JPH0256298B2 - - Google Patents

Info

Publication number
JPH0256298B2
JPH0256298B2 JP61088036A JP8803686A JPH0256298B2 JP H0256298 B2 JPH0256298 B2 JP H0256298B2 JP 61088036 A JP61088036 A JP 61088036A JP 8803686 A JP8803686 A JP 8803686A JP H0256298 B2 JPH0256298 B2 JP H0256298B2
Authority
JP
Japan
Prior art keywords
calcium silicate
manufacturing
asbestos
amount
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61088036A
Other languages
Japanese (ja)
Other versions
JPS62246855A (en
Inventor
Kyonori Yamaguchi
Hisao Masuyama
Yosuke Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP8803686A priority Critical patent/JPS62246855A/en
Publication of JPS62246855A publication Critical patent/JPS62246855A/en
Publication of JPH0256298B2 publication Critical patent/JPH0256298B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、ケイ酸カルシウム質フロア板の製造
法に関するものである。 従来の技術 ケイ酸カルシウム質板状成形体からなるフロア
板は公知であるが、従来のものは、石綿を補強材
に用いることにより床材として必要な強度を確保
したものであつた。 石綿を補強材に用いたケイ酸カルシウム板は、
石綿のすぐれた補強作用により強度と加工性がす
ぐれ、また製造も容易であるが、近年、資源の枯
渇あるいは切断加工時に飛散する石綿による環境
汚染などの問題から石綿の使用が困難になるにつ
れて、石綿を使用せずに、石綿使用品と同等の性
能を有するケイ酸カルシウム系フロア板を製造す
る方法の開発が望まれるようになつた。しかしな
がら、石綿以外の繊維を補強材として用いた場合
は、原料混合物の成形性が悪化するとともに、製
品が切削、穿孔等の二次加工に耐えられず、曲げ
強度も劣るものとなり易い。曲げ強度の不足は鉄
板を裏張りすることで補うことができる。二次加
工性低下の問題を解決することは至難であつた。 発明が解決しようとする問題点 本発明の目的は、石綿を使用せずにケイ酸カル
シウム質フロア板を製造する場合における上述の
ような課題を克服し、強度と二次加工性の両面で
石綿使用品に匹敵するフロア板の製造法を提供す
ることにある。 問題点を解決するための手段 上記目的を達成することに成功した本発明のフ
ロア板製造法は、ケイ酸質原料および石灰質原料
に特定の充填材および補強用繊維を特定