JPH0256977A - Dielectric filter - Google Patents

Dielectric filter

Info

Publication number
JPH0256977A
JPH0256977A JP63207270A JP20727088A JPH0256977A JP H0256977 A JPH0256977 A JP H0256977A JP 63207270 A JP63207270 A JP 63207270A JP 20727088 A JP20727088 A JP 20727088A JP H0256977 A JPH0256977 A JP H0256977A
Authority
JP
Japan
Prior art keywords
dielectric
conductor
resonator
dielectric resonator
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63207270A
Other languages
Japanese (ja)
Inventor
Toyosaku Sato
佐藤 豊作
Kazutoshi Ayusawa
鮎沢 一年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63207270A priority Critical patent/JPH0256977A/en
Publication of JPH0256977A publication Critical patent/JPH0256977A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To reduce the insertion loss of a dielectric filter by forming a conductor section constituting the dielectric filter of ceramics displaying a superconductive state at the temperature of liquid nitrogen. CONSTITUTION:A dielectric resonator 23 at an input stage, a dielectric resonator 24 at an output stage, dielectric resonators 25, 26 between stages shaped into a first dielectric 21, and dielectric resonators 27, 28 between stages formed into a second dielectric 22 are provided, and a high-temperature superconductive material is used as the central conductors of each dielectric resonator. Conductor patterns 29-34 are extended from the central conductors of each dielectric resonator and formed onto the top faces of the dielectrics, and high-temperature superconductive ceramics shown by general formula Ln1Ba2Cu3Ox (where Ln represents Y, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu) are employed as all of the side face conductors 35-38 of the first and second dielectrics 21, 22 and the conductors 39, 40 of the bases of the dielectrics. Accordingly, insertion loss can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は誘電体共振器を用いたマイクロ波フィルタの構
造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a microwave filter using a dielectric resonator.

(従来の技術) 従来、このような分野の技術としては、特開昭61−8
4101号公報に記載されるものがあった。以下、その
構成を図面を参照して説明する。
(Prior art) Conventionally, as a technology in this field, Japanese Patent Application Laid-Open No. 61-8
There was one described in Publication No. 4101. The configuration will be explained below with reference to the drawings.

第2図は従来の誘電体フィルタの一構成例を示す図であ
る。第3図は第2図のAA断面図である。第2図、第3
図において、1は入力端子、2は出力端子、3は入力段
の誘電体共振器、4は出力段の誘電体共振器、5.6は
第1の誘電体21内に形成する段間の誘電体共振器、7
,8は第2の誘電体22内に形成する段階の誘電体共振
器、9〜14は導体パターンであり、前記各誘電体共振
器の中心導体から延長して誘電体上面に形成される。
FIG. 2 is a diagram showing an example of the configuration of a conventional dielectric filter. FIG. 3 is a sectional view along line AA in FIG. 2. Figures 2 and 3
In the figure, 1 is an input terminal, 2 is an output terminal, 3 is an input stage dielectric resonator, 4 is an output stage dielectric resonator, and 5.6 is an interstage space formed in the first dielectric body 21. Dielectric resonator, 7
, 8 is a dielectric resonator that is being formed in the second dielectric 22, and 9 to 14 are conductor patterns that extend from the center conductor of each of the dielectric resonators and are formed on the upper surface of the dielectric.

更に、15〜18は第1及び第2の誘電体21.23の
側面導体であり、19.20は誘電体底面の導体である
。このようにして、一体構造の誘電体に複数個の円筒形
状の中心導体を設け、急峻な特性を得るべく誘電体共振
器を複数個配列する。これらの誘電体共振器を用いてフ
ィルタを構成するために、誘電体共振器の各中心導体間
の距離はフィルタを実現するために必要な結合度を得る
長さに設定される。
Furthermore, 15 to 18 are side conductors of the first and second dielectrics 21.23, and 19.20 is a conductor on the bottom surface of the dielectric. In this way, a plurality of cylindrical center conductors are provided in the integral dielectric structure, and a plurality of dielectric resonators are arranged in order to obtain steep characteristics. In order to construct a filter using these dielectric resonators, the distance between each center conductor of the dielectric resonators is set to a length that provides the degree of coupling necessary to realize the filter.

