JPH0256897B2 - - Google Patents

Info

Publication number
JPH0256897B2
JPH0256897B2 JP58014632A JP1463283A JPH0256897B2 JP H0256897 B2 JPH0256897 B2 JP H0256897B2 JP 58014632 A JP58014632 A JP 58014632A JP 1463283 A JP1463283 A JP 1463283A JP H0256897 B2 JPH0256897 B2 JP H0256897B2
Authority
JP
Japan
Prior art keywords
water
blood
insoluble
soluble
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58014632A
Other languages
Japanese (ja)
Other versions
JPS59141950A (en
Inventor
Kenji Iiyama
Chi Batsuku Chuetsuto Ramu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58014632A priority Critical patent/JPS59141950A/en
Publication of JPS59141950A publication Critical patent/JPS59141950A/en
Publication of JPH0256897B2 publication Critical patent/JPH0256897B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、主として針葉樹又は広葉樹材の木粉
および高歩留低品位のパルプを原料として、高い
吸水、吸液性、特に高いヘモグロビン吸収性を有
する炭水化物誘導体吸収性素材製造に関するもの
である。 従来より、液体吸収性素材として脱脂綿、不織
布、フラツフパルプなどが、生理用品、衛生材
料、医用材料等に使用されてきた。また近年にい
たつては、高アルフアパルプ(エーテル・グレー
ド)を原料とする水可溶カルボキシメチルセルロ
ース(以下CMCと略す)を酸又はホルマリンで
架橋させ水不溶化したものや、アルカリ金属塩と
し、さらに部分架橋したものが、高い吸液性を有
する素材として開発されてきた。 しかるに、これらの方法は高品位のセルロース
原料を使用していること、水可溶の誘導体を水不
溶化するために、化学薬品を用いて架橋反応しな
ければならないこと、吸液特性を高めるためには
カルボキシメチル基(以下CM基と略す)の置換
度(グルコース単位当りの置換度で示す)は高い
方がよいが、できるだけ温和な条件で架橋するた
めにCM基の置換度を充分に高くすることができ
ないなどの問題点を有している。なおカルボキシ
メチル化(以下CM化と略す)したセルロースの
場合、CM基の置換度が0.4以下では水不溶である
が、得られた吸収性素材が充分な吸収特性を示さ
ない。 発明者は従来から木材を構成する主要成分であ
るセルロース、ヘミセルロースおよびリグニンの
性状を検討してきたが、同一条件下のそれらの
CM化において、ヘミセルロースのCM基の置換
度はセルロースと同程度又はそれ以上であり、容
易に水可溶な状態になるものの、リグニンの置換
度は低く、しかも水不溶であることを見出した。
この事実とともに木材細胞の微細構造に着目し
た。すなわち針葉樹ではヘミセルロースの大部分
とセリロースの一部が、また広葉樹ではセルロー
スおよびヘミセルロースの一部が、リグニンの三
次元網目構造と物理的に強くからみあつており、
リグニンをいわば架橋剤のように利用することに
よつて、架橋反応など不溶化処理をいつさい行わ
ないで、CM基の置換度が高い、水不溶の、特に
血液吸収性に優れた吸収性素材を得ることができ
ると考え、本発明に到達した。 すなわち発明者は木粉および市販の高歩留パル
プを原料として、溶媒法でCM化し、カルボキシ
ル基量が4.2から5.2ミリ当量/グラムと高いCM
化木粉およびパルプを得た。この試料を室温で水
抽出し、水可溶部(以下Fr.Siと略す)と不溶部
(以下Fr.I1と略す)とにわけた。Fr.I1の割合は、
高歩留パルプを原料とした場合にはCM化パルプ
の70から80%、針葉樹木粉では約50%、広葉樹木
粉では約25%であつた。Fr.I1中のCM基量は、例
えばリフアイナーメカニカルパルプを55℃、3時
間、溶媒法でCM化した試料の場合、4.52ミリ当
量/グラムであり、水抽出前の試料のそれ(4.55
ミリ当量/グラム)にほぼ等しい高い値が得ら
れ、置換度だけから考えればすべて水可溶となる
はずである。ところがかなりの部分が水不溶で残
る。その理由について考察する。 リグニンを選択的に分解するオゾン又は亜塩素
酸ソーダでFr.I1を処理すると反応時間の進行に
ともなつて水可溶となり、ついにはすべて水可溶
となる。このことから木材組成中においてそもそ
も三次元網目構造を有するリグニンが、本来なら
水にとけてしまうCM化セルロース(以下CMC
と略す)およびCM化ヘミセルロース(以下
CMHと略す)と強固にからみあい、不溶化させ
ていると結論される。すなわち木材中にもともと
存在するリグニンをCM化炭水化物の不溶化に積
極的に利用しているのである。 なお、それぞれの原料からのFr.S1およびFr.I1
の成分組成を検討したところ、針葉樹木粉および
高歩留パルプのFr.S1は主にCMCであり、CMH
の混入は少なく、CMHの大部分はそれらのFr.I1
にとどまつている。CMHは膨潤性に富んでいる
が、それを不溶部Fr.I1に多量に残存させている
ことは、従来利用されてこなかつた有機原料を積
極的に、しかもその優れた特性を生して利用して
いることになり、このことが本発明の大きな特徴
である。 以上の方法では、部分的に水可溶部(Fr.S1
が生ずる。Fr.S1は1%水溶液で40センチポイズ
の粘性を有しており、そのままCMCとして利用
しうることはいうまでもない。しかし各原料を
CM化した後、水抽出前にエピクロルヒドリンに
より、温和な条件(CM化物100グラムに対して
エピクロルヒドリン3gを加え、55℃で1時間反
応)で架橋すると、Fr.S1はほぼなくなり、ほと
んどすべてが水不溶(以下Fr.CL−Iと略す)と
なつて、吸収性素材の収率を増加させることがで
きる。 またFr.I1を0℃で種々の時間(15〜150分間)
オゾン処理又は70℃で種々の時間(15〜150分間)
亜塩素酸ソーダで段階的に処理すると、三次元網
目構造をとつていたリグニンが段階的に分解さ
れ、一部水可溶となり、遂には全部水可溶化す
る。(以下Fr.S2と略す。)その途中段階で得られ
る水不溶部(以下Fr.I2と略す)も水膨潤性に極
めて富む、特徴的な吸収性素材である。 次に以上のようにして得たFr.I1,Fr.CL―Iお
よびFr.I2の吸液特性についてのべる。 血液吸収特性の測定は次のように行つた。 試験に供した血液は、新鮮な牛血であつて、牛
血100mlに対し、3.8%クエン酸ソーダ水溶液10ml
を添加した。血液は採血後3時間以内に使用する
ものとし、試験は室温で行つた。血液の吸収速度
については公開特許公報(A)(昭和56−28755)に
基づいて行つた。すなわち、紙の上に試料0.3グ
ラムを直径25mmの円形状に拡げ、その上にポリエ
ステル製不織布を被せて、不織布の上から血液
0.5mlを滴下、それが吸収されるに要する時間を
測定した。その結果、いずれの試料においても、
1分以内に血液は吸収され、血液の拡がりも少な
く、加圧しても滲出はまつたく起らなかつた。な
お同時に対照として脱脂綿および市販の生理用ナ
プキンを用いたが、その両者とも血液吸収速度は
早いが、脱脂綿の場合は加圧により滲出し、また
市販生理用ナプキンの場合は血液の拡がりが大で
あり、これらに比べて、本発明の吸収生素材はい
ずれも極めて優れていた。 次に血液保持特性を以下のように測定し、保血
率として表示した。すなわち試料0.3グラムに血
液30ml添加して30分間静置し、試料を完全に湿潤
させた後、湿潤試料を目のあらい綿布を敷いたス
クリーンバスケツトに移して軽く吸引過し、次
いで270〜300Gで1分間脱液し、試験前後の試料
の重量変化より保血率を求めた。なお対照として
脱脂綿および市販生理用ナプキンを試験に供し
た。その結果を表1に示すが、本発明にかかる吸
収性素材は対照試料に比べ、CM基を多量に有し
ているために、保血特性が極めて優れている。ま
た保血率測定後の試料について反射スペクトルを
測定し、吸着成分を検討したところ、本発明の吸
収性素材は対照試料に比べ、410〜420nm付近に
吸収を有する成分の吸収はほぼ同じであるが、
550〜580nm付近に吸収を有するヘモグロビンの
吸収は極めて多いという優れた特徴を示した。 なお保水率および保塩水率については、それぞ
れイオン交換水および生理食塩水を用いて、上述
した保血率測定と同様な条件で測定した。高歩留
パルプからのFr.I1およびFr.CL―Iは対照試料に
