JPH0256856B2 - - Google Patents

Info

Publication number
JPH0256856B2
JPH0256856B2 JP20089283A JP20089283A JPH0256856B2 JP H0256856 B2 JPH0256856 B2 JP H0256856B2 JP 20089283 A JP20089283 A JP 20089283A JP 20089283 A JP20089283 A JP 20089283A JP H0256856 B2 JPH0256856 B2 JP H0256856B2
Authority
JP
Japan
Prior art keywords
mosfet
source
series
gate
switch circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20089283A
Other languages
Japanese (ja)
Other versions
JPS6093820A (en
Inventor
Norikazu Tokunaga
Hiroshi Fukui
Kozo Watanabe
Hisao Amano
Masayoshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20089283A priority Critical patent/JPS6093820A/en
Priority to DE8484112922T priority patent/DE3485409D1/en
Priority to US06/665,132 priority patent/US4692643A/en
Priority to EP84112922A priority patent/EP0140349B1/en
Publication of JPS6093820A publication Critical patent/JPS6093820A/en
Publication of JPH0256856B2 publication Critical patent/JPH0256856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体を用いたスイツチ回路に係
り、特にMOSFETを複数個直列にして構成した
スイツチ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a switch circuit using a semiconductor, and particularly to a switch circuit configured by connecting a plurality of MOSFETs in series.

〔発明の背景〕[Background of the invention]

半導体素子の高耐圧化の進展に伴い、高電圧回
路のスイツチにも従来からの真空管に代つて、半
導体素子の直列接続回路に置き換えられてきてい
る。代表的な例は、サイリスタを数百個直列接続
して構成された交換装置であり、電圧耐量は
250kV、電流は1.5kAの高電圧スイツチが実現さ
れている。しかし、サイリスタはしや断機能を有
さないため、しや断機能を要す高電圧スイツチ回
路には依然として真空管が用いられている。
As the voltage resistance of semiconductor devices increases, the conventional vacuum tubes are being replaced with series-connected circuits of semiconductor devices in high-voltage circuit switches. A typical example is a switching device consisting of several hundred thyristors connected in series, and the voltage withstand capacity is
A high voltage switch of 250kV and 1.5kA current has been realized. However, since thyristors do not have a damping function, vacuum tubes are still used in high voltage switch circuits that require a damping function.

しや断機能を有す半導体素子の一つには、
MOSFETがある。MOSFETは、電圧制御形素
子のため駆動電力が小さい、電流集中がなく破壊
に強い、キヤリアの蓄積効果がなくスイツチング
特性が優れている等の特長を持つている。しか
し、MOSFET単体では、1kV位までの耐圧のデ
バイスしか製品化されておらず、高耐圧化のため
には複数のMOSFETを直列接続する必要があ
る。
One of the semiconductor elements that has a cutting function is
There is a MOSFET. Because MOSFETs are voltage-controlled elements, their driving power is low, there is no current concentration and they are resistant to destruction, and they have no carrier accumulation effect and have excellent switching characteristics. However, with a single MOSFET, only devices with a withstand voltage of around 1kV have been commercialized, and in order to achieve a high withstand voltage, it is necessary to connect multiple MOSFETs in series.