次に、この誘電体フィルタの動作について説明する。入
力端子1より印加された電気信号は、−体構造の第1の
誘電体21内に設けられた入力段の誘電体共振器3によ
り電磁界を発生し、この電磁界は隣接の段間の共振器5
の中心導体へ伝えられる。段間の誘電体共振器5の中心
導体に達した電磁界は隣接の段階の誘電体共振器6の中
心導体へ伝えられる。誘電体共振器6と第2の誘電体内
に形成され前記誘電体共振器6に隣接する段間の誘電体
共振器7との間には、間隙を設けて分離しており、空気
を介して電磁界結合により、前記誘電体共振器6からの
電磁界が前記段間の誘電体共振器7の中心導体に伝えら
れる。順次、こうような動作を繰り返しながら電気信号
が伝えられ、誘電体フィルタの出力端子2から負荷へ電
気エネルギーをイ共糸合するものである。
Next, the operation of this dielectric filter will be explained. An electric signal applied from the input terminal 1 generates an electromagnetic field by the dielectric resonator 3 of the input stage provided in the first dielectric 21 having a negative body structure, and this electromagnetic field is transmitted between adjacent stages. Resonator 5
is transmitted to the center conductor of The electromagnetic field that has reached the center conductor of the dielectric resonator 5 between the stages is transmitted to the center conductor of the dielectric resonator 6 of the adjacent stage. A gap is provided between the dielectric resonator 6 and the interstage dielectric resonator 7 formed in the second dielectric and adjacent to the dielectric resonator 6, and the dielectric resonator 6 is separated by air. Due to electromagnetic coupling, the electromagnetic field from the dielectric resonator 6 is transmitted to the center conductor of the dielectric resonator 7 between the stages. An electrical signal is transmitted while repeating these operations one after another, and electrical energy is combined from the output terminal 2 of the dielectric filter to the load.

(発明が解決しようとする課題) しかしながら、従来技術の誘電体フィルタでは、誘電体
共振器3〜8を構成する中心導体、各誘電体共振器の中
心導体から延長して誘電体上面に形成する導体パターン
9〜14、誘電体側面導体15〜18、誘電体底面導体
19.20は銀ペースト又はガラスフリットの入った銀
ペーストを焼結したもので形成されていた。このため導
体抵抗が太き(、これによる誘電体フィルタの挿入損失
は3.0dBであった。
(Problem to be Solved by the Invention) However, in the conventional dielectric filter, the center conductor constituting the dielectric resonators 3 to 8 is extended from the center conductor of each dielectric resonator and formed on the upper surface of the dielectric. The conductor patterns 9 to 14, the dielectric side conductors 15 to 18, and the dielectric bottom conductors 19 and 20 were formed of silver paste or sintered silver paste containing glass frit. Therefore, the conductor resistance is thick (and the insertion loss of the dielectric filter due to this is 3.0 dB).

そこで、本発明は前記従来技術の問題を解決でき、挿入
損失の小さな誘電体フィルタを提供することを目的とす
る。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a dielectric filter that can solve the problems of the prior art and has low insertion loss.

(課題を解決するための手段) 本発明は前記問題点を解決するために、誘電体フィルタ
を構成する胴体部において、該導体部を組成式がLn+
 Baz Oxで表わされる物質であって、該組成式の
Lnが元素Y、Pr、Nd。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides that, in the body portion constituting the dielectric filter, the conductor portion has a compositional formula of Ln+
A substance represented by Baz Ox, in which Ln in the composition formula is the element Y, Pr, or Nd.

Sm、Eu、Gd、Dy、Ho、Er、Tm。Sm, Eu, Gd, Dy, Ho, Er, Tm.

Yb及びLuより成る部類中から選択された元素であり
、該物質が液体窒素温度で超電導状態を示すセラミック
スで形成されたことを特徴とする。
It is an element selected from the group consisting of Yb and Lu, and is characterized in that the substance is formed of a ceramic that exhibits a superconducting state at liquid nitrogen temperature.

(イ乍用) 本発明によれば、以上のように誘電体フィルタを構成し
たので、誘電体を構成する胴体部は組成式がLrz B
ag Oxで表わされる物質で、あって、該組成式のL
nが元素Y、Pr、Nd、Sm。
According to the present invention, since the dielectric filter is configured as described above, the body portion constituting the dielectric has a composition formula of Lrz B.
A substance represented by ag Ox, in which L of the compositional formula is
n is an element Y, Pr, Nd, Sm.

Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuよ
り成る部類中から選択された元素であるセラミックスか
ら成る。従って、該誘電体フィルタを液体窒素で冷却す
ると、該導体部の温度は液体窒素温度(77K)付近に
至る。該導体部は、85に〜92にでその電気抵抗が零
になる。そして、挿入損失は従来の3dBから0.7〜
0.8 dBに低減できる。
It is made of ceramic, which is an element selected from the group consisting of Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu. Therefore, when the dielectric filter is cooled with liquid nitrogen, the temperature of the conductor reaches around the liquid nitrogen temperature (77K). The electrical resistance of the conductor portion becomes zero between 85 and 92. And the insertion loss is 0.7 ~ 0.7 dB compared to the conventional 3 dB.
It can be reduced to 0.8 dB.

従って、本発明は前記問題点を除去でき、挿入損失が小
さな誘電体フィルタを提供することができる。
Therefore, the present invention can eliminate the above problems and provide a dielectric filter with low insertion loss.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の誘電体フィルタの一構成例を示す図で
あり、第3図は第1図のAA断面図である。第1図、第
3図において、1は入力端子、2は出力端子である。2
3は入力段の誘電体共振器、24は出力段の誘電体共振
器、25.26は第1の誘電体21内に形成する段間の
誘電体共振器、27.28は第2の誘電体22内に形成
する段間の誘電体共振器であって、各々の誘電体共振器
の中心導体には高温超電導材料が用いられる。29〜3
4は導体パターンであり、前記各誘電体共振器の中心導
体から延長して誘電体上面に形成され、高温超電導材料
が用いられる。35〜38は第1及び第2の誘電体21
゜22の側面導体、39.40は誘電体底面の導体であ
り、いずれも高温超電導材料が用いられる。急峻な特性
を得るべ(複数の誘電体共振器によりフィルタが構成さ
れている。
FIG. 1 is a diagram showing an example of the configuration of a dielectric filter of the present invention, and FIG. 3 is a cross-sectional view taken along line AA in FIG. 1. In FIGS. 1 and 3, 1 is an input terminal, and 2 is an output terminal. 2
3 is an input stage dielectric resonator, 24 is an output stage dielectric resonator, 25.26 is an interstage dielectric resonator formed within the first dielectric 21, and 27.28 is a second dielectric resonator. A high temperature superconducting material is used for the center conductor of each dielectric resonator between the stages formed in the body 22. 29-3
A conductor pattern 4 is formed on the upper surface of the dielectric by extending from the center conductor of each dielectric resonator, and is made of a high-temperature superconducting material. 35 to 38 are first and second dielectrics 21
The side conductor at 22 and the conductor at 39.40 are at the bottom of the dielectric, both of which are made of high temperature superconducting material. To obtain steep characteristics (a filter is composed of a plurality of dielectric resonators).

次に、誘電体フィルタを冷却する構成を示す第4図を用
いて誘電体フィルタの説明をする。1は入力端子、2は
出力端子、21.22は誘電体共振器、51は冷却容器
、52は液体窒素供給装置、54は液体窒素、55は液
体窒素と冷却器の接続管である。この冷却装置により、
各誘電体共振器23〜28の中心導体、導体パターン2
9〜34、側面導体35〜38、底面導体39.40は
液体窒素温度(77K)付近まで冷却される。
Next, the dielectric filter will be explained using FIG. 4, which shows a configuration for cooling the dielectric filter. 1 is an input terminal, 2 is an output terminal, 21.22 is a dielectric resonator, 51 is a cooling container, 52 is a liquid nitrogen supply device, 54 is liquid nitrogen, and 55 is a connecting pipe between the liquid nitrogen and the cooler. With this cooling device,
Center conductor of each dielectric resonator 23 to 28, conductor pattern 2
9 to 34, side conductors 35 to 38, and bottom conductors 39 and 40 are cooled to around liquid nitrogen temperature (77K).

次に、高温超電導材料を用いた誘電体共振器の中心導体
、導体パターン、側面導体、底面導体の製造について説
明する。
Next, manufacturing of the center conductor, conductor pattern, side conductors, and bottom conductor of a dielectric resonator using high-temperature superconducting material will be explained.

高温超電導材料として、一般式L n 1B aZCu
30x: Ln=Y、Pr、Nd、Sm、Eu。
As a high temperature superconducting material, the general formula L n 1B aZCu
30x: Ln=Y, Pr, Nd, Sm, Eu.

