た埌、マスタヌを分離しおガラス基板ず暹脂局か
らなる光孊郚品を補造する方法においお、マスタ
ヌ衚面にフツ玠眮換炭化氎玠基ずアルコキシシラ
ン基若しくはハロゲン化シラン基ずを有する化合
物を塗垃埌、少くなくずもマスタヌ衚面に化孊結
合した圓該化合物をマスタヌ衚面党䜓に均䞀に残
しお他を陀去するこずにより圢成した離型局であ
るこずを特城ずするものである。 本発明による光孊郚品の補造方法の代衚的な態
様は第図〜第図に瀺される。 第図は、ガラス、金属などの基板の䞊にマ
スタヌが固定されおいる郚材を瀺す。マスタヌ
の衚面は成圢しようずする光孊衚面粟床を有し
おおり、ガラス、金属などで圢成されおいる。こ
のマスタヌ䞊に第図に瀺すように離型局を
圢成する。この離型局はフツ玠眮換炭化氎玠基ず
アルコキシシラン基若しくはハロゲン化シラン基
ずを有する化合物で圢成する。 䞀方、第図に瀺すように、ガラス基板を支
持郚材に固定茉眮し、ガラス基板の䞊には暹
脂を少量滎䞋しおおく。次に第図に瀺すよう
に、ガラス基板の䞊にマスタヌを重ねるこず
によ぀おマスタヌずガラス基板ずの間隙に暹
脂が充満し固化しお暹脂局が圢成できる。マス
タヌずガラス基板ずの所望の間隙はスペヌサヌ
によ぀お確保される。次に、マスタヌをガラス
基板から分離するこずによ぀お、第図に瀺すよ
うな光孊衚面を有する暹脂局ずガラス基板か
ら成る光孊郚品が圢成できるものである。マスタ
ヌの衚面が平面の堎合、球面の堎合および非球面
の堎合にそれぞれ、フむルタヌ、球面レンズおよ
び非球面レンズあるいは、ミラヌ、球面ミラヌ、
非球面ミラヌなどの光孊郚品が成圢できるもので
ある。なお、ミラヌの堎合には、暹脂局を圢成
埌、その䞊に、Al、Agなどの金属を蒞着しお圢
成できるものである。 本発明に甚いる離型剀の代衚的なものは、フツ
玠眮換炭化氎玠基ず、次の䞀般匏で瀺されるアル
コキシシラン基(1)、又はハロゲン化シラン基(2)を
有するものである。 −SiOR〓nR〓− −(1) −SiXmR〓− −(2) ここで、R〓およびR〓はアルキル基䟋えば、
メチル基、゚チル基、プロピル基、ブチル基な
ど、およびは、たたは、R〓はアルキ
ル基䟋えば、メチル基、゚チル基、プロピル
基、ブチル基など又はアルコキシ基䟋えば、
メトキシ基、゚トキシ基、ブトキシ基などであ
る。はハロゲン原子䟋えば、Cl、Br、
である。 たた、R〓、R〓、R〓又はがSiに以䞊結合し
おいる堎合には、䞊蚘の基又は原子の範囲内で䟋
えば、぀のR〓がアルキル基ずアルコキシ基で
あるように異぀おいおもよい。フツ玠眮換炭化氎
玠基ずしおは、特に分子構造の䞀端にCF3CF2
−基や
The present invention relates to a method of manufacturing an optical component. Conventionally, many optical components such as lenses, mirrors, and filters have been made of glass. This is because there are many types of glass, and in addition to being able to form optical parts having optical properties that meet requirements, flat or spherical optical surfaces can be formed with high precision by polishing. However, polishing takes a long time and
Another disadvantage is that the processing cost is high. Moreover, especially when forming an aspherical optical element, there is a drawback that the processing cost becomes higher. Another method for manufacturing optical components that overcomes these drawbacks is to manufacture so-called plastic lenses by injecting a transparent resin into a mold and molding it. This method does not require polishing, and if appropriate molding conditions are selected, mass production is possible at low cost. However, it is not easy to make optical components with high optical precision, and they are inferior to glass materials in terms of physical and chemical properties, especially in terms of thermal expansion coefficient and thermal refractive index. The disadvantage is that the change is large, and internal distortion and sink marks are likely to occur during processing. As a method of compensating for the drawbacks of both glass materials and resin materials, there is a method of manufacturing optical components using a combination of both materials. In this method, a master having an optical surface of an optical component to be formed and a glass substrate are placed close to each other, and a resin is sandwiched or injected into the gap between the two and solidified. By forming a resin layer having an optical surface therebetween, and then separating the master and the glass substrate, an optical component consisting of the glass substrate and the resin layer is formed. in this way,
In many cases, it is necessary to polish the glass substrate to a certain degree of precision, but since the resin layer allows the optical precision to be achieved as an optical component, the polishing process of the glass itself can be largely omitted. Since the layer is a thin film, it is less affected by thermal expansion and changes in the refractive index due to heat, and the occurrence of distortion and sink marks can be kept to a minimum. Optical parts with an aspherical surface such as an aspherical lens can also be easily formed in the same way as in the case of a spherical surface by making the shape of the master aspherical. The biggest problem with this method using a master is that after forming a resin layer between the master and the glass substrate, when separating the master and the glass substrate, the resin layer and the master damage the optical surface of the resin layer. The problem is that it is not easy to separate. Therefore, in order to deal with this problem,
There is a method of mixing into the resin material a substance that prevents adhesion to the master and facilitates mold release, such as silicone oil and various waxes. These substances often have no or low compatibility with the resin material, and ooze out onto the surface of the molded resin layer to exert a mold release effect. Therefore, the mechanical properties, transparency,
Often causes deterioration of surface properties, etc. Further, secondary processing such as adhering other optical components to the surface of the molded resin layer is not preferable because it reduces the adhesive properties of the adhesive. On the other hand, another commonly used method is to coat the surface of the master as a release layer without mixing the mold release agent into the resin material to prevent adhesion between the resin material and the master. As such a release layer, silicone oil,
Silicone grease, silicone varnish, carnauba wax, mineral wax, fluororesin powder or coating film, water-soluble resin, glycerin, various oils and fats, stearate, etc. are used. However, with these mold release agents,
A sufficient mold release effect could not be expected.
In particular, in conventional mold release agents, liquid monomers or oligomers such as acrylic resins and epoxy resins are often used as molding materials in precision molding of optical components such as lenses and mirrors. When such a liquid material is injected, especially in the case of a material with particularly good adhesive properties such as an epoxy resin, adhesion to the master is likely to occur. In addition, in the case of optical components, the molding precision of the surface of the resin layer is an issue, so it is desirable that the mold release layer be as thin as possible, but it may not be possible to make it thin with conventional mold release agents, or if it is made thin, it will partially release the mold. There was a problem with the layers peeling off. As one method for avoiding such difficulties, a method is conventionally known in which a vapor-deposited film of metal such as gold, silver, or copper is used as a release layer. To do this, first, these metals are formed as an extremely thin film on the master surface using methods such as sputtering or vacuum evaporation. A desired resin material is poured onto this by casting, for example, and the mold is released. At this time, the metal vapor deposition layer for mold release adheres to the surface of the molded product and is removed from the mold. Therefore, as the next step, it is necessary to remove the metal film of the mold release layer that adheres to the surface of the molded product.