比べ保水率および保塩水率が極めて優れている。 次に、Fr.I1,Fr.CL―Iおよびオゾンで10分ま
たは30分処理して得たFr.I2(10)およびFr.I2(30)に
ついて、イオン交換水および生理食塩水中におけ
る24時間浸漬後の膨潤度と、その膨潤試料を
1700G20分間遠心分離して得た液体保持率を測定
した。その結果を表2に示すが、特にFr.I2の膨
潤度は高く、それを遠心分離してもゲル状であり
脱水はできない状態を示した。 以上のように本発明にかかる吸収性素材の吸液
特性は優れているとともに、本吸収性素材の原料
は木粉又は低品位の高歩留パルプであり、従来の
ものに比べて原料コストが安く、また特性の架橋
反応を行わないので製造コストも低くすることが
できる。さらに架橋反応をしないので有害な試薬
を用いていず安全であるとともに、木材の全成分
を、その特徴を生かして利用しており、省資源と
いう点からも優れたものである。
The present invention relates to the production of carbohydrate derivative absorbent materials having high water absorption and liquid absorption properties, particularly high hemoglobin absorption properties, mainly from softwood or hardwood wood flour and high-yield low-grade pulp. BACKGROUND ART Conventionally, absorbent cotton, nonwoven fabrics, flat pulp, and the like have been used as liquid-absorbing materials for sanitary products, sanitary materials, medical materials, and the like. In addition, in recent years, water-soluble carboxymethyl cellulose (hereinafter abbreviated as CMC) made from high alpha pulp (ether grade) has been cross-linked with acid or formalin to make it water-insoluble, and alkali metal salts have been made into Crosslinked materials have been developed as materials with high liquid absorption properties. However, these methods use high-grade cellulose raw materials, require a cross-linking reaction using chemicals to make water-soluble derivatives water-insoluble, and require a cross-linking reaction to improve liquid absorption properties. The higher the degree of substitution (expressed as the degree of substitution per glucose unit) of the carboxymethyl group (hereinafter abbreviated as CM group), the better, but the degree of substitution of the CM group should be sufficiently high in order to crosslink under as mild conditions as possible. It has problems such as not being able to do it. In the case of carboxymethylated (hereinafter abbreviated as CM) cellulose, if the degree of substitution of the CM group is 0.4 or less, it is water-insoluble, but the resulting absorbent material does not exhibit sufficient absorption characteristics. The inventor has previously investigated the properties of cellulose, hemicellulose, and lignin, which are the main components of wood, and has investigated their properties under the same conditions.
During CM conversion, we found that the degree of substitution of the CM group in hemicellulose is the same as or higher than that of cellulose, and it becomes easily water-soluble, but the degree of substitution of lignin is low and, moreover, it is insoluble in water.
Along with this fact, we focused on the fine structure of wood cells. In other words, most of the hemicellulose and part of the cellulose in softwoods, and part of the cellulose and hemicellulose in hardwoods, are physically strongly entangled with the three-dimensional network structure of lignin.
By using lignin as a cross-linking agent, we can create water-insoluble absorbent materials that have a high degree of CM group substitution and are particularly good at absorbing blood, without performing any insolubilization treatment such as cross-linking reactions. The present invention was conceived based on the idea that it could be obtained. In other words, the inventor used wood flour and commercially available high-yield pulp as raw materials to convert them into CM using a solvent method, and created CM with a high carboxyl group content of 4.2 to 5.2 milliequivalents/gram.
Treated wood flour and pulp were obtained. This sample was extracted with water at room temperature and divided into a water-soluble part (hereinafter abbreviated as Fr.Si) and an insoluble part (hereinafter abbreviated as Fr.I 1 ). The proportion of Fr.I 1 is
When high-yield pulp was used as a raw material, it was 70 to 80% of that of CM pulp, about 50% of softwood flour, and about 25% of hardwood flour. The amount of CM groups in Fr.I 1 is, for example, 4.52 milliequivalents/gram in the case of a sample obtained by converting Refiner mechanical pulp into CM by the solvent method at 55°C for 3 hours, and that of the sample before water extraction (4.55