Gd、Dy、Ho、Er、Tm、Yb、Luと表わせる
高温超電導セラミックスを用いる。ここではLn=Ho
の場合について説明する。原料として高純度(99,9
%)のHO20s 、BacOs lCuOをメノウ乳
針で混合し、900℃で10時間仮焼する。これを粉砕
後、バインダ、溶剤を加えて十分に混練し、スクリーン
印刷用のペーストを作成する。導体パターン、側面導体
、底面導体はスクリーン印刷法により膜形成を行なう。
High-temperature superconducting ceramics represented by Gd, Dy, Ho, Er, Tm, Yb, and Lu are used. Here Ln=Ho
The case will be explained below. High purity (99,9
%) of HO20s and BacOs1CuO were mixed with an agate needle and calcined at 900°C for 10 hours. After pulverizing this, a binder and a solvent are added and thoroughly kneaded to create a paste for screen printing. The conductor pattern, side conductor, and bottom conductor are formed by screen printing.

中心導体は綿棒にペーストを含浸し、数回塗布し膜形成
を行なう。その後、これらを950℃で20時間アニル
する。
For the center conductor, a cotton swab is impregnated with paste and applied several times to form a film. These are then annealed at 950° C. for 20 hours.

このようにして製造された各誘電体共振器23〜28の
中心導体、導体パターン29〜34、側面導体35〜3
8、底面導体39.40の電気抵抗が零となる温度は9
2にであった。Ln=Ho以外の場合も製法、焼成条件
は同様にして製造されつる。その時の導体の電気抵抗が
零となる温度は85に〜92Kを示した。即ち、いずれ
も液体窒素温度で電気抵抗は零となった。
The center conductor, conductor patterns 29 to 34, and side conductors 35 to 3 of each dielectric resonator 23 to 28 manufactured in this way
8. The temperature at which the electrical resistance of the bottom conductor 39.40 becomes zero is 9
It was on 2nd. In cases other than Ln=Ho, the manufacturing method and firing conditions are the same. At that time, the temperature at which the electrical resistance of the conductor became zero was 85 to 92K. That is, in both cases, the electrical resistance became zero at liquid nitrogen temperature.

次にこの誘電体フィルタの動作について説明する。第1
図において、入力端子1より印加された電気信号は一体
構造の第1の誘電体(21)内に設けられた入力段の誘
電体共振器23により電磁界を発生し、この電磁界は隣
接の誘電体共振器25の中心導体へ伝えられる。電磁界
は順次、誘電体共振器26、27へと伝えられ、電気信
号を誘電体フィルタの出力に設けられた負荷へ電気エネ
ルギーを供紬する。
Next, the operation of this dielectric filter will be explained. 1st
In the figure, an electric signal applied from an input terminal 1 generates an electromagnetic field by an input-stage dielectric resonator 23 provided in a first dielectric (21) having an integral structure, and this electromagnetic field The signal is transmitted to the center conductor of the dielectric resonator 25. The electromagnetic field is sequentially transmitted to the dielectric resonators 26, 27, which provide an electrical signal and provide electrical energy to a load provided at the output of the dielectric filter.

ここで、誘電体フィルタの挿入損失について説明する。Here, the insertion loss of the dielectric filter will be explained.

この挿入損失は誘電体共振器の無負荷Qによって定まる
。誘電体共振器の無負荷Q(共振器)は、誘電体セラミ
ックス材料の無負荷Q(材料)と導体抵抗の無負荷Q(
導体)からなり、(1)式のように表わされる。
This insertion loss is determined by the no-load Q of the dielectric resonator. The unloaded Q of the dielectric resonator (resonator) is the unloaded Q of the dielectric ceramic material (material) and the unloaded Q of the conductor resistance (
conductor) and is expressed as in equation (1).