第1図は、MOSFETをn個直列接続したいわ
ゆるトーテムポール形のスイツチ回路である。
MOSFET1にゲート信号が印加されない時は、1
はしや断状態となり電流は0である。この時、
MOSFETI2〜1oも11に追従して動作ししや断
状態となり、12〜1oのゲートには抵抗21〜2o
で分圧した電圧が加わり、11〜1oのドレイン、
ソース間はほぼ21〜2oで定まる電圧を分相す
る。次に11のゲートに信号を印加すると、11
導通を開始し、同時に12〜1oも11に追従して
導通してスイツチ回路はオン状態となる。このよ
うに第1図のスイツチ回路では、11のゲート信
号の印加、停止を行うことにより、オン、オフの
制御を行うことができる。しかし、第1図に示し
た回路方式では、12〜1oをオンするためには、
2〜1oのゲート、ソース間にオン状態を持続す
るに必要な充分な電圧を印加する必要がある。そ
れゆえ、12,13,…1oのドレイン電位は、1
,13,…1oの駆動に必要な電圧だけ余分に増
大し、オン時にスイツチ回路で持つ電圧が増加す
るいわゆるオン抵抗の増大をまねく。MOSFET
の直列個数を2個とした場合でもオン抵抗が2倍
と増大するので、多数個直列接続した場合にはオ
ン抵抗が非常に大きくなり、オン状態時の電圧降
下の増大によるスイツチ回路損失の増大や負荷回
路に印加する電圧の低下は相当なものとなる。
FIG. 1 shows a so-called totem pole switch circuit in which n MOSFETs are connected in series.
When no gate signal is applied to MOSFET 1 , 1
1 is in a cut-off state and the current is 0. At this time,
MOSFETI 2 ~ 1 o also operates following 1 1 and becomes a sluggish state, and the gates of MOSFETI 2 ~ 1 o are connected to resistors 2 1 ~ 2 o.
The voltage divided by is applied, and the drain of 1 1 to 1 o ,
A voltage determined by approximately 2 1 to 2 o is phase-divided between the sources. Next, when a signal is applied to the gate of 1 1 , 1 1 starts to conduct, and at the same time, 1 2 to 1 o follow 1 1 and become conductive, turning the switch circuit on. In this manner, the switch circuit shown in FIG. 1 can perform on/off control by applying and stopping the 11 gate signals. However, in the circuit system shown in Figure 1, in order to turn on 1 2 to 1 o ,
It is necessary to apply a sufficient voltage between the gate and source of 1 2 to 1 o to maintain the on state. Therefore, the drain potential of 1 2 , 1 3 ,...1 o is 1
2 , 1 3 , . . . 1 o is increased by the voltage necessary to drive the switch circuits, resulting in an increase in the so-called on-resistance, in which the voltage held by the switch circuit increases when it is turned on. MOSFET
Even if the number of switches connected in series is two, the on-resistance will double, so when many switches are connected in series, the on-resistance will become extremely large, and the switch circuit loss will increase due to an increase in the voltage drop during the on-state. The drop in the voltage applied to the load circuit is considerable.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、小電流から大電流まで広い領
域においてオン抵抗が小さく、しかも、安定にオ
ン、オフできるMOSFETを複数個直列にして構
成したスイツチ回路を提供することにある。
An object of the present invention is to provide a switch circuit constructed by connecting a plurality of MOSFETs in series, which has a low on-resistance in a wide range from small currents to large currents, and can stably turn on and off.

〔発明の概要〕[Summary of the invention]

オン抵抗を小さくし、しかも安定にオン、オフ
動作を行うためには、追従して動作する
MOSFETのゲート、ソース間に充分な電圧の印
加と停止を行う必要がある。本発明では直列接続
する各MOSFETにオフ時の回路エネルギーの吸
収、追従して動作するMOSFETの駆動エネルギ
ーの供給、及び追従して動作するMOSFETのゲ
ート、ソース間電荷の引き抜きの作用を合わせ持
たせたコンデンサ回路を備え、従追して動作する
MOSFETの動作を制御することにより、オン抵
抗が小さく、且つ安定にオン、オフ動作できるよ
うにしたMOSFETを用いた追従点弧形のスイツ
チ回路を得ることができた。
In order to reduce on-resistance and perform stable on/off operation, it is necessary to follow the
It is necessary to apply and stop sufficient voltage between the gate and source of the MOSFET. In the present invention, each MOSFET connected in series has the functions of absorbing circuit energy when it is off, supplying drive energy to the MOSFET that operates in accordance with it, and extracting charge between the gate and source of the MOSFET that operates in accordance with it. Equipped with a capacitor circuit that operates according to the
By controlling the operation of the MOSFET, we were able to obtain a follow-up firing type switch circuit using a MOSFET that has low on-resistance and stable on/off operation.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例を示すものである。
この図に於て、直列接続された複数個の
MOSFETのうち、ゲートに与えられる制御信号
により導通が制御されるMOSFET11のソースと
これに直列接続されたMOSFET12のゲート、及
び順次直列接続された各MOSFET12〜1o-1
ソースとこれに接続された各MOSFET12〜1o
のゲート、及び順次直列接続されたMOSFETの
うち最後に位置するMOSFET1oのソース、ドレ
イン間にコンデンサ31〜3oと抵抗41〜4oから
成る直列回路が接続されている。又、ゲートに与
えられる制御信号により導通が制御される
MOSFET11に順次直列接続される各MOSFET
2〜1oのソースゲート間にはツエナーダイオー
ド51〜5o-1が続されている。
FIG. 2 shows an embodiment of the present invention.
In this diagram, multiple
Among the MOSFETs, the source of MOSFET 1 1 whose conduction is controlled by the control signal applied to the gate, the gate of MOSFET 1 2 connected in series to this, and the source of each MOSFET 1 2 to 1 o-1 connected in series in sequence and this Each MOSFET1 2 to 1 o connected to
A series circuit consisting of capacitors 3 1 to 3 o and resistors 4 1 to 4 o is connected between the gate of MOSFET 1 o and the source and drain of the last MOSFET 1 o of the MOSFETs connected in series. Also, conduction is controlled by a control signal given to the gate.
Each MOSFET connected in series to MOSFET1 1
Zener diodes 5 1 to 5 o-1 are connected between the source gates of 1 2 to 1 o .