Mechanical means such as chemically dissolving with alkali, etc., or peeling off using adhesive tape, etc. are used. As a result, the surface of the molded product is affected by the chemicals, causing problems such as roughness and scratches, as well as the need for a step to remove the mold release layer. Accordingly, the present invention provides a method for manufacturing an optical component having a surface with high optical precision by using a mold release layer that has good mold release properties, excellent sustainability of mold release action, and is formed thinly. The main purpose is to The present invention involves forming a resin layer on the surface of the glass substrate by interposing a resin in the gap formed between the master having a release layer on the surface and the glass substrate, and then separating the master and separating the glass substrate and the resin. In a method for manufacturing an optical component consisting of layers, after applying a compound having a fluorine-substituted hydrocarbon group and an alkoxysilane group or a halogenated silane group to the master surface, at least the compound chemically bonded to the master surface is coated on the master surface. It is characterized by being a release layer formed by leaving the rest uniformly on the entire surface and removing the rest. Typical embodiments of the method for manufacturing an optical component according to the present invention are shown in FIGS. 1 to 5. FIG. 1 shows a member on which a master 2 is fixed on a substrate 1 made of glass, metal, or the like. The surface of the master 2 has the optical surface precision to be molded, and is made of glass, metal, or the like. A release layer 3 is formed on this master 2 as shown in FIG. This release layer is formed of a compound having a fluorine-substituted hydrocarbon group and an alkoxysilane group or a halogenated silane group. On the other hand, as shown in FIG. 3, a glass substrate 4 is fixedly mounted on a support member 5, and a small amount of resin 6 is dropped onto the glass substrate 4. Next, as shown in FIG. 4, by stacking the master 2 on top of the glass substrate 4, the gap between the master 2 and the glass substrate 4 is filled with resin and solidified to form a resin layer 8. The desired gap between the master and the glass substrate is determined by spacer 7.
ensured by Next, by separating the master 2 from the glass substrate, an optical component consisting of the resin layer 8 and the glass substrate 4 having an optical surface as shown in FIG. 5 can be formed. When the master surface is flat, spherical, and aspheric, filters, spherical lenses, and aspheric lenses, or mirrors, spherical mirrors,
Optical parts such as aspherical mirrors can be molded. In the case of a mirror, it can be formed by forming a resin layer and then depositing a metal such as Al or Ag on it. Typical mold release agents used in the present invention have a fluorine-substituted hydrocarbon group and an alkoxysilane group (1) or a halogenated silane group (2) represented by the following general formula. -Si(OR〓)nR〓(3-n) -(1) -SiXmR〓(3-m) -(2) Here, R〓 and R〓 are alkyl groups (e.g.