A high value approximately equal to (milliequivalents/gram) was obtained, and considering only the degree of substitution, all should be water soluble. However, a considerable portion remains insoluble in water. Let's consider the reason. When Fr.I 1 is treated with ozone or sodium chlorite, which selectively decomposes lignin, it becomes water-soluble as the reaction time progresses, and eventually becomes completely water-soluble. This means that lignin, which has a three-dimensional network structure in the wood composition, is replaced by CM cellulose (hereinafter referred to as CMC), which normally dissolves in water.
) and CM-modified hemicellulose (hereinafter referred to as
It is concluded that CMH is strongly intertwined with CMH, making it insolubilized. In other words, the lignin that originally exists in wood is actively used to insolubilize CM-formed carbohydrates. In addition, Fr.S 1 and Fr.I 1 from each raw material
When considering the composition of Fr.S 1 in softwood flour and high-yield pulp, it was found that Fr.
The contamination of Fr.I 1 is low, and most of the CMH
remains. CMH has a high swelling property, and leaving a large amount of it in the insoluble part Fr.I 1 allows us to proactively use an organic raw material that has not been used in the past, and to take advantage of its excellent properties. This is a major feature of the present invention. In the above method, the water-soluble part (Fr.S 1 )
occurs. Fr.S 1 has a viscosity of 40 centipoise in a 1% aqueous solution, and it goes without saying that it can be used as is as CMC. However, each raw material
After CM formation and before water extraction, crosslinking with epichlorohydrin under mild conditions (add 3 g of epichlorohydrin to 100 g of CM compound and react at 55°C for 1 hour) almost eliminates Fr. It becomes water insoluble (hereinafter abbreviated as Fr.CL-I) and can increase the yield of absorbent material. Also, Fr.I 1 was incubated at 0℃ for various times (15 to 150 minutes).
Ozone treatment or at 70℃ for various times (15-150 minutes)
When treated in stages with sodium chlorite, the lignin, which had a three-dimensional network structure, is decomposed in stages, becoming partially water-soluble, and finally completely water-soluble. (Hereinafter abbreviated as Fr.S 2. ) The water-insoluble part (hereinafter abbreviated as Fr.I 2 ) obtained in the intermediate stage is also a characteristic absorbent material with extremely high water-swellability. Next, the liquid absorption properties of Fr.I 1 , Fr.CL-I and Fr.I 2 obtained as described above will be described. Blood absorption characteristics were measured as follows. The blood used in the test was fresh bovine blood; 100 ml of bovine blood was mixed with 10 ml of a 3.8% sodium citrate aqueous solution.
was added. Blood was to be used within 3 hours after blood collection, and testing was performed at room temperature. The absorption rate of blood was determined based on the published patent publication (A) (Showa 56-28755). In other words, 0.3 grams of sample was spread out in a circle with a diameter of 25 mm on paper, a polyester non-woven fabric was placed on top of the sample, and blood was poured over the non-woven fabric.
0.5ml was added dropwise and the time required for it to be absorbed was measured. As a result, in all samples,
The blood was absorbed within one minute, there was little blood spreading, and no oozing occurred even when pressure was applied. At the same time, absorbent cotton and a commercially available sanitary napkin were used as a control, but both have a fast blood absorption rate, but in the case of absorbent cotton, blood oozes out when pressure is applied, and in the case of commercially available sanitary napkins, blood spreads considerably. Compared to these, all of the absorbent raw materials of the present invention were extremely superior. Next, blood retention characteristics were measured as follows