本実施例の動作は以下のとおりである。
MOSFET11に正のゲート信号が印加されていな
い時には、MOSFET11はしや断状態であり、追
従して動作するMOSFET12〜1oもしや断状態
となりスイツチ回路はオフ状態となり、電源回路
で定まる電圧VSWが印加される。コンデンサ31
〜3oの容量がほぼ等しい場合には、コンデンサ
1〜3oで電圧VSWをほぼ均等に分担し、
MOSFET11〜1oにはコンデンサ31〜3oとほ
ぼ等しい電圧が印加される。次に、MOSFET11
に正のゲート信号を印加すると、MOSFET11
導通を開始する。MOSFET11が導通を開始する
と、コンデンサ31の電荷は抵抗41、MOSFET
2のゲート、ソース及びMOSFET11のドレイ
ン、ソースを介して放電を開始し、MOSFET12
のゲート、ソース間にMOSFET12が動作するに
充分な電圧が印加されMOSFET12は導通を開始
する。なお、ツエナーダイオード51は12のゲー
ト、ソース間電圧は所定値以下に抑えるためのも
のである。MOSFET13〜1oは、MOSFET12
と同様にして順次導通を開始して、スイツチ回路
はオン状態となる。MOSFET11は、オン期間中
正のゲート信号が印加され続けるので充分小さな
オン抵抗でオン状態を持続する。MOSFET12
は、放電回路がないのでツエナーダイオード51
で定まる電圧がゲート、ソース間に印加され続け
るのでMOSFET11と同様に充分小さなオン抵抗
でオン状態を持続する。MOSFET13〜1oは、
MOSFET12と同様にオン状態を持続する。それ
ゆえ、多数個直列接続しても第1図に示した回路
方式のように、ドレイン、ソース間電圧によりゲ
ートに電圧を印加する方式ではないので、オン抵
抗を充分に小さくできる。
The operation of this embodiment is as follows.
When a positive gate signal is not applied to MOSFET 1 1 , MOSFET 1 1 is in an off state, and MOSFETs 1 2 to 1 which follow and operate are in an off state and the switch circuit is in an OFF state, and the voltage determined by the power supply circuit is V SW is applied. capacitor 3 1
If the capacitances of capacitors 3 1 to 3 o are almost equal, the voltage V SW will be shared almost equally between capacitors 3 1 to 3 o ,
A voltage approximately equal to that of the capacitors 3 1 to 3 o is applied to the MOSFETs 1 1 to 1 o . Next, MOSFET1 1
When a positive gate signal is applied to MOSFET 1 1 , MOSFET 1 1 starts conducting. When MOSFET1 1 starts conducting, the charge on capacitor 3 1 is transferred to resistor 4 1 , MOSFET
Discharge begins through the gate and source of MOSFET 1 2 and the drain and source of MOSFET 1 1 , and MOSFET 1 2
A voltage sufficient to operate MOSFET 1 2 is applied between the gate and source of MOSFET 1 2 and MOSFET 1 2 starts conducting. Note that the Zener diode 5 1 is provided to suppress the voltage between the gate and source of 1 2 to a predetermined value or less. MOSFET1 3 ~ 1 o is MOSFET1 2
In the same manner as above, conduction starts sequentially and the switch circuit turns on. Since the positive gate signal continues to be applied to the MOSFET 11 during the on period, the on state is maintained with a sufficiently small on resistance. MOSFET1 2
Since there is no discharge circuit, it is a Zener diode 5 1
Since the voltage determined by continues to be applied between the gate and the source, the on state is maintained with a sufficiently small on resistance like MOSFET 11 . MOSFET1 3 ~ 1 o is
Like MOSFET12 , it remains on. Therefore, even if a large number of transistors are connected in series, the on-resistance can be sufficiently reduced because the circuit system shown in FIG. 1 does not apply a voltage to the gate using the voltage between the drain and the source.