methyl group, ethyl group, propyl group, butyl group, etc.), n and m are 1, 2 or 3, and R is an alkyl group (e.g. methyl group, ethyl group, propyl group, butyl group, etc.) or an alkoxy group (e.g. ,
(methoxy group, ethoxy group, butoxy group, etc.). X is a halogen atom (e.g. Cl, Br, I)
It is. Furthermore, if two or more R〓, R〓, R〓 or X are bonded to Si, within the range of the above groups or atoms, for example, two R〓 are an alkyl group and an alkoxy group. They can be different. As a fluorine-substituted hydrocarbon group, especially CF 3 (CF 2 ) at one end of the molecular structure.
a-group

【匏】基などのパヌフル オロ基およびa′は敎数をも぀フツ玠眮換炭
化氎玠基が奜たしく、たた、パヌフルオロ基の長
さが炭玠数にしお個以䞊が奜たしく、CF3
CF2−のCF3に぀ゞくCF2基の数は以䞊が
適切である。 たたパヌフルオロ基は盎鎖である必芁はなく、
たずえば
A fluorine-substituted hydrocarbon group having a perfluoro group (a and a' are integers) such as [Formula] is preferable, and the length of the perfluoro group is preferably 2 or more carbon atoms, and CF 3
The appropriate number of CF 2 groups in CF 3 of (CF 2 )a- is 5 or more. Also, perfluoro groups do not need to be linear,
for example

【匏】のように分岐構 造を有しおいおもよい。この堎合にはa′は以䞊
が奜たしい。このように本発明における離型性
は、このパヌフルオロ基によ぀お発揮されるもの
である。本発明で䜿甚する離型剀の、パヌフルオ
ロ基のない方の䞀端は少くずも぀のアルコキシ
シラン基あるいはハロゲン化シラン基を有しおい
る。アルコキシシラン基−SiOR〓、およびハロゲ
ン化シラン基−SiXは氎分ず反応しお−SiOH、
ずなりさらにこれがガラス、金属等の型材料の衚
面に存圚する−OH基ずの間で脱氎瞮合又は氎玠
結合等を起しお結合する。 すなわち本発明に䜿甚する離型剀はその䞀端で
成圢甚のマスタヌの衚面に化孊結合し、他端にパ
ヌフルオロ基を配向しおマスタヌ衚面を被うこず
ずなり、薄くお耐久性に優れ均䞀な離型局を圢成
するこずができる。 パヌフルオロ基ずアルコキシシラン基又はハロ
ゲン化シラン基の珪玠原子ずは盎接結合されおい
おもよいし構造単䜍ずしお、−CH2−、−
−CH2−−、−NH−CH2−NH−、
−CH2−−CH2−、−CH2−NH
−CH2−、−CONH−CH2−、−COO
CH2−等の構造を介しお結合されおいおも
よい。これらの構造は可胜なかぎり短いもので
は又はそれ以䞋がよい。具䜓的な化合物䟋ずし
おは、䞋蚘のものを挙げるこずができる。 (1) CF3−CF27−CH23−NH−CH23−Si
OCH33 (2) CF3−CF27−−CH23−−Si
OCH33 (3) CF3−CF27−NH−CH23−NH−Si
OCH33 (4) CF3−CF27−CH23−−CH23−Si
OCH33 (5) CF3−CF26−CONH−CH23−Si
OC2H53 (6) CF3−CF27−CH23−SiOCH33 (7) CF3−CF26−COO−CH23−SiOCH33 (8) CF3−CF27−CH23−NH−CH23−
SiCl3 (9) CF3−CF27−−CH23−−SiCl3 䞊蚘のフツ玠離型剀は通垞は固䜓であるが、こ
れをマスタヌ衚面に適甚するには有機溶剀に溶解
した溶液ずする必芁がある。離型剀の分子構造に
よ぀お異぀おくるが、倚くはその溶媒ずしおフツ
化炭化氎玠系の溶剀又はそれに若干の有機溶媒を
混合したものが適しおいる。たずえば、CCl2F−
CCl2F、CCl2F−CClF2あるいはこれらずメタノ
ヌル、゚タノヌル、アセトン、トリクロル゚チレ
ンなどの盞溶性のある有機溶媒を混合したものを
甚いるこずができる。溶媒の濃床はずくに限定は
ないが必芁ずする離型膜はずくに薄いこずが特城
であるので、濃床は䜎いもので充分であり〜
重量でよい。 この溶液をマスタヌの衚面に塗垃するには浞挬
塗垃、スプレヌ塗垃、ハケ塗り等の通垞の塗垃方
法を甚いるこずができる。ずくに光孊郚品ではホ
コリ・ゎミ等の付着は奜たしくないので、塗垃す
る溶液、塗垃雰囲気、型そのもの等はホコリを取
陀いおおく必芁がある。塗垃埌は通垞は自然也燥
で溶媒を蒞発させお也燥塗膜ずするが、このずき
塗垃された膜厚はずくに芏定するべきものではな
いが、最終的には埌述の薄膜化凊理埌、1Ό以䞋
にするのが奜適である。離型局はマスタヌ衚面ず
匷固に密着するように、離型剀をマスタヌ衚面に
化合結合するように凊理される。このための凊理
の䟋ずしおは、アミン又は酞による凊理が挙げら
れる。䟋えば、離型剀の塗垃が終぀たマスタヌ
は、アミンを含有する凊理液䞭で加熱凊理され
る。こゝで甚いるアミンは玚アミン、玚アミ
ン、玚アミンの䜕れでもよいが、ずくに玚ア
ミンず玚アミンが有効である。具䜓的にはたず
えば゚チルアミン、プロピルアミン、ブチルアミ
ン、アミルアミン、ヘキシルアミン等の玚アミ
ンや玚アミンずしおはゞ゚チルアミン等があ
る。これらのアミンはいずれも氎溶性のアミン
で、少くずも20重量たで氎に溶解する。 これらのアミンは凊理液から離型局䞭に拡散
し、離型剀のアルコキシシラン又はハロゲン化シ
ランの基ず反応しお、䞋地のマスタヌ衚面の−
OHずの脱氎瞮合を促進するこずがその目的であ
るので、分子構造はなるべく簡単な構造を持ちか
぀分子量も小さく、離型剀局内に拡散しやすいも
のが適しおいる。これらアミンの濃床は15重量
以䞋望しくは0.5〜重量皋床が適しおいる。 この凊理液のもう䞀぀の䜜甚は離型剀末端の−
Si−OR〓又はSiXを−SiOHに加氎分解するこず
にあるので、この凊理液は氎を有するこずが芁件
である。したが぀お凊理液ずしおはアミンの氎溶
液を甚いる。 この凊理液䞭での凊理は60〜95℃の枩床で0.5
〜時間皋床の条件䞋で行われるのがよい。枩床
は反応促進の意味では高枩である方がよいが、95
℃を越えるず氎が沞隰を起し、気泡が激しく発生
しおマスタヌ衚面を攻撃しお離型剀局を機械的に
脱萜させるこずがあるので䞊蚘の通り60〜95℃が
適切である。 たた、本発明の奜たしい具䜓䟋では、アミン化
合物の氎溶液を予めマスタヌの衚面に塗垃し、こ