and expressed as blood retention rate. In other words, 30 ml of blood was added to 0.3 g of a sample, left to stand for 30 minutes to completely wet the sample, and then the wet sample was transferred to a screen basket lined with a coarse cotton cloth, gently suctioned, and then heated at 270 to 300 G. The blood was drained for 1 minute, and the blood retention rate was determined from the change in weight of the sample before and after the test. As a control, absorbent cotton and commercially available sanitary napkins were used in the test. The results are shown in Table 1. Compared to the control sample, the absorbent material according to the present invention has a large amount of CM groups, and therefore has extremely excellent blood retention properties. In addition, when we measured the reflection spectrum of the sample after measuring the blood retention rate and examined the adsorbed components, we found that the absorbent material of the present invention has almost the same absorption of components that have absorption in the vicinity of 410 to 420 nm as compared to the control sample. but,
Hemoglobin, which has absorption in the vicinity of 550 to 580 nm, exhibited an excellent feature of extremely high absorption. Note that the water retention rate and the saline retention rate were measured under the same conditions as in the blood retention rate measurement described above using ion-exchanged water and physiological saline, respectively. Fr.I 1 and Fr.CL-I made from high-yield pulp have extremely superior water retention and salt water retention rates compared to the control sample. Next, Fr.I 2 (10) and Fr.I 2 (30) obtained by treatment with Fr.I 1 , Fr.CL-I and ozone for 10 or 30 minutes were treated with ion exchange water and physiological saline. The degree of swelling after 24-hour immersion in
The liquid retention rate obtained by centrifugation at 1700G for 20 minutes was measured. The results are shown in Table 2, and the degree of swelling of Fr.I 2 was particularly high, and even when it was centrifuged, it remained gel-like and could not be dehydrated. As described above, the absorbent material according to the present invention has excellent liquid absorption properties, and since the raw material for the absorbent material is wood flour or low-grade high-yield pulp, the raw material cost is lower than that of conventional materials. Since it is inexpensive and does not undergo a characteristic crosslinking reaction, manufacturing costs can also be reduced. Furthermore, since it does not undergo a crosslinking reaction, it is safe as it does not use harmful reagents, and it is also excellent in terms of resource conservation, as it utilizes all the components of the wood to its advantage.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 木粉および高歩留パルプをカルボキシメチル
化し、水可溶成分を抽出した後残存した水不溶分
からなる吸収性素材。 2 木粉および高歩留パルプをカルボキシメチル
化した後、つづいて、残存した水酸基を温和な条
件で架橋することによつて得られる吸収性素材。 3 木粉および高歩留パルプをカルボキシメチル
化し、水可溶成分を抽出した後残存した水不溶分
を、オゾン又は亜塩素酸ソーダでリグニンを部分
的に分解処理することによつて得られる吸収性素
材。
[Claims] 1. An absorbent material consisting of water-insoluble components remaining after carboxymethylating wood flour and high-yield pulp and extracting water-soluble components. 2. An absorbent material obtained by carboxymethylating wood flour and high-yield pulp and then crosslinking the remaining hydroxyl groups under mild conditions. 3. Absorption obtained by carboxymethylating wood flour and high-yield pulp, extracting water-soluble components, and partially decomposing the remaining water-insoluble components with ozone or sodium chlorite. sexual material.
JP58014632A 1983-02-02 1983-02-02 Absorbing material based on wood powder and high yield pulp Granted JPS59141950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014632A JPS59141950A (en) 1983-02-02 1983-02-02 Absorbing material based on wood powder and high yield pulp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014632A JPS59141950A (en) 1983-02-02 1983-02-02 Absorbing material based on wood powder and high yield pulp