MOSFET11のゲート信号の印加を停止する
と、MOSFET11はしや断状態となり電流は0と
なる。このため、負荷回路電流は、MOSFET12
のソース、ゲート、抵抗41、コンデンサ31を介
して流れMOSFET12のオン時にゲート、ソース
間に与えた電荷を引き抜く。MOSFET12のゲー
ト、ソース間電荷の引き抜きが行われると
MOSFET12がしや断状態となり電流は0とな
る。負荷回路電流は、MOSFET13のソース、ゲ
ート、抵抗42、コンデンサ32、ツエナーダイオ
ード51、抵抗41、コンデンサ31を介して流れ、
MOSFET13のゲート、ソース間電荷の引き抜き
が行われる。MOSFET12と同様にして
MOSFET13がしや断状態となる。順次
MOSFET14,15…1oがしや断状態となりスイ
ツチ回路はオフ状態になる。
When the application of the gate signal to MOSFET 1 1 is stopped, MOSFET 1 1 is suddenly cut off and the current becomes 0. Therefore, the load circuit current is MOSFET1 2
It flows through the source, gate, resistor 4 1 and capacitor 3 1 and extracts the charge applied between the gate and source when the MOSFET 1 2 is turned on. When the charge is extracted between the gate and source of MOSFET 1 and 2 ,
MOSFET 1 2 becomes cut off and the current becomes 0. The load circuit current flows through the source and gate of MOSFET 13 , resistor 42 , capacitor 32 , Zener diode 51 , resistor 41 , and capacitor 31 ,
Charge is extracted between the gate and source of MOSFET13 . In the same way as MOSFET1 2
MOSFETs 1 and 3 become disconnected. sequentially
The MOSFETs 1 4 , 1 5 . . . 1 o are soon cut off, and the switch circuit is turned off.

MOSFETはスイツチング時間が数10ns以下と
非常に短かいため、上記したオン動作、オフ動作
におけるスイツチング時間の差による分担電圧の
不平衡はほとんどない。しかも、コンデンサ31
〜3oによりスイツチオフ時の負荷回路電流の変
化率を低減し、スイツチ回路への過大電圧の印加
を防止できる。
Since the MOSFET has a very short switching time of several tens of nanoseconds or less, there is almost no unbalance in the shared voltage due to the difference in switching time between on and off operations described above. Moreover, capacitor 3 1
~3 o can reduce the rate of change in the load circuit current when the switch is turned off, and prevent excessive voltage from being applied to the switch circuit.