れを也燥した埌に、前述ず同様のパヌフルオロ基
ずアルコキシシラン基若しくは、ハロゲン化シラ
ン基を少なくずも有する離型剀を塗垃するこずに
よ぀お離型膜を圢成するこずもできる。アミンは
離型凊理に際しおあらかじめマスタヌの衚面に塗
垃されるが、このずきマスタヌ材料ずしお甚いら
れるガラス又は金属の衚面に存圚する−OH基ず
の間に氎玠結合を起すかあるいは単玔な吞着を起
すなどしおマスタヌ衚面に結合する。次に離型剀
がこの䞊に塗垃され、埌述の熱氎凊理が行われる
ずきに、離型剀分子構造の末端の−SiOR〓又は−
SiXを−SiOHに加氎分解し、さらに型衚面の−
OHず脱氎瞮合を起す際に、これらのアミンは觊
媒䜜甚を発揮する。したが぀お氎の存圚は必須で
あるので、あらかじめ䜿甚するアミンも氎溶液ず
しお䜿甚するのが劥圓である。しかしながら次に
䜿甚される離型剀は、氎ず盞溶性がないので、こ
のアミン凊理の埌にマスタヌの衚面が液䜓の氎あ
るいはアミンで濡れた状態では、離型剀を塗垃す
る時にその溶液から離型剀が析出しお均䞀な塗膜
ずなり埗ない。そこでアミン溶液塗垃埌のマスタ
ヌは䞀応也燥状態にする必芁がある。しかし型衚
面から完党にアミンを無くするこずは無意味であ
るので、也燥は颚也かあるいは60〜70℃皋床の枩
床で短時間に止めるべきである。 次に、このようにアミンをあらかじめ塗垃し、
也燥したマスタヌの䞊に前述の離型剀を塗垃する
工皋が甚いられる。離型剀の塗垃が終぀たマスタ
ヌは、次に熱氎䞭で凊理を行う。この凊理は氎を
離型剀局を通しおマスタヌ衚面に拡散させ、あら
かじめ塗垃されおいるアミンず共に先に蚘した離
型剀䞭のアルコキシシラン基又はハロゲン化シラ
ン基を加氎分解しか぀マスタヌ衚面の−OH基ず
結合させる化孊反応を促進するために必芁な凊理
である。したが぀お反応促進の目的からはより高
い枩床が奜たしいが、氎が沞隰を起すず気泡によ
぀お離型局が砎壊され、ピンホヌルの発生等があ
るので泚意しなければならない。したが぀お奜た
しい凊理枩床は60〜95℃、時間は0.5〜時間皋
床が良奜な結果を埗る。 本発明の別の奜たしい具䜓䟋では、パヌフルオ
ロ基ずアルコキシシラン基若しくはハロゲン化シ
ラン基を少なくずも有する離型凊理剀をマスタヌ
の䞊に塗垃し、次いで酞の氎溶液に浞挬するこず
によ぀お離型局を圢成するこずができる。 離型剀の塗垃埌の型は、特に酞の氎溶液䞭で加
熱凊理する。こゝで甚いる酞ずしおは、塩酞、硝
酞、硫酞、リン酞などの無機酞、ギ酞、酢酞、シ
ナり酞、トル゚ンスルフオン酞などの有機酞が利
甚できる。これらの酞は凊理液から離型剀塗膜䞭
を拡散しマスタヌ衚面ずの界面に至぀お離型剀の
アルコキシシラン基又はハロゲン化シラン基ず反
応しおこれらを加氎分解しお−SiOHずするず共
にさらにマスタヌ衚面に存圚する−OH基ずの間
で瞮合を起させる觊媒ずしおの䜜甚をする。なお
このずき−SiOR〓又は−SiXを−SiOHずするに
は氎の存圚が必芁であるので、これらの酞は氎溶
液ずしお䜿甚され、その濃床は重量又はそれ
以䞋ずし、凊理液のPHが3.0又はそれ以䞋ずする
濃床であるこずが望たしい。この凊理液䞭での凊
理条件は60〜90℃で0.5〜50時間皋床である。枩
床は反応促進の目的からすれば高枩の方が奜たし
いが、95℃を超えるず沞隰が起り、気泡によ぀お
離型剀が脱萜するこずがあり奜たしいこずではな
い。 このようにしお圢成された離型局は薄膜化凊理
される。この薄膜化凊理は、䞊蚘したアミン又は
酞による凊理によ぀おマスタヌ衚面に化孊結合に
よ぀お密着しおいる離型剀を少くなくずもマスタ
ヌ衚面に均䞀に残しお他の離型剀を陀去するこず
によ぀お行う。この陀去手段ずしおは、離型局の
摺擊凊理、離型局衚面の溶剀による溶解陀去など
適宜遞択すればよいが、特に、フツ化炭化氎玠系
などの溶媒䞭に入れ超音波掗浄を行うこずで䜙分
な離型剀を溶解させたり、又は䞀床暹脂を離型局
の衚面で硬化しおから分離するこずでマスタヌ衚
面に結合した薄い離型局のみを陀去されずに残す
こずが奜適である。 なお堎合によ぀おはマスタヌ衚面ずの結合を促
進しおさらに匷固な離型局ずするためにこの埌
100〜150℃の枩床で〜時間の熱凊理を行぀お
もよい。 暹脂局圢成甚の暹脂ずしおは、䟋えばメチルメ
タアクリレヌトなどのアクリル系モノマヌ又はオ
リゎマヌ、スチレン又はスチレンを䞻䜓ずする共
重合を目的ずするコモノマヌの混合䜓又はそのオ
リゎマヌ、゚ポキシ暹脂、䞍飜和ポリ゚ステル暹
脂等のプレポリマヌ等の材料を䜿甚するこずがで
きる。 実斜䟋  盎埄玄50mm厚さ玄10mmのBK−ガラスの円圢
の基板に、衚面を非球面に研磚仕䞊げを行぀たマ
スタヌを接着しおマスタヌ郚材を䜜る。これをフ
ツ玠系離型剀FS−116ダむキン工業株匏䌚瀟補、
商品名をダむフロン−ダむキン工業株匏
䌚瀟、商品名で玄倍に垌釈した溶液䞭に浞挬
しお衚面に均䞀にFS−116を塗垃し自然也燥す
る。 次にこのマスタヌを玄重量の−プロピル
アミンの氎溶液䞭に浞挬しお90℃で玄時間凊理
する。次にダむフロン−ダむキン工業株匏
䌚瀟補、商品名䞭に぀けお超音波掗浄を玄分
間行う。超音波掗浄を行う前はFS−116の塗膜が
青玫色の干枉色を瀺しおいたが掗浄によ぀おFS
−116の塗膜の干枉色は芋えなくなり、䜕も凊理
しない時の衚面ず党く区別が぀かなくな぀た。こ
のようにしお第図に瀺すような離型局を圢成
した。次に第図に瀺すように黄銅補の支持郚材
の䞭心郚に凹球面をも぀たレンズ状のガラス材
SF−よりなるガラス基板を眮きこの䞊に眮
かれるマスタヌずガラス基板の間に最倧郚分で
箄0.3mm、最小郚分で玄0.1mmの間隙を䜜ように䜜
補したスペヌサヌを眮く。぀いで透明な゚ポキ
シ暹脂゚ポテツク301−゚ポキシテクノロゞヌ
瀟補、商品名を少量ガラス基板の凹郚におき、
この䞊から第図に瀺すようにマスタヌを挿入す
る。これを恒枩槜に入れ80℃時間加熱硬化し埐
冷しおから取り出す。次いでマスタヌを支持郚材
から匕出すずマスタヌの衚面に硬化した゚ポキ
シ暹脂を介しおガラス基板が付着しお取り出され
おくる。マスタヌの衚面に添぀おカミ゜リの刃を
圓お軜く衝撃を加えるずガラス基板は硬化した暹
脂局ずずもに容易にマスタヌから離型でき、第
図に瀺すようなガラス基板ず暹脂局よりなるレン
ズが成圢された。このレンズの衚面はきわめお粟
床の高いマスタヌず同䞀の非球面をなしおおり、
光孊郚材ずしお品質の高いものであ぀た。 FS−116の赀倖吞収スペクトルを第図に瀺
す。このチダヌトから明らかなようにFS−116は
CF3−CF2基ずSiOCH33基ずを有する化合
物であるこずがわかる。図䞭は−の振動
スペクトル、はSiOCH3、はSiOの振動
スペクトルを瀺しおいる。 実斜䟋  −C8F17CH2CH2SiOCH33の化孊構造を有
する液晶配向甚特殊シランLP−8T信越化孊工
業株匏䌚瀟補、商品名をダむフロン−で玄
重量の濃床の溶液ずし、これを実斜䟋にお
けるFS−116の代りに甚いお実斜䟋ず党く同じ
実隓を行぀たずころ、実斜䟋におけるず同様に
マスタヌず成圢レンズを容易に離型するこずがで
き、粟床の高い暹脂の非球面を有するレンズが成
圢できた。さらに離型凊理を行わずに、䞊蚘の成
型をくり返し行぀たずころ回たで離型が可胜で
あ぀た。 実斜䟋  党型甚金属材料YSSマル゚ヌゞング鋌YAG日