・ ・ ・ (1) ここで、Q = 1 /lanδ(tanδ:誘電正接
)であるから(1)式は tanδ(共振器)・tanδ(材料) +tanδ(
導体)・・・ (2) となる。ここで導体損失を表わすtanδ(導体)は、
導体の厚さと電気抵抗によって定まり、表波抵抗を考慮
した厚さであれば、電気抵抗によって定まる。超電導状
態では電気抵抗が零となり、電気抵抗が零であればその
無負荷Q(導体)が無限大となり、tanδ(導体)=
0となる。よって(2)式は tanδ(共振器)・tanδ(材料)  ・・・ (
3)となる。即ち Q(共振器)=Q(材料)    ・・・ (4)とな
る。
・ ・ ・ (1) Here, since Q = 1 /lan δ (tan δ: dielectric loss tangent), equation (1) is tan δ (resonator), tan δ (material) + tan δ (
conductor)... (2). Here, tan δ (conductor), which represents conductor loss, is
It is determined by the thickness and electrical resistance of the conductor, and if the thickness takes surface wave resistance into consideration, it is determined by the electrical resistance. In the superconducting state, the electrical resistance is zero, and if the electrical resistance is zero, the no-load Q (conductor) becomes infinite, and tan δ (conductor) =
It becomes 0. Therefore, equation (2) is tanδ (resonator), tanδ (material)... (
3). That is, Q (resonator) = Q (material) (4).

現在実用化されているセラミックス材料の無負荷QはI
GHzで5.000〜20.000である。よって誘電
体共振器の無負荷Qは5.000〜20.000となり
、現在用いられている誘電体共振器の無負荷Q 500
〜1,500に比較して大きく向上する。
The unloaded Q of ceramic materials currently in practical use is I
It is 5.000 to 20.000 in GHz. Therefore, the no-load Q of the dielectric resonator is 5.000 to 20.000, and the no-load Q of the dielectric resonator currently used is 500.
〜1,500, which is a significant improvement.

この結果、誘電体フィルタの挿入損失は現在の3.0d
Bから0.7〜0.8dBに低減させることができた。
As a result, the insertion loss of the dielectric filter is now 3.0d.
B could be reduced to 0.7 to 0.8 dB.

(発明の効果) 以上、詳細に説明したように本発明によれば、誘電体フ
ィルタを構成する導体部を液体窒素温度で超電導状態を
示すセラミックスで形成したので、誘電体フィルタの挿
入損失を従来技術の誘電体フィルタの挿入損失3dBか
ら0.7〜0.8dBにでき、大きく減少させる効果が
期待できる。
(Effects of the Invention) As described in detail above, according to the present invention, the conductor portion constituting the dielectric filter is formed of ceramics that exhibits a superconducting state at liquid nitrogen temperature. The insertion loss of the conventional dielectric filter can be reduced from 3 dB to 0.7 to 0.8 dB, and a significant reduction effect can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の誘電体フィルタの一構成例を示す図、
第2図は従来の誘電体フィルタの一構成例を示す図、第
3図は第1図(第2図)のAA断面図、第4図は誘電体
フィルタを冷却する構成を示す図である。 1・・・入力端子、    2・・・出力端子、21・
・・第1の誘電体、  22・・・第2の誘電体、23
、24.25.26.27.28・・・中心導体に高温
超電導材料を用いた誘電体共振器、 29、30.31.32.33.34・・・高温超電導
材料を用いた導体パターン、 35、36.37.38・・・高温超電導材料を用いた
誘電体の側面導体、 39.40・・・高温超電導材料を用いた誘電体の底面
の導体。
FIG. 1 is a diagram showing an example of the configuration of a dielectric filter of the present invention,
FIG. 2 is a diagram showing an example of the configuration of a conventional dielectric filter, FIG. 3 is a cross-sectional view taken along the line AA in FIG. 1 (FIG. 2), and FIG. 4 is a diagram showing a configuration for cooling the dielectric filter. . 1...Input terminal, 2...Output terminal, 21.
...first dielectric, 22...second dielectric, 23
, 24.25.26.27.28... Dielectric resonator using high temperature superconducting material as the center conductor, 29, 30.31.32.33.34... Conductor pattern using high temperature superconducting material, 35, 36.37.38... Dielectric side conductor using high temperature superconducting material, 39.40... Dielectric bottom conductor using high temperature superconducting material.