第3図に他の実施例を示す。第2図の実施例と
相違する点は、電源及びMOSFET11〜1oの各
ゲート間に設けられた分圧抵抗61〜6o、ツエナ
ーダイオード71,72を用いた回路でMOSFET
1〜1oの分圧を図るようにしたことである。
MOSFET12のベースとMOSFET11のソース間
及びMOSFET1oのドレインとベース間は
MOSFET12〜1oのベース間とは異なり抵抗と
ツエナーダイオード61,71と6oと72を直列に
接続したのは、スイツチ回路のオン時にコンデン
サ31,3o-1の電荷が放電してMOSFET12,1o
を駆動する充分な電圧が得られなくなることのな
いようにするためである。なお、ツエナーダイオ
ード71,72のツエナー電圧は、ツエナーダイオ
ード51,5o-1と同程度、又は同程度以上に選ば
れる。本実施例によれば、抵抗による分圧回路を
持つため、MOSFET11〜1oやツエナーダイオ
ード51〜5o-1の特性が不平衡していても更に安
定に動作できるという特長を有す。
FIG. 3 shows another embodiment. The difference from the embodiment shown in FIG. 2 is that the circuit uses voltage dividing resistors 6 1 to 6 o provided between the power supply and the gates of MOSFETs 1 1 to 1 o , and Zener diodes 7 1 and 7 2 .
The aim was to achieve a partial pressure of 1 1 to 1 o .
Between the base of MOSFET 1 2 and the source of MOSFET 1 1 , and between the drain and base of MOSFET 1 o .
The reason why resistors and Zener diodes 6 1 , 7 1 and 6 o and 7 2 are connected in series, unlike between the bases of MOSFETs 1 2 to 1 o, is that when the switch circuit is turned on, the charges in capacitors 3 1 , 3 o-1 are Discharge MOSFET1 2 ,1 o
This is to prevent the inability to obtain sufficient voltage to drive the. The Zener voltages of the Zener diodes 7 1 and 7 2 are selected to be about the same or higher than those of the Zener diodes 5 1 and 5 o-1 . According to this embodiment, since it has a voltage dividing circuit using resistors, it has the advantage that it can operate more stably even if the characteristics of the MOSFETs 1 1 to 1 o and the Zener diodes 5 1 to 5 o-1 are unbalanced. .

第4図に更に他の実施例を示す。第3図の実施
例と相違する点は分圧抵抗61〜6oをMOSFET
1〜1oのドレイン、ソース間に接続したことで
ある。第3図の実施例と同様に、MOSFET11
oやツエナーダイオード51〜5o-1の特性が不
平衡しても安定に動作できるという特長を有す
る。
FIG. 4 shows yet another embodiment. The difference from the embodiment shown in Fig. 3 is that the voltage dividing resistors 6 1 to 6 o are replaced with MOSFETs.
1 1 to 1 o are connected between the drain and source. Similar to the embodiment shown in FIG .
1 o and the Zener diodes 5 1 to 5 o-1 are characterized in that they can operate stably even if their characteristics are unbalanced.

第5図は更に他の実施例を示す。第3図の実施
例と相違する点は、ダイオード81〜8oを接続し
たことである。本実施例によれば、更に負荷回路
電流と抵抗4の積で与えられるスイツチ回路オフ
時のステツプ電圧の印加を防止できる。なお、第
2図および第4図の実施例においても、第5図と
同様なダイオードを接続することも可能であり、
オフ時のステツプ電圧の印加が防止できる。
FIG. 5 shows yet another embodiment. The difference from the embodiment shown in FIG. 3 is that diodes 8 1 to 8 o are connected. According to this embodiment, it is further possible to prevent the application of a step voltage given by the product of the load circuit current and the resistor 4 when the switch circuit is turned off. Note that in the embodiments shown in FIGS. 2 and 4, it is also possible to connect diodes similar to those shown in FIG.
Application of step voltage during off-time can be prevented.

なお、ツエナーダイオード51〜5o-1,71
2は同等の機能を有すならば、ツエナーダイオ
ードでなくてもよい。
In addition, Zener diodes 5 1 to 5 o-1 , 7 1 ,
7 2 does not need to be a Zener diode as long as it has an equivalent function.