立金属株匏䌚瀟補、商品名を甚いお第図に瀺
すマスタヌ郚材を䞀䜓のものずしお研削仕䞊げで
䜜成した。このマスタヌ衚面の郚分は非球面の研
磚仕䞊げずした。このマスタヌを前出のLP−8T
の玄重量のダむフロン−溶液に浞挬塗垃
し、次いでこれを−アミルアミン氎溶液䞭で90
℃時間の熱凊理を行぀た。次いでこれをダむフ
ロン−䞭で玄分間超音波掗浄を行぀お離型
局を圢成したずころマスタヌの衚面はきれいに仕
䞊り䜕も぀いおいないような倖芳を呈した。これ
を甚いお実斜䟋ず同様にレンズの成圢を行い、
カミ゜リの刃を甚いお離型を行぀たずころきわめ
お容易に離型でき、粟床の高い非球面レンズを䜜
るこずができた。この型材を甚いお、再床離型凊
理を行うこずなしに成圢を぀ゞけたずころ回た
で離型が可胜で光孊郚材ずしお充分な粟床を持぀
たレンズが成圢できた。 実斜䟋  FS−116ダむキン工業株匏䌚瀟補、商品名
を甚いお実斜䟋ず同様に浞挬塗垃により離型局
を圢成したガラスのマスタヌを玄HCl氎䞭に
぀けお90℃玄時間の熱凊理を行぀た。これをダ
むフロン−䞭で超音波掗浄を行うずFS−116
の塗膜の倧郚分が溶解陀去され倖芳䞊無凊理の衚
面ず党く同様に仕䞊げられた。このマスタヌを甚
いお実斜䟋ず同様に成圢実隓を行぀たずころ、
非球面暹脂局を有するレンズがきわめお容易に離
型でき、その衚面の粟床はきわめお良いものであ
぀た。 たた離型凊理を远加せずに成圢を぀ゞけたずこ
ろ回たで充分に離型が可胜であ぀た。 実斜䟋  フツ玠系有機シロキサン化合物
C7F15CONHCH2CH2CH2SiOCH33の玄重量
ダむフロン−溶液を甚いお、実斜䟋で甚
いたマスタヌの塗垃凊理を行い離型局を圢成し
た。次に−ブチルアミン重量の氎溶液䞭に
浞挬しお90℃時間加熱凊理した。その埌これを
ダむフロン−䞭に入れお玄分間超音波掗浄
を行぀おマスタヌ衚面に付着しおいる䞊蚘化合物
を掗い萜したずころ䜕も付着しおいないずきず党
く同様の倖芳を呈した。 このマスタヌを甚いお実斜䟋ず同様のレンズ
の成型を行぀たずころきわめお容易にレンズが離
型できた。この離型効果は回の成型たで有効で
あ぀た。 実斜䟋  フツ玠系有機シロキサン化合物
C7F15COOCH2CH2CH2SiOCH33の玄重量
ダむフロン−溶液を甚いお実斜䟋で甚いた
マスタヌの塗垃凊理により離型局を圢成した。次
に、これを−ブチルアミン重量の氎溶液䞭
に浞挬しお90℃時間の加熱凊理を行぀た。その
埌これをダむフロン−䞭に入れお玄分間超
音波掗浄を行぀おマスタヌ衚面に付着しおいる䞊
蚘化合物を掗い萜したずころ䜕も付着しおいない
ずきず党く同様の倖芳を呈した。このマスタヌを
甚いお実斜䟋ず同様のレンズの成圢を行぀たず
ころ、レンズの離型はきわめお容易にできた。た
た離型凊理を远加するこずなく成圢を぀ゞけたず
ころ回たで可胜であ぀た。 比范䟋  実斜䟋で甚いたマスタヌの衚面にシリコヌン
系ペヌスト状離型剀KS−61信越化孊工業株匏䌚
瀟補、商品名を䞍織垃を甚いお塗垃した。この
ずきマスタヌを玄60℃に加熱し、離型剀を軟くし
おできるだけマスタヌ衚面を平滑になるように拭
き䞊げた。このマスタヌを甚いお実斜䟋に瀺し
たプロセスでレンズの成圢を行぀た。暹脂硬化埌
カミ゜リの刃を甚いお離型しようずしたが郚分的
にはく離が起぀たがレンズをはずすこずはできな
か぀た。 比范䟋  実斜䟋で甚いたマスタヌ衚面にシリコヌンワ
ニス離型剀KS−700信越化孊工業株匏䌚瀟補、
商品名を、−ヘキサンを甚いお玄10倍に垌釈
したものを塗垃した。これを䞍織垃を甚いお光孊
的曲面の粟床を害さぬようきれいに拭き䞊げおか
ら、270℃で時間焌付け埌埐冷した。次いでこ
のマスタヌを甚いお実斜䟋ず同様のレンズの成
型実隓を行぀たずころ、レンズは離型性䞍十分
で、カミ゜リ刃の打撃郚のガラス基板にヒビが入
぀おした぀た。 比范䟋  実斜䟋で甚いたマスタヌを玄80℃に加熱しお
おき、このマスタヌの衚面にカルナりバワツクス
融点玄65℃をこすり぀けお溶解しながら塗垃
する。次に䞍織垃を甚いお䜙分に付着しおずけお
いるカルナりバワツクスを拭きずり衚面を平滑な
凊理面に拭き䞊げおから垞枩にもどす。このマス
タヌを甚いお実斜䟋ず同様にしおレンズの成圢
を行぀たが離型が䞍充分で䞀郚レンズが割れおし
た぀た。離型できた郚分のレンズの暹脂衚面には
離型剀の拭きムラにもずずく埮小な凹凞が、その
衚面の反射像でみられた。
It may have a branched structure as shown in [Formula]. In this case, a' is preferably 4 or more. As described above, the mold releasability in the present invention is exerted by this perfluoro group. One end of the mold release agent used in the present invention that does not have a perfluoro group has at least one alkoxysilane group or halogenated silane group. The alkoxysilane group -SiOR〓 and the halogenated silane group -SiX react with moisture to form -SiOH,
This is further bonded by dehydration condensation or hydrogen bonding with the -OH group present on the surface of the mold material such as glass or metal. In other words, the mold release agent used in the present invention chemically bonds to the surface of the molding master at one end, and the perfluoro group is oriented at the other end to cover the master surface, resulting in a thin, durable, and uniform molding agent. A release layer can be formed. The perfluoro group and the silicon atom of the alkoxysilane group or halogenated silane group may be directly bonded, or as a structural unit, -( CH2 )l-, -O
-( CH2 )l-O-, -NH-( CH2 )l-NH-,
-( CH2 )-O-( CH2 )l-, -( CH2 )l-NH
-( CH2 )l-, -CONH-( CH2 )l-, -COO
They may be bonded via a structure such as (CH 2 )l-. These structures should be as short as possible.