Claims (1)

【特許請求の範囲】  誘電体共振器の中心導体と、 該誘電体共振器の中心導体から延長して誘電体上面に形
成される導体パターンと、 誘電体の側面導体と、 誘電体の底面導体とから成る誘電対フィルタの導体部に
おいて、 該導体部を、組成式がLn_1Ba_2O_xで表わさ
れる物質であって、該組成式中のLnが元素Y,Pr,
Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Y
b及びLuより成る部類中から選択された元素であり、
該物質が液体窒素温度で超電導状態を示すセラミックス
で形成したことを特徴とする誘電体フィルタ。
[Claims] A center conductor of a dielectric resonator, a conductor pattern extending from the center conductor of the dielectric resonator and formed on the top surface of the dielectric, a side conductor of the dielectric, and a bottom conductor of the dielectric. In the conductor portion of the dielectric pair filter, the conductor portion is made of a substance whose compositional formula is represented by Ln_1Ba_2O_x, in which Ln is an element Y, Pr,
Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Y
an element selected from the group consisting of b and Lu;
1. A dielectric filter characterized in that the substance is made of ceramic that exhibits a superconducting state at liquid nitrogen temperature.
JP63207270A 1988-08-23 1988-08-23 Dielectric filter Pending JPH0256977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207270A JPH0256977A (en) 1988-08-23 1988-08-23 Dielectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207270A JPH0256977A (en) 1988-08-23 1988-08-23 Dielectric filter

Publications (1)

Publication Number Publication Date
JPH0256977A true JPH0256977A (en) 1990-02-26

Family

ID=16537014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207270A Pending JPH0256977A (en) 1988-08-23 1988-08-23 Dielectric filter

Country Status (1)

Country Link
JP (1) JPH0256977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298404A (en) * 1996-05-01 1997-11-18 Nec Corp Coaxial resonator filter
JP2004296454A (en) * 2003-02-07 2004-10-21 Murata Mfg Co Ltd Method of manufacturing superconducting element, and superconducting element
US7174197B2 (en) 1999-02-26 2007-02-06 Fujitsu Limited Superconductive filter module, superconductive filter assembly and heat insulating type coaxial cable
US7844916B2 (en) 2004-12-03 2010-11-30 Sony Computer Entertainment Inc. Multimedia reproducing apparatus and menu screen display method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298404A (en) * 1996-05-01 1997-11-18 Nec Corp Coaxial resonator filter
US7174197B2 (en) 1999-02-26 2007-02-06 Fujitsu Limited Superconductive filter module, superconductive filter assembly and heat insulating type coaxial cable
JP2004296454A (en) * 2003-02-07 2004-10-21 Murata Mfg Co Ltd Method of manufacturing superconducting element, and superconducting element
JP4543610B2 (en) * 2003-02-07 2010-09-15 株式会社村田製作所 Superconducting element manufacturing method and superconducting element
US7844916B2 (en) 2004-12-03 2010-11-30 Sony Computer Entertainment Inc. Multimedia reproducing apparatus and menu screen display method

Similar Documents

Publication Publication Date Title
KR100326951B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor
JP3223199B2 (en) Method of manufacturing multilayer ceramic component and multilayer ceramic component
KR920018788A (en) Magnetic Capacitor and Manufacturing Method Thereof
US6624713B2 (en) Magnetic material for high frequencies and high-frequency circuit component
JPH0256977A (en) Dielectric filter
DE69909000T2 (en) Dielectric resonator, dielectric filter, dielectric duplexer and communication device
JP2851966B2 (en) Multilayer dielectric filter
JP2781503B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
Longtu et al. Lead zirconate titanate ceramics and monolithic piezoelectric transformer of low firing temperature
Herbert Thin ceramic dielectrics combined with nickel electrodes
KR20020033057A (en) Superconductive component, method for manufacturing the same, and dielectric resonator
JP3457882B2 (en) Multilayer ceramic capacitors
CN111384501A (en) Dielectric filter, method for preparing dielectric filter and communication equipment
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
US5569632A (en) Compositions of high frequency dielectrics
JPS63293910A (en) Ceramic capacitor and manufacture thereof
JP2001085913A (en) Dielectric resonator, dielectric filter, duplexer and communication unit
JPS61269804A (en) Manufacture of dielectric film
JP3321980B2 (en) Dielectric porcelain composition and laminated dielectric component using this dielectric porcelain composition
JPH06291506A (en) Lamination type dielectric filter
Tatekawa et al. Surface resistance of screen-printed Bi2223 thick films on Ag and dielectric ceramic substrates
EP0485806B1 (en) Superconducting microwave parts
JPH05243809A (en) Layered type dielectric filter
US5998323A (en) High frequency dielectric material
CN111384512A (en) Dielectric filter, method for preparing dielectric filter and communication equipment