本発明によれば、小電流から大電流までの広い
領域においてオン抵抗が小さく、安定にオン、オ
フできる小信号駆動のスイツチ回路を実現でき
る。
According to the present invention, it is possible to realize a small signal driven switch circuit that has a low on-resistance and can stably turn on and off in a wide range from small currents to large currents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMOSFETを直列接続して追従点弧す
る方式の従来からのスイツチ回路、第2図は本発
明になる追従点弧方式のスイツチ回路の一実施
例、第3図から第5図は本発明になるスイツチ回
路の他の実施例である。 11〜1o……MOSFET、31〜3o……コンデ
ンサ、41〜4o……抵抗、51〜5o-1……ツエナ
ーダイオード、61〜6o……抵抗、71,72……
ツエナーダイオード、81〜8o……ダイオード。
Figure 1 shows a conventional switch circuit that uses MOSFETs connected in series to perform follow-up firing, Figure 2 shows an example of a follow-up switch circuit according to the present invention, and Figures 3 to 5 show This is another embodiment of the switch circuit according to the present invention. 1 1 ~ 1 o ... MOSFET, 3 1 ~ 3 o ... Capacitor, 4 1 ~ 4 o ... Resistor, 5 1 ~ 5 o-1 ... Zener diode, 6 1 ~ 6 o ... Resistor, 7 1 ,7 2 ...
Zener diode, 8 1 ~ 8 o ... diode.

Claims (1)

【特許請求の範囲】 1 ゲートに与えられる制御信号により導通が制
御されるMOSFETとこのMOSFETのドレイン
側に順次直列に接続され、このMOSFETの動作
に追従して動作する1個あるいは複数個の
MOSFETからなるスイツチ回路に於て、ゲート
に与えられる制御信号により導通が制御される
MOSFETのソースとこれに直列接続された
MOSFETのゲート、及び順次直列接続された各
MOSFETのソースとこれに接続された各
MOSFETのゲート、及び順次直列接続された
MOSFETのうち最後に位置するMOSFETのソ
ース、ドレイン間にコンデンサと抵抗からなる直
列回路を接続し、かつゲートに与えられる制御信
号により導通が制御されるMOSFETに順次直列
接続される各MOSFETのソース、ゲート間にツ
エナーダイオードを接続したことを特徴とするス
イツチ回路。 2 特許請求の範囲第1項に於て、順次直列接続
された各MOSFETのドレインと、この
MOSFETのソースとこれに接続された
MOSFETのゲート間に接続されたコンデンサと
抵抗の直列回路のコンデンサと抵抗の接続点との
間にダイオードを接続したことを特徴とするスイ
ツチ回路。 3 特許請求の範囲第1項および第2項に於て、
更に各MOSFETのソース、ドレイン間に抵抗を
接続したことを特徴とするスイツチ回路。 4 特許請求の範囲第1項および第2項に於て、
ゲートに与えられる制御信号により導通が制御さ
れるMOSFET及びこのMOSFETのドレイン側
に順次直列接続されたMOSFETのうち最後に位
置するMOSFETのソース、ドレイン間にはツエ
ナーダイオードと抵抗との直列回路を、その他の
MOSFETのソース、ドレイン間には抵抗をそれ
ぞれ接続したことを特徴とするスイツチ回路。
[Claims] 1. A MOSFET whose conduction is controlled by a control signal applied to its gate, and one or more MOSFETs that are connected in series to the drain side of this MOSFET and operate in accordance with the operation of this MOSFET.
In a switch circuit consisting of a MOSFET, conduction is controlled by a control signal applied to the gate.
connected in series with the source of the MOSFET.
MOSFET gate, and each serially connected
The source of the MOSFET and each
MOSFET gates, and sequentially connected in series
A series circuit consisting of a capacitor and a resistor is connected between the source and drain of the last MOSFET among the MOSFETs, and the source of each MOSFET is connected in series to the MOSFET whose conduction is controlled by a control signal applied to the gate. A switch circuit characterized by a Zener diode connected between gates. 2 In claim 1, the drain of each MOSFET connected in series and the
MOSFET source and connected to this
A switch circuit characterized in that a diode is connected between the connection point of a capacitor and a resistor in a series circuit of a capacitor and a resistor connected between the gates of a MOSFET. 3 In claims 1 and 2,
This switch circuit also features a resistor connected between the source and drain of each MOSFET. 4 In claims 1 and 2,
A MOSFET whose conduction is controlled by a control signal applied to the gate, and a series circuit of a Zener diode and a resistor are connected between the source and drain of the last MOSFET among the MOSFETs connected in series to the drain side of this MOSFET. Other
A switch circuit characterized by connecting a resistor between the source and drain of the MOSFET.
JP20089283A 1983-10-28 1983-10-28 Switch circuit Granted JPS6093820A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20089283A JPS6093820A (en) 1983-10-28 1983-10-28 Switch circuit
DE8484112922T DE3485409D1 (en) 1983-10-28 1984-10-26 SEMICONDUCTOR SWITCHING DEVICE.
US06/665,132 US4692643A (en) 1983-10-28 1984-10-26 Semiconductor switching device having plural MOSFET's, GTO's or the like connected in series
EP84112922A EP0140349B1 (en) 1983-10-28 1984-10-26 Semiconductor switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20089283A JPS6093820A (en) 1983-10-28 1983-10-28 Switch circuit

Publications (2)

Publication Number Publication Date
JPS6093820A JPS6093820A (en) 1985-05-25
JPH0256856B2 true JPH0256856B2 (en) 1990-12-03

Family

ID=16431983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20089283A Granted JPS6093820A (en) 1983-10-28 1983-10-28 Switch circuit

Country Status (1)

Country Link
JP (1) JPS6093820A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321723A (en) * 1988-06-23 1989-12-27 Mitsubishi Electric Corp Fet series circuit
JP2996817B2 (en) * 1992-11-30 2000-01-11 株式会社東芝 Driver circuit
JPH07115000A (en) * 1993-10-14 1995-05-02 Agency Of Ind Science & Technol Charged particle pulse beam generator
DE102006037336B3 (en) * 2006-08-10 2008-02-07 Semikron Elektronik Gmbh & Co. Kg Level shifter for unidirectional transmission of signals from between circuit paths, has capacitive voltage divider circuit switched between reference potentials of low and high sides, and diodes connected between supply and control inputs
US8866253B2 (en) * 2012-01-31 2014-10-21 Infineon Technologies Dresden Gmbh Semiconductor arrangement with active drift zone
JP5707357B2 (en) * 2012-04-04 2015-04-30 株式会社日立ハイテクノロジーズ Switch circuit, mass spectrometer, and control method of switch circuit
DE112016002954T5 (en) 2015-09-18 2018-03-15 Aisin Aw Co., Ltd. Inverter device for an electrically driven vehicle

Also Published As

Publication number Publication date
JPS6093820A (en) 1985-05-25

Similar Documents

Publication Publication Date Title
US4367421A (en) Biasing methods and circuits for series connected transistor switches
EP0140349B1 (en) Semiconductor switching device
US4429339A (en) AC Transistor switch with overcurrent protection
US4445055A (en) Circuit arrangement for controlling a power field-effect switching transistor
JPH03117211A (en) Drive circuit for semiconductor element
US7605495B2 (en) Dual supply circuit
US4914540A (en) Overvoltage-protective device
US4547686A (en) Hybrid power semiconductor switch
US3287576A (en) Semiconductor switching circuit comprising series-connected gate controlled switches to provide slave control of switches
US5138186A (en) Solid state switch with last state memory
US4117351A (en) Transistor switching circuit
GB2158314A (en) Switching semiconductor devices
JPH0256856B2 (en)
GB1031469A (en) Power control circuits
US3135874A (en) Control circuits for electronic switches
US3414737A (en) Field effect transistor gating circuit
US3299297A (en) Semiconductor switching circuitry
US3927332A (en) Drive circuit for controlling conduction of a semiconductor device
US5027020A (en) Zero voltage switching AC relay circuit
JPS6053488B2 (en) Gate circuit of gate turn-off thyristor
JPS60107917A (en) Compound semiconductor switch
JPH036695B2 (en)
EP0614278B1 (en) Drive circuit for use with voltage-driven semiconductor device
JPS61182324A (en) Gate driver
US3867651A (en) Monostable switching circuit