Publications (2)

Publication Number Publication Date
JPS59141950A JPS59141950A (en) 1984-08-14
JPH0256897B2 true JPH0256897B2 (en) 1990-12-03

Family

ID=11866566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014632A Granted JPS59141950A (en) 1983-02-02 1983-02-02 Absorbing material based on wood powder and high yield pulp

Country Status (1)

Country Link
JP (1) JPS59141950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029381U (en) * 1996-03-25 1996-09-27 ミネベア株式会社 Axial fan motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029381U (en) * 1996-03-25 1996-09-27 ミネベア株式会社 Axial fan motor

Also Published As

Publication number Publication date
JPS59141950A (en) 1984-08-14

Similar Documents

Publication Publication Date Title
US4737582A (en) Absorbent vegetable materials
US3589364A (en) Bibulous cellulosic fibers
US4405324A (en) Absorbent cellulosic structures
US3932209A (en) Low hemicellulose, dry crosslinked cellulosic absorbent materials
Lee et al. Adsorption of cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis
US4296234A (en) Absorbent materials
US20040236016A1 (en) Acidic superabsorbent polysaccharides
JP2877893B2 (en) Longitudinal wicking structure of wet crosslinked cellulose fiber
US20060142560A1 (en) Sulfoalkylated cellulose
JPS5817201B2 (en) Method for producing water-insoluble, fluid-absorbing and retentive carboxyalkylated cellulose materials
CN101284145A (en) Medical dressing and its preparation method and application
JPS60173161A (en) Ph-value control material and its production
JP2005504135A (en) Super absorbent polymer
PT85182B (en) ABSORBENT STRUCTURE CONTAINING INDIVIDUALIZED FIBERS WITH CROSS LINES CHAINS
CN108853570B (en) Hemostatic sponge and preparation method thereof
EP0009977A1 (en) A water-swellable particulate absorbent material and method for producing this material
JPS6247541B2 (en)
BR112019017527B1 (en) PENTOSAN POLYSULFATE, PHARMACEUTICAL COMPOSITION, ANTICOAGULANT, AND USE OF PENTOSAN POLYSULFATE
US4151130A (en) Polymer modified cellulose fibers and method of producing
EP1119378A1 (en) Polysaccharide based absorbent polymer material
CN109453420A (en) Hemostatic composition and its preparation method and application
DE2823757A1 (en) PROCESS FOR THE PRODUCTION OF SWELLABLE, CROSS-LINKED CARBOXY ALKYLCELLULOSE IN FIBER FORM FROM CELLULOSE HYDRATE AND THEIR USE
CN113244442A (en) Application of polyamino cationic compound in preparation of surface procoagulant enhanced hemostatic material
CZ281413B6 (en) Fibrous polysaccharides of cationic nature process of their preparation and use
Norman The biological decomposition of plant materials: The nature and quantity of the furfuraldehyde-yielding substances in straws