is preferably 3 or less. Specific examples of compounds include the following. (1) CF 3 − (CF 2 ) 7 − (CH 2 ) 3 −NH− (CH 2 ) 3 −Si
(OCH 3 ) 3 (2) CF 3 −(CF 2 ) 7 −O−(CH 2 ) 3 −O−Si
(OCH 3 ) 3 (3) CF 3 − (CF 2 ) 7 −NH− (CH 2 ) 3 −NH−Si
(OCH 3 ) 3 (4) CF 3 −(CF 2 ) 7 −(CH 2 ) 3 −O−(CH 2 ) 3 −Si
(OCH 3 ) 3 (5) CF 3 − (CF 2 ) 6 −CONH− (CH 2 ) 3 −Si
(OC 2 H 5 ) 3 (6) CF 3 − (CF 2 ) 7 − (CH 2 ) 3 −Si(OCH 3 ) 3 (7) CF 3 − (CF 2 ) 6 −COO− (CH 2 ) 3 −Si(OCH 3 ) 3 (8) CF 3 −(CF 2 ) 7 −(CH 2 ) 3 −NH−(CH 2 ) 3 −
SiCl 3 (9) CF 3 −(CF 2 ) 7 −O−(CH 2 ) 3 −O−SiCl 3 The above-mentioned fluorine mold release agent is usually solid, but in order to apply it to the master surface, it needs to be dissolved in an organic solvent. Although it varies depending on the molecular structure of the mold release agent, in most cases, a fluorinated hydrocarbon solvent or a mixture thereof with some organic solvent is suitable. For example, CCl 2 F−
CCl2F , CCl2F - CClF2 , or a mixture thereof with a compatible organic solvent such as methanol, ethanol, acetone, or trichlorethylene can be used. The concentration of the solvent is not particularly limited, but since the required release film is particularly thin, a low concentration is sufficient;
Weight % is sufficient. To apply this solution to the surface of the master, conventional coating methods such as dip coating, spray coating, brush coating, etc. can be used. It is particularly undesirable for optical parts to have dust and dirt attached to them, so it is necessary to remove dust from the coating solution, coating atmosphere, mold itself, etc. After coating, the solvent is usually air-dried to evaporate to form a dry coating.The thickness of the coated film at this time is not particularly specified, but it is ultimately 1Ό or less after the thinning process described below. It is preferable to The release layer is treated to bond the release agent to the master surface so as to form a strong bond with the master surface. Examples of treatments for this include treatment with amines or acids. For example, a master coated with a release agent is heat-treated in a treatment solution containing an amine. The amine used here may be any of primary amines, secondary amines, and tertiary amines, but primary amines and secondary amines are particularly effective. Specifically, for example, primary amines such as ethylamine, propylamine, butylamine, amylamine, and hexylamine, and diethylamine and the like are examples of secondary amines. All of these amines are water-soluble amines, soluble in water up to at least 20% by weight. These amines diffuse into the mold release layer from the treatment solution, react with the alkoxysilane or halogenated silane groups of the mold release agent, and cause -
Since its purpose is to promote dehydration condensation with OH, it is suitable that the molecular structure is as simple as possible, has a small molecular weight, and can easily diffuse into the mold release agent layer. The concentration of these amines is 15% by weight
Desirably, the amount is about 0.5 to 3% by weight. Another effect of this treatment liquid is the -
Since the purpose of this process is to hydrolyze Si-OR or SiX to -SiOH, it is necessary that this treatment liquid contains water. Therefore, an aqueous solution of amine is used as the treatment liquid. The treatment in this treatment solution is 0.5 at a temperature of 60-95℃.
It is preferable to carry out the treatment under conditions of about 3 hours. A high temperature is better in terms of promoting the reaction, but 95
If the temperature exceeds .degree. C., the water will boil and bubbles will be generated violently, attacking the master surface and mechanically causing the release agent layer to fall off, so as mentioned above, the appropriate temperature is 60 to 95.degree. In a preferred embodiment of the present invention, an aqueous solution of an amine compound is applied to the surface of the master in advance, and after drying, a release agent having at least a perfluoro group and an alkoxysilane group or a halogenated silane group as described above is applied. A mold release film can also be formed by applying a molding agent. The amine is applied to the surface of the master in advance during the mold release process, and at this time, it forms a hydrogen bond or simply adsorbs with the -OH group present on the surface of the glass or metal used as the master material. and bond to the master surface. Next, a mold release agent is applied on top of this, and when the hot water treatment described below is performed, the terminal -SiOR〓 or -
SiX is hydrolyzed to −SiOH, and −
These amines exhibit a catalytic effect when dehydration condensation occurs with OH. Therefore, since the presence of water is essential, it is appropriate to use the amine used in advance as an aqueous solution. However, the mold release agent used next is not compatible with water, so if the surface of the master is wet with liquid water or amine after this amine treatment, it must be separated from the solution when applying the mold release agent. The molding agent precipitates and a uniform coating cannot be obtained. Therefore, it is necessary to dry the master after applying the amine solution. However, it is pointless to completely eliminate amines from the mold surface, so drying should be done in the air or at a temperature of about 60 to 70°C for a short period of time. Then pre-apply the amine like this,
The process of applying the above-mentioned mold release agent onto the dried master is used. After the release agent has been applied to the master, it is then treated in hot water. In this treatment, water is diffused onto the master surface through the mold release agent layer, hydrolyzing the alkoxysilane groups or halogenated silane groups in the mold release agent mentioned above together with the pre-applied amine, and hydrolyzing the -OH of the master surface. This is a necessary treatment to promote the chemical reaction that bonds with the group. Therefore, a higher temperature is preferable for the purpose of promoting the reaction, but care must be taken because if the water boils, the mold release layer will be destroyed by bubbles and pinholes will occur. Therefore, a preferable treatment temperature is 60 to 95°C, and a preferable treatment time is about 0.5 to 3 hours to obtain good results. In another preferred embodiment of the present invention, a mold release treatment agent having at least a perfluoro group and an alkoxysilane group or a halogenated silane group is applied onto the master, and then the mold is released by immersion in an aqueous acid solution. layers can be formed. The mold after application of the mold release agent is heat-treated, especially in an aqueous acid solution. As the acid used here, inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, oxalic acid, and toluenesulfonic acid can be used. These acids diffuse through the mold release agent coating from the treatment solution, reach the interface with the master surface, react with the alkoxysilane groups or halogenated silane groups of the mold release agent, and hydrolyze them to form -SiOH. It also acts as a catalyst to cause condensation with the -OH groups present on the master surface. At this time, the presence of water is necessary to convert -SiOR〓 or -SiX to -SiOH, so these acids are used as an aqueous solution, the concentration of which is 5% by weight or less, and the pH of the treatment liquid is It is desirable that the concentration be 3.0 or lower. The processing conditions in this processing solution are 60 to 90°C for about 0.5 to 50 hours. A high temperature is preferable for the purpose of promoting the reaction, but if the temperature exceeds 95°C, boiling will occur and the mold release agent may fall off due to bubbles, which is not preferable. The mold release layer thus formed is subjected to a thinning process. This thin film treatment is performed by the above-mentioned amine or acid treatment to leave at least the mold release agent that is in close contact with the master surface through chemical bonds uniformly on the master surface and remove other mold release agents. To do something. The removal method may be selected as appropriate, such as rubbing the release layer or dissolving the surface of the release layer with a solvent, but in particular, ultrasonic cleaning by placing it in a fluorinated hydrocarbon solvent or the like may be used. It is preferable to dissolve the excess mold release agent with a step or to cure the resin once on the surface of the mold release layer and then separate it, leaving only the thin mold release layer bonded to the master surface without being removed. . In some cases, a layer may be added after this to promote bonding with the master surface and create an even stronger release layer.
Heat treatment may be performed at a temperature of 100 to 150°C for 1 to 2 hours. Examples of the resin for forming the resin layer include acrylic monomers or oligomers such as methyl methacrylate, styrene or mixtures of comonomers for the purpose of copolymerization mainly based on styrene, or oligomers thereof, epoxy resins, unsaturated polyester resins, etc. Materials such as prepolymers can be used. Example 1 A master member whose surface has been polished to an aspherical surface is adhered to a circular substrate of BK-7 glass having a diameter of approximately 50 mm and a thickness of approximately 10 mm. Add this to the fluorine-based mold release agent FS-116 (manufactured by Daikin Industries, Ltd.).
(trade name) is immersed in a solution diluted approximately 3 times with Daiflon S-3 (trade name, Daikin Industries, Ltd.), FS-116 is evenly applied to the surface, and air-dried. Next, this master is immersed in an aqueous solution of about 1% by weight n-propylamine and treated at 90°C for about 1 hour. Next, it is immersed in Daiflon S-3 (manufactured by Daikin Industries, Ltd., trade name) and subjected to ultrasonic cleaning for about 3 minutes. Before ultrasonic cleaning, the FS-116 coating showed a blue-purple interference color, but after cleaning, the FS-116 coating showed a blue-purple interference color.
The interference color of the −116 coating became invisible, making it completely indistinguishable from the untreated surface. In this way, a mold release layer 3 as shown in FIG. 2 was formed. Next, as shown in FIG.
A glass substrate 4 made of SF-4 is placed, and a spacer 7 is placed between the master placed thereon and the glass substrate 4 so as to create a gap of about 0.3 mm at the maximum part and about 0.1 mm at the minimum part. Next, a small amount of transparent epoxy resin Epotec 301-2 (manufactured by Epoxy Technology Co., Ltd., trade name) was placed in the concave part of the glass substrate.
Insert the master from above as shown in FIG. This is placed in a constant temperature bath and heated to harden at 80°C for 3 hours, then slowly cooled and then taken out. Next, when the master is pulled out from the support member 5, the glass substrate is attached to the surface of the master via the hardened epoxy resin, and the master is taken out. When a razor blade is applied along the surface of the master and a slight impact is applied, the glass substrate can be easily released from the master along with the hardened resin layer, and the fifth
A lens consisting of a glass substrate and a resin layer as shown in the figure was molded. The surface of this lens has the same aspherical surface as the highly accurate master,
It was of high quality as an optical member. Figure 6 shows the infrared absorption spectrum of FS-116. As is clear from this chart, FS-116 is
It can be seen that this is a compound having CF 3 -(CF 2 )n groups and 3 Si(OCH 3 ) groups. In the figure, 11 shows the vibration spectrum of C-F, 12 shows the vibration spectrum of SiOCH 3 , and 13 shows the vibration spectrum of SiO. Example 2 Special silane LP-8T for liquid crystal alignment (manufactured by Shin-Etsu Chemical Co., Ltd., trade name) having a chemical structure of n - C8F17CH2CH2Si ( OCH3 ) 3 was blown with Daiflon S - 3. When a solution with a concentration of 2% by weight was used in place of FS-116 in Example 1 and the same experiment as in Example 1 was conducted, the master and molded lens were easily separated as in Example 1. It was possible to mold a lens with a highly accurate aspherical resin surface. Furthermore, when the above molding was repeated without performing mold release treatment, it was possible to release the mold up to four times. Example 3 Using YSS maraging steel YAG (manufactured by Hitachi Metals Co., Ltd., trade name) as a metal material for all molds, the master member shown in FIG. 1 was made into one piece by grinding. The surface of this master was given an aspherical polished finish. This master is the same as the LP-8T mentioned above.
of about 2% by weight of Daiflon S-3 solution, and then dipping this in an aqueous n-amylamine solution at 90% by weight.
Heat treatment was performed at ℃ for 1 hour. Next, this was subjected to ultrasonic cleaning in Daiflon S-3 for about 5 minutes to form a release layer, and the surface of the master was finished cleanly and appeared as if nothing had been attached to it. Using this, mold a lens in the same manner as in Example 1,
When the mold was released using a razor blade, it was extremely easy to release the mold, and an aspherical lens with high precision could be produced. When molding was carried out using this mold material without performing mold release treatment again, the mold could be released up to four times and a lens with sufficient accuracy as an optical member could be molded. Example 4 FS-116 (manufactured by Daikin Industries, Ltd., product name)
A glass master on which a release layer had been formed by dip coating in the same manner as in Example 1 was immersed in about 3% HCl water and heat-treated at 90°C for about 1 hour. When this is ultrasonically cleaned in Daiflon S-3, FS-116
Most of the coating was removed by dissolution, leaving the surface with a finish that looked exactly like the untreated surface. When a molding experiment was conducted using this master in the same manner as in Example 1,
The lens having the aspherical resin layer could be released from the mold very easily, and its surface precision was extremely good. Furthermore, when molding was continued without additional mold release treatment, sufficient mold release was possible up to 4 times. Example 5 Fluorine-based organosiloxane compound
The master used in Example 1 was coated using a Daiflon S-3 solution containing about 2% by weight of C 7 F 15 CONHCH 2 CH 2 CH 2 Si(OCH 3 ) 3 to form a release layer. Next, it was immersed in an aqueous solution containing 1% by weight of n-butylamine and heat-treated at 90°C for 1 hour. Thereafter, this was placed in Daiflon S-3 and subjected to ultrasonic cleaning for about 3 minutes to wash off the above-mentioned compound adhering to the master surface, and the appearance was exactly the same as when nothing had adhered. When a lens similar to that in Example 1 was molded using this master, the lens could be released from the mold very easily. This mold release effect remained effective up to four times of molding. Example 6 Fluorine-based organosiloxane compound
C 7 F 15 COOCH 2 CH 2 CH 2 Si (OCH 3 ) Approximately 2% by weight of 3
A release layer was formed by coating the master used in Example 1 using Daiflon S-3 solution. Next, this was immersed in an aqueous solution containing 1% by weight of n-butylamine and heat-treated at 90°C for 1 hour. Thereafter, this was placed in Daiflon S-3 and subjected to ultrasonic cleaning for about 5 minutes to wash off the compound adhering to the master surface, and the appearance was exactly the same as when nothing had adhered. When a lens similar to that in Example 1 was molded using this master, the lens could be released from the mold very easily. Furthermore, when molding was carried out without additional mold release treatment, it was possible to perform molding up to four times. Comparative Example 1 A silicone paste mold release agent KS-61 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name) was applied to the surface of the master used in Example 1 using a nonwoven fabric. At this time, the master was heated to about 60°C to soften the mold release agent and wiped to make the master surface as smooth as possible. Using this master, lenses were molded by the process shown in Example 1. After the resin had hardened, an attempt was made to release the mold using a razor blade, but although some peeling occurred, the lens could not be removed. Comparative Example 2 Silicone varnish mold release agent KS-700 (manufactured by Shin-Etsu Chemical Co., Ltd.,
(trade name) diluted approximately 10 times with n-hexane was applied. This was wiped clean using a non-woven cloth so as not to impair the precision of the optically curved surface, then baked at 270°C for 1 hour and then slowly cooled. Next, when a lens molding experiment similar to that in Example 1 was carried out using this master, the lens had insufficient mold releasability and cracks appeared in the glass substrate of the striking part of the razor blade. Comparative Example 3 The master used in Example 1 is heated to about 80°C, and carnauba wax (melting point about 65°C) is rubbed onto the surface of the master and applied while melting. Next, use a non-woven cloth to wipe off any excess carnauba wax that has adhered and melted, and wipe the surface to a smooth treated surface, then return it to room temperature. Lenses were molded using this master in the same manner as in Example 1, but the mold release was insufficient and some of the lenses were broken. On the resin surface of the lens in the part where the mold was released, minute irregularities due to uneven wiping of the mold release agent were seen in the reflected image of the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明に甚いるマスタヌの断面図であ
る。第図は衚面に離型局を圢成したマスタヌの
断面図である。第図は光孊郚品を圢成するため
にガラス基板を支持郚材に配眮した状態の断面図
である。第図はガラス基板ずマスタヌを重ねた
状態の断面図である。第図は圢成された光孊郚
品の断面図である。第図は実斜䟋に甚いお離型
剀の赀倖吞収スペクトル特性を瀺すグラフであ
る。   基板、  マスタヌ、  離型局、
  ガラス基板、  支持郚材、  暹
脂、  スペヌサヌ、  暹脂局。
FIG. 1 is a sectional view of a master used in the present invention. FIG. 2 is a sectional view of a master with a release layer formed on its surface. FIG. 3 is a sectional view of a glass substrate placed on a support member to form an optical component. FIG. 4 is a cross-sectional view of the glass substrate and master stacked together. FIG. 5 is a cross-sectional view of the formed optical component. FIG. 6 is a graph showing the infrared absorption spectrum characteristics of the mold release agent used in Examples. 1...Substrate, 2...Master, 3...Release layer,
4...Glass substrate, 5...Supporting member, 6...Resin, 7...Spacer, 8...Resin layer.

Claims (1)

【特蚱請求の範囲】  衚面に離型局を有するマスタヌずガラス基板
ずの間に圢成される間隙に暹脂を介圚させるこず
によりガラス基板衚面に暹脂局を圢成した埌、マ
スタヌを分離しおガラス基板ず暹脂局からなる光
孊郚品を補造する方法においお、マスタヌ衚面に
フツ玠眮換炭化氎玠基ずアルコキシシラン基若し
くはハロゲン化シラン基ずを有する化合物を塗垃
埌、少くなくずもマスタヌ衚面に化孊結合した圓
該化合物をマスタヌ衚面党䜓に均䞀に残しお他を
陀去するこずにより圢成した離型局であるこずを
特城ずする光孊郚品の補造方法。  離型局を圢成する化合物のマスタヌ衚面ぞの
化孊結合をアミン又は酞の凊理で圢成する特蚱請
求の範囲第項蚘茉の光孊郚品の補造方法。
[Claims] 1. After forming a resin layer on the surface of the glass substrate by interposing a resin in the gap formed between the master having a release layer on the surface and the glass substrate, the master is separated and the glass substrate is removed. In a method for manufacturing an optical component consisting of a substrate and a resin layer, after applying a compound having a fluorine-substituted hydrocarbon group and an alkoxysilane group or a halogenated silane group to the master surface, at least the compound having a fluorine-substituted hydrocarbon group and an alkoxysilane group or a halogenated silane group is applied. A method for manufacturing an optical component, characterized in that the release layer is formed by leaving a compound uniformly on the entire master surface and removing the other. 2. The method for manufacturing an optical component according to claim 1, wherein the chemical bond of the compound forming the release layer to the master surface is formed by treatment with an amine or acid.
JP18413883A 1983-09-30 1983-09-30 Manufacture of optical parts Granted JPS6073817A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18413883A JPS6073817A (en) 1983-09-30 1983-09-30 Manufacture of optical parts
US06/653,727 US4566930A (en) 1983-09-30 1984-09-24 Process for producing optical members
GB08424543A GB2148783B (en) 1983-09-30 1984-09-28 Process for producing optical members
DE19843436004 DE3436004A1 (en) 1983-09-30 1984-10-01 METHOD FOR PRODUCING OPTICAL COMPONENTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18413883A JPS6073817A (en) 1983-09-30 1983-09-30 Manufacture of optical parts

Publications (2)

Publication Number Publication Date
JPS6073817A JPS6073817A (en) 1985-04-26
JPH0257002B2 true JPH0257002B2 (en) 1990-12-03

Family

ID=16148031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18413883A Granted JPS6073817A (en) 1983-09-30 1983-09-30 Manufacture of optical parts

Country Status (1)

Country Link
JP (1) JPS6073817A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1535712B1 (en) * 2003-11-28 2009-01-14 Xenocs S.A. Method for producing a replication master, and replication master

Also Published As

Publication number Publication date
JPS6073817A (en) 1985-04-26

Similar Documents

Publication Publication Date Title
JP4201603B2 (en) Method for producing glass suitable for trimming, glass obtained thereby, and method for trimming the glass
CN100339740C (en) Stainproof eyeglass lens and method for production thereof
JP3323614B2 (en) Transparent member and its manufacturing method
EP0985510A1 (en) Article with rough surface, process for producing the same, and composition therefor
JP4197472B2 (en) Lens with antifouling surface layer
JP2006527385A (en) Lens handling method suitable for shaping
WO2007068760A2 (en) Article coated with a ultra high hydrophobic film and process for obtaining same
JPWO2002053345A1 (en) Article having predetermined surface shape and method of manufacturing the same
GB2148783A (en) Process for producing optical members
FR2687482A1 (en) Novel composite ophthalmic lenses and their manufacture
EP1142682A1 (en) Method for producing article having predetermined surface shape, and optical waveguide element
JPH0257002B2 (en)
JP4522357B2 (en) Manufacturing method for water slidable glass articles
JP3750393B2 (en) Method for producing article having uneven surface
JPH0257003B2 (en)
JPH11513359A (en) A system that imparts tack-free and non-wetting properties to the surface
JPS6087029A (en) Manufacture of optical part
JPH11228942A (en) Water-repellent fluid and production of water-repellent film
JP5163022B2 (en) Treatment agent for forming antifouling coating on optical functional laminate
JPS6073816A (en) Manufacture of optical parts
JP2008238522A (en) Glass mold release agent and manufacturing method of plastic molded article
JPS6090851A (en) Manufacture of optical member
JPS6073819A (en) Manufacture of optical parts
JPH1026703A (en) Lens subjected to water-repellency treatment
US20040076838A1 (en) Spin application of thermally cured coatings