JPH0256777B2 - - Google Patents

Info

Publication number
JPH0256777B2
JPH0256777B2 JP56108592A JP10859281A JPH0256777B2 JP H0256777 B2 JPH0256777 B2 JP H0256777B2 JP 56108592 A JP56108592 A JP 56108592A JP 10859281 A JP10859281 A JP 10859281A JP H0256777 B2 JPH0256777 B2 JP H0256777B2
Authority
JP
Japan
Prior art keywords
winding
electrode plate
winding core
battery
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56108592A
Other languages
Japanese (ja)
Other versions
JPS5810375A (en
Inventor
Zenichiro Ito
Shigeo Kobayashi
Hidesuke Oguro
Hisaaki Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56108592A priority Critical patent/JPS5810375A/en
Publication of JPS5810375A publication Critical patent/JPS5810375A/en
Publication of JPH0256777B2 publication Critical patent/JPH0256777B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、渦巻き式電極を備えた密閉形電池、
殊に小径小型の電池の組立方式に関するもので、
極板群収容量を減ずることなく組立生産性の向上
と品質の安定化をはかることを目的とする。 従来、密閉形ニツケル・カドミウム蓄電池など
渦巻き式電極を用いる電池では、一般に正・負一
対の薄板状極板を、セパレータを介して、第1図
に示すような巻回軸を有する巻回装置を用いて巻
回し、巻回された極板群は巻回軸から外して電池
容器内に収納していた。第1図Aに示すものは、
軸の片側に巻回される極板あるいはセパレータの
厚さ相当分のスリツトSを縦に設けたもので、B
に示すものは、極板等の厚さ分を差引き2分割し
左右の各回転軸に装着した刃を合わせることによ
りスリツトが形成されるようにした巻回軸を示
し、スリツト部に一方の極板2を挿入挟持して巻
回するものである。 上記の方法で巻回された極板群と電池の正・負
極端子部との接続は、巻回後外周側になる一方の
極板と金属製の電池容器内周とは圧接により、ま
た他方の極板にはリード片を設け、これを金属製
の封口板に溶接などの方法で取付けられる。この
場合、電池容器内に充満するように巻回されて収
納された極板群は、第3図Bの横破断面図に示す
ように、電池容器の中心Q1(実線)と極板群の巻
回の軸心Q2(点線)とは必ず、若干のずれが見ら
れる。この第1図の巻回方式では、巻回装置側に
巻回軸を設けるので生産の場合、巻回軸は連続的
に多数回使用できねばならず作操性も良好でなけ
ればならない。そのためには巻回軸の直径を少な
くとも3mm、できれば4mm以上とする必要があ
る。しかるに直径の小さい、例えば外径12mm程度
以下の小型電池になると、電池の容積当りの容量
を低下させないためには、できる限り巻回軸を細
くしなければならない。従つて、上記した従来の
巻回方式では電池容量を下げるか、組立性を犠牲
にせざるを得なかつた。 また、渦巻き式電極の巻回方式として、第2図
に示すように、電池の封口蓋自体に一方の電極
板のリードを兼ねた電極1Cを設け、これによつ
て巻回する方法が考えられている。 この場合A及びBのように、金属製の封口板1
aの中心部に、一方の極板2あるいはセパレータ
を挟みこむスリツトSを切込んだリード兼巻芯1
cの上端を電気溶接などにより溶着1dされ一体
化されていた。巻芯1cのスリツトSに挟持され
た極板2は、封口板1aあるいはその外周縁に成
型された絶縁ガスケツト部1bを、巻回装置のチ
ヤツクにホールドし回転させることにより、Cに
示すように巻回され、引続きセパレータと他の極
板を挿入して巻回すれば極板群が形成される。こ
の方式では、高さの低い電池にも適用できるが、
巻芯1cが封口蓋の中心に設けられるため、極
板群を電池容器に収納し密封した場合、第3図A
に示すように容器の中心と極板群の中心とはQの
如く一致するが電池容器5の内周と、負極板2、
セパレータ3、正極板4とで構成された極板群の
外周との間には空間部が半周以上の部分に生じ、
容器5の容積利用率を悪くする。一方前記の従来
方式で巻回したものは第3図Bのようになり、両
方を比べて第3図Aの場合、極板長さが短くなつ
ていることがわかる。第2図及び第3図Aのもの
の改良策としては、第3図Bに基づき、巻回され
た極板群の巻芯の軸心が電池容器の中心Qよりず
れる位置を計算し、予じめ巻芯1cを偏差させて
固着しておく方法も考えられるが、各極板、セパ
レータの厚さのバラツキにより巻芯の軸心がずれ
たり、巻回の際の位置決めがむづかしいなど実際
上の問題があつた。 第4図Aに示したものは別の改良案で、細い丸
棒の上部にやゝ径の大きい頭部11aを設けた釘
状の巻芯11(同図B)に、一方の極板2の芯
材、例えば金属多孔板、ネツトなどの先端をスポ
ツト溶接12などで固着し、巻芯の頭部11aを
巻回装置のチヤツクに固定して巻回を行なうもの
で、巻回後極板群を電池容器内に相当するガイド
を通して、金属封口板に巻芯の頭部11aの端面
中央部に設けた小突起部を溶着などの方法で固着
する方法である。この方法だと、極板群の巻回軸
心と、電池容器の中心とが少々ずれても問題はな
く、また比較的細い巻芯でも用い得る利点があ
る。しかし、この方法の場合、巻回する際に頭部
11aのみの片持支持となるので、小径小型の電
池に適用するときは頭部が小さくなるので、強い
支持力が得られず、心振れを生じたり、巻回時に
ゆるみが生じたりしやすくなる。これを改善する
ために同図Cに示すように110の釘状巻芯に延
長軸部110cを設けて反対側の支持に用い、巻
回後切断する方法も考えられるが、小径で高さも
低い極板群のときは工程内で切断するのは容易で
なく、切断してもその細片が極板群内に付着した
り、群を損傷しやすく、後で短絡する原因になり
やすい。 さらに同図に示す110bのようなネツクを入
れて切断を容易にしようとしてもあまり改善でき
なかつた。 また巻芯の表面に極板2の芯材の先端を溶接な
どで同図Dの如く固着するため、組立中に先端角
部2aのバリや折れ曲がりによつてセパレータに
くいこみ、内部短絡の原因になるなどの問題があ
つた。 本発明は上記した従来の改良案の問題点を解消
した電池の組立方式を提供するものである。 第5図は本発明の組立方式により組立てられた
小型電池の一実施例の縦断面を示すものである。
密閉形ニツケル・カドミウム蓄電池、あるいは二
酸化マンガン・リチウム電池に適用した一例を述
べる。図において、21は鋼板にニツケルめつき
またはステンレス鋼板製の多孔板に、カドミウム
活物質あるいはリチウム板を塗着又は圧着した負
極板、23は焼結基板に活物質を含浸させたニツ
ケル正極板、あるいは金属多孔板またはネツトに
結着剤、黒鉛等を混入した活物質を圧着した二酸
化マンガン正極板、22は両極板間に介在させア
ルカリあるいは有機溶媒からなる電解液を吸液保
持するセパレータであり、負極板の先端は後述す
る本発明の方式に用いる巻芯20に挟持され各極
板、セパレータを一体巻回して極板群とされる。
この極板群は、上部に断面逆L字状に折曲された
台座24aを有し上下が開放された金属製の内缶
24内に挿入され、合成樹脂製絶縁ガスケツト部
26aを外周縁に設けた金属製の封口板26を上
面に載置し、電気溶接26bで巻芯の上端と封口
板を溶着一体化する。次いで極板群の底面より電
解液を注入し、電池容器27を底面からかぶせ、
電池容器27の先端27aを内方に折曲して密封
する。図において、25は上部絶縁板、28は下
部絶縁板である。 次に本発明による極板群の巻回方式を詳述す
る。 第6図A,Bは本発明に用いる巻芯20の一例
で、ステンレス鋼板またはニツケルめつき鋼板を
図のように成形したもので、後述の巻回軸のキー
及び、極板を挿入する縦方向のスリツトSを設け
てある。 第7図は上記の巻芯を保持し回転させる巻回装
置の巻回軸部分を示したもので、巻回軸30は胴
部30aの先端に、第6図の巻芯20の内径φ2
に相当する直径を有し、かつその外周に巻芯のス
リツト部の幅に相当するキー部30cを備えたガ
イド軸30bを設けたものである。31は巻芯の
他端を支持する支持ピンであり、その胴部31a
先端に円錐ピン31bを設けてある。 第8図は第7図の巻回装置と、第6図の巻芯を
用いて極板を巻回する状態を示したもので、Aは
上面から、Bは巻回される極板と巻芯の状態を側
面から示したものである。 図において、負極板21は巻芯20のスリツト
Sに挿入挟持され、必要に応じてWで示すように
巻芯20の表面に溶接される。巻芯の左端孔には
支持ピン31の円錐ピン31bの先端が嵌入さ
れ、右端孔からは巻回軸30のガイド軸30b
が、そのキー部30cが巻芯のスリツトSにそう
ように嵌入され、各治具が巻芯から離脱しないよ
う適圧なばねで左右から押すか、あるいは固定ガ
イドにより固定される。上記のように巻回装置に
巻芯が取付けられたら、Bに図示のように巻回軸
30を回転させ、負極板21を半回〜1回巻き付
け、次いでセパレータ22に挟持した正極板23
を図示のように負極板上に載置し、一体に巻回す
る。巻回された極板群は巻回軸から外して内缶2
4の中に収納される。封口板26と負極板との接
続は上記したように、溶接が好ましいが、内缶と
封口板の各中心を一致させるガイドにそわせて上
下スポツト溶接(スタツド溶接)によつて溶着さ
せることにより強固に接続される。このとき、巻
芯の上部先端端を第6図BにおいてCで示すよう
に斜面にカツトして先端面積をやゝ少なくすると
熱集中が図れ、溶接電力が少なく容易に溶接でき
る。 次に直径12mm、高さ10.8mmのリチウム電池を上
述した構成で、本発明の組立方式によるものA及
び従来例として第1図の巻回軸を用いて巻回する
巻芯取外し式の組立によるものをB、第2図の巻
芯兼リードが封口蓋に一体に設けられたもので巻
回したものをC、第4図の極板群を巻回後に頭部
を封口板に溶接する方式の巻芯を用いて組立てる
方式のものをDとして、各1000個の電池を組立
て、組立状況ならびに工程不良等を調べた結果、
第1表のようになつた。
The present invention provides a sealed battery with spiral electrodes,
In particular, it concerns the assembly method of small-diameter and compact batteries.
The purpose is to improve assembly productivity and stabilize quality without reducing the capacity of electrode groups. Conventionally, in batteries using spiral electrodes, such as sealed nickel-cadmium storage batteries, a pair of positive and negative thin plates is generally connected through a separator using a winding device having a winding shaft as shown in Figure 1. The wound electrode plate group was removed from the winding shaft and stored in the battery container. What is shown in Figure 1A is
A vertical slit S corresponding to the thickness of the pole plate or separator wound on one side of the shaft,
The one shown in 2 shows a winding shaft in which a slit is formed by subtracting the thickness of the electrode plate, etc. into two parts and aligning the blades attached to the left and right rotating shafts. The electrode plate 2 is inserted and sandwiched and wound. The connection between the electrode plate group wound in the above method and the positive and negative electrode terminals of the battery is made by pressure contact between one electrode plate, which will be on the outer periphery after winding, and the inner periphery of the metal battery container, and the other. A lead piece is provided on the electrode plate, and this is attached to the metal sealing plate by a method such as welding. In this case, as shown in the cross-sectional view of FIG. 3B, the electrode plate group that is wound and stored so as to fill the battery container is located between the center Q 1 (solid line) of the battery container and the electrode plate group. There is always a slight deviation from the winding axis Q 2 (dotted line). In the winding method shown in FIG. 1, the winding shaft is provided on the winding device side, so in production, the winding shaft must be able to be used continuously many times and must also have good operability. For this purpose, the diameter of the winding shaft must be at least 3 mm, preferably 4 mm or more. However, when it comes to small batteries with a small diameter, for example, an outer diameter of about 12 mm or less, the winding shaft must be made as thin as possible in order not to reduce the capacity per volume of the battery. Therefore, with the conventional winding method described above, the battery capacity has to be reduced or the ease of assembly has been sacrificed. In addition, as a winding method for a spiral electrode, as shown in Fig. 2, an electrode 1C that also serves as a lead for one electrode plate is provided on the battery sealing lid 1 itself, and winding is performed using this. It is being In this case, like A and B, a metal sealing plate 1
A lead/winding core 1 with a slit S cut into the center of a to sandwich one of the electrode plates 2 or a separator.
The upper end of c was integrated by welding 1d by electric welding or the like. The electrode plate 2 held between the slits S of the winding core 1c is formed as shown in C by holding and rotating the sealing plate 1a or the insulating gasket part 1b formed on the outer periphery of the sealing plate 1a in the chuck of the winding device. After being wound, a separator and other electrode plates are inserted and wound to form an electrode plate group. This method can be applied to batteries with a low height, but
Since the winding core 1c is provided at the center of the sealing lid 1 , when the electrode plate group is housed in the battery container and sealed, the shape shown in FIG.
As shown in , the center of the container and the center of the electrode plate group coincide as shown in Q, but the inner circumference of the battery container 5, the negative electrode plate 2,
A space is formed between the outer periphery of the electrode plate group consisting of the separator 3 and the positive electrode plate 4 over half the circumference,
The volume utilization rate of the container 5 is deteriorated. On the other hand, the electrode plate wound using the conventional method is as shown in FIG. 3B, and comparing the two, it can be seen that in the case of FIG. 3A, the length of the electrode plate is shorter. As an improvement to Fig. 2 and Fig. 3 A, based on Fig. 3 B, calculate the position where the axis of the winding core of the wound electrode plate group deviates from the center Q of the battery container, and A method of fixing the winding core 1c with a deviation may be considered, but there are practical problems such as the axis of the winding core being misaligned due to variations in the thickness of each electrode plate and separator, and positioning during winding being difficult. There was a problem. The one shown in FIG. 4A is another improvement plan, in which one pole plate 2 is attached to a nail-shaped winding core 11 (FIG. 4B), which has a slightly larger diameter head 11a at the top of a thin round bar. The tip of the core material, such as a metal perforated plate or net, is fixed by spot welding 12 or the like, and the head 11a of the winding core is fixed to the chuck of the winding device to perform winding. In this method, the group is passed through a guide corresponding to the inside of the battery container, and a small protrusion provided at the center of the end surface of the head 11a of the winding core is fixed to the metal sealing plate by a method such as welding. This method has the advantage that there is no problem even if the winding axis of the electrode plate group and the center of the battery container are slightly misaligned, and that even a relatively thin winding core can be used. However, in this method, when winding, only the head 11a is supported on a cantilever, so when applied to a small battery with a small diameter, the head becomes small, so a strong supporting force cannot be obtained, and vibration occurs. This tends to cause problems or loosening during winding. In order to improve this, it is possible to provide a nail-shaped winding core 110 with an extension shaft 110c to support the opposite side and cut it after winding, as shown in Figure C, but this method is also small in diameter and low in height. In the case of electrode plate groups, it is not easy to cut them during the process, and even if they are cut, the pieces tend to stick inside the electrode plate group, damage the group, and cause a short circuit later. Furthermore, even if a net like 110b shown in the same figure was inserted to make cutting easier, little improvement could be made. In addition, since the tip of the core material of the electrode plate 2 is fixed to the surface of the winding core by welding or the like as shown in Fig. D, burrs or bends in the tip corner 2a may get stuck in the separator during assembly, causing an internal short circuit. There were some problems. The present invention provides a battery assembly method that eliminates the problems of the conventional improvements described above. FIG. 5 shows a longitudinal section of an embodiment of a small battery assembled by the assembly method of the present invention.
An example of application to a sealed nickel cadmium storage battery or a manganese dioxide lithium battery will be described. In the figure, 21 is a negative electrode plate made of a steel plate plated with nickel or a porous stainless steel plate coated with or crimped with a cadmium active material or a lithium plate, 23 is a nickel positive electrode plate made of a sintered substrate impregnated with an active material, Alternatively, a manganese dioxide positive electrode plate is formed by pressing an active material mixed with a binder, graphite, etc. into a metal porous plate or net, and 22 is a separator interposed between the two electrode plates to absorb and retain an electrolyte consisting of an alkali or organic solvent. The tip of the negative electrode plate is held between a winding core 20 used in the method of the present invention to be described later, and each electrode plate and separator are wound together to form an electrode plate group.
This electrode plate group is inserted into a metal inner can 24 which has a pedestal 24a bent in an inverted L-shaped cross section at the top and is open at the top and bottom, and an insulating gasket part 26a made of synthetic resin is attached to the outer periphery. The provided metal sealing plate 26 is placed on the upper surface, and the upper end of the winding core and the sealing plate are welded together by electric welding 26b. Next, the electrolytic solution is injected from the bottom of the electrode plate group, and the battery container 27 is covered from the bottom.
The tip 27a of the battery container 27 is bent inward and sealed. In the figure, 25 is an upper insulating plate, and 28 is a lower insulating plate. Next, the winding method of the electrode plate group according to the present invention will be described in detail. Figures 6A and 6B are examples of the winding core 20 used in the present invention, which is formed from a stainless steel plate or a nickel-plated steel plate as shown in the figure. A slit S in the direction is provided. FIG. 7 shows the winding shaft portion of the winding device that holds and rotates the winding core, and the winding shaft 30 is attached to the tip of the body 30a with the inner diameter φ 2 of the winding core 20 in FIG.
A guide shaft 30b is provided with a diameter corresponding to , and a key portion 30c on its outer periphery corresponding to the width of the slit portion of the winding core. 31 is a support pin that supports the other end of the winding core, and its body portion 31a
A conical pin 31b is provided at the tip. Fig. 8 shows the state in which the electrode plate is wound using the winding device shown in Fig. 7 and the winding core shown in Fig. 6. This is a side view of the state of the core. In the figure, the negative electrode plate 21 is inserted and held in the slit S of the winding core 20 , and is welded to the surface of the winding core 20 as indicated by W if necessary. The tip of the conical pin 31b of the support pin 31 is inserted into the left end hole of the winding core, and the guide shaft 30b of the winding shaft 30 is inserted through the right end hole.
However, the key part 30c is fitted into the slit S of the winding core, and each jig is pressed from the left and right with appropriate pressure springs or fixed with a fixed guide so that it does not separate from the winding core. After the winding core is attached to the winding device as described above, the winding shaft 30 is rotated as shown in the figure B, and the negative electrode plate 21 is wound half a turn to one time, and then the positive electrode plate 21 sandwiched between the separators 22
Place it on the negative electrode plate as shown and wind it together. The wound electrode plate group is removed from the winding shaft and inserted into the inner can 2.
It is stored in 4. As mentioned above, it is preferable to connect the sealing plate 26 and the negative electrode plate by welding, but it is also possible to weld them by vertical spot welding (stud welding) along a guide that aligns the centers of the inner can and the sealing plate. Strongly connected. At this time, if the upper tip end of the winding core is cut into an inclined plane as shown by C in FIG. 6B to reduce the tip area slightly, heat concentration can be achieved and welding can be performed easily with less welding power. Next, lithium batteries with a diameter of 12 mm and a height of 10.8 mm are assembled as described above, by the assembly method A of the present invention and by the conventional example by the core removal type assembly in which the winding shaft is wound using the winding shaft shown in Fig. 1. Type B is the one shown in Figure 2, where the winding core/lead is integrated with the sealing lid, and C is the type shown in Figure 4, in which the head is welded to the sealing plate after winding the electrode plate group. As a result of assembling 1000 batteries each using the winding core D, and examining the assembly situation and process defects, etc.
The result is as shown in Table 1.

【表】 この表からわかるように、本発明による巻芯と
巻芯方式を適用したものは、巻芯の直径を小さく
しても巻回作業性を低下させることなく、電池容
量、内部短絡不良の発生率を含め、総合的に従来
の方式よりすぐれている。 第6図Bに示した巻芯の長さlは当初から電池
組立後に必要な長さにすればよく、後工程で切断
するために生ずる金属粉や極板群の変形による短
絡のおそれが無い。また、極板群を巻回する際、
巻芯20は第8図により先に説明した通り両端を
支持されるので偏心することは無く、巻回装置の
巻回軸30に設けたキー部30cが巻芯のスリツ
トSに、はまり込むため巻回中にスリツプするこ
とが無いなどによつて、常に適正な緊縛度で均一
な極板群構成を行なうことができる。さらに巻芯
20は当初封口板26とは分離されているので、
極板群は第3図Bに横断面で示したように、群の
巻芯と内缶及び電池の中心をずらせることができ
るため、空間部を生ずることなく缶内スペースを
有効に活用することができる。 また本発明では巻芯20のスリツトに一方の極
板の先端を挿入挟持するため第1図及び第4図で
説明した従来例と比較して極板の芯材である多孔
板、ネツトなどの先端からバリ及び離脱したワイ
ヤーひげなどが巻回中に他方の極板に接触して生
ずる内部短絡の発生率を大幅に低減することがで
きる。 以上述べたように、本発明の極板群巻回方式に
よれば、電池容量を確保しつつ、作業性、不良率
などにすぐれた渦巻状極板群を備えた小径小型の
密閉電池の製造法を提供することができる。
[Table] As can be seen from this table, the winding core and winding core method according to the present invention can be applied without reducing the winding workability even if the diameter of the winding core is made small. Overall, this method is superior to conventional methods, including the incidence of The length l of the winding core shown in Figure 6B can be set to the required length from the beginning after battery assembly, and there is no risk of short circuits due to metal powder or deformation of the electrode plate group caused by cutting in the later process. . Also, when winding the electrode plate group,
Since the winding core 20 is supported at both ends as explained earlier in FIG. 8, it does not become eccentric, and the key portion 30c provided on the winding shaft 30 of the winding device fits into the slit S of the winding core. Since there is no slippage during winding, a uniform electrode plate group structure can always be achieved with an appropriate degree of tightness. Furthermore, since the winding core 20 is initially separated from the sealing plate 26,
As shown in the cross section in Figure 3B, the electrode plate group can shift the core of the group and the center of the inner can and battery, making effective use of the space inside the can without creating a void. be able to. In addition, in the present invention, since the tip of one of the electrode plates is inserted and held in the slit of the winding core 20, the porous plate, net, etc. that is the core material of the electrode plate is The incidence of internal short circuits caused by burrs and separated wire whiskers from the tip coming into contact with the other electrode plate during winding can be significantly reduced. As described above, according to the plate group winding method of the present invention, a small-diameter, compact sealed battery with a spiral plate group that secures battery capacity and has excellent workability and defect rate can be manufactured. law can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは従来の巻回装置の巻回軸を示す
斜視図、第2図A,B,C及び第4図A,B,
C,Dは電池内に巻芯を収納する従来の改良案を
示す図、第3図A,Bは巻回され電池容器内に収
納された極板群の横断面図、第5図は本発明の方
式により組立構成した小径小型の電池の縦断面
図、第6図A,Bは本発明で用いた巻芯の例を示
す図、第7図、第8図A,Bは本発明による巻芯
を支持して巻回する巻回装置の一部と、巻回され
る極板の状態を示す図である。 20……巻芯、21……負極板、22……セパ
レータ、23……正極板、24……内缶、26…
…封口板、27……電池容器、30……巻回軸、
30b……ガイド軸、30c……キー部、31…
…支持ピン、S……スリツト。
Fig. 1 A, B is a perspective view showing the winding shaft of a conventional winding device, Fig. 2 A, B, C, and Fig. 4 A, B,
C and D are diagrams showing a conventional improvement plan for housing the winding core in the battery, Figures 3A and B are cross-sectional views of the electrode plate group wound and stored in the battery container, and Figure 5 is a diagram showing the present invention. A vertical cross-sectional view of a small-diameter battery assembled and configured according to the method of the invention, FIGS. 6A and 6B are views showing examples of the winding core used in the invention, and FIGS. 7 and 8A and B are according to the invention. It is a figure which shows a part of the winding device which supports and winds a winding core, and the state of the pole plate wound. 20... Winding core, 21... Negative electrode plate, 22... Separator, 23... Positive electrode plate, 24... Inner can, 26...
... Sealing plate, 27 ... Battery container, 30 ... Winding shaft,
30b...Guide shaft, 30c...Key part, 31...
...Support pin, S...slit.

Claims (1)

【特許請求の範囲】[Claims] 1 正・負の極板とセパレータを巻回した渦巻状
極板群を備えた電池を組み立てるに際し、突き合
わせ金属筒の該突き合わせ部に縦方向のスリツト
を設けた巻芯を用い、前記巻芯のスリツトに一方
の極板の先端部を挿入挟持し、巻芯の一端を支持
ピンで支持し他端を前記スリツト部に嵌入するキ
ー部を有する巻回軸で支持して極板群を巻回した
後、極板群を電池容器内に収納し密閉することを
特徴とする小型密閉電池の組立方法。
1. When assembling a battery equipped with a spiral electrode group in which positive and negative electrode plates and a separator are wound, a winding core with a vertical slit provided in the abutted portion of the butted metal cylinder is used, and the winding core is The tip of one electrode plate is inserted and held in the slit, one end of the winding core is supported by a support pin, and the other end is supported by a winding shaft having a key part that fits into the slit part, and the group of electrode plates is wound. After that, the electrode plate group is housed in a battery container and sealed.
JP56108592A 1981-07-10 1981-07-10 Assembly of miniature enclosed cell Granted JPS5810375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108592A JPS5810375A (en) 1981-07-10 1981-07-10 Assembly of miniature enclosed cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108592A JPS5810375A (en) 1981-07-10 1981-07-10 Assembly of miniature enclosed cell

Publications (2)

Publication Number Publication Date
JPS5810375A JPS5810375A (en) 1983-01-20
JPH0256777B2 true JPH0256777B2 (en) 1990-12-03

Family

ID=14488711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108592A Granted JPS5810375A (en) 1981-07-10 1981-07-10 Assembly of miniature enclosed cell

Country Status (1)

Country Link
JP (1) JPS5810375A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014770A (en) * 1983-07-07 1985-01-25 Furukawa Battery Co Ltd:The Manufacture of tubular battery
JP3941130B2 (en) * 1996-05-17 2007-07-04 宇部興産株式会社 Belt winding device
JP5767115B2 (en) 2009-02-09 2015-08-19 ファルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Button battery and method of manufacturing the same
DE102009060800A1 (en) 2009-06-18 2011-06-09 Varta Microbattery Gmbh Button cell with winding electrode and method for its production
JP6127957B2 (en) * 2013-12-13 2017-05-17 ソニー株式会社 Battery and battery pack
CN104882640B (en) * 2015-05-25 2017-07-28 江苏华东锂电技术研究院有限公司 Safety lithium ion cell

Also Published As

Publication number Publication date
JPS5810375A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
KR100675700B1 (en) Non-water electrolyte secondary battery and manufacturing method thereof
US6190794B1 (en) Prismatic storage battery or cell with coiled winding
JP2001297745A (en) Method of connecting electrode plate with battery terminal and battery thus obtained
JP2007053002A (en) Manufacturing method of battery
US4604333A (en) Non-aqueous electrolyte battery with spiral wound electrodes
JP5538262B2 (en) Method for manufacturing prismatic secondary battery
JPH0256777B2 (en)
JP2000243433A (en) Cylindrical alkaline storage battery and its manufacture
JP7358183B2 (en) Electrochemical cell and its manufacturing method
JP3588264B2 (en) Rechargeable battery
JP3519953B2 (en) Rechargeable battery
JP2000123822A (en) Sealed battery and manufacture thereof
JP3749010B2 (en) Method for producing non-aqueous electrolyte battery
JPS59139555A (en) Cylindrical type nonaqueous electrolyte battery
JP2020068172A (en) Secondary battery
JP3654400B2 (en) Square sealed storage battery
JPH09213361A (en) Manufacture of spiral plate group
JPS59111259A (en) Cylindrical nonaqueous electrolyte battery
JPH0411335Y2 (en)
JP7232229B2 (en) secondary battery
JPH0112789Y2 (en)
JPS62219462A (en) Manufacture of electrode plate for alkaline storage battery
JPH0430773Y2 (en)
JPH10340738A (en) Cylindrical sealed battery and its manufacture
JP2000285899A (en) Metal plate collector and secondary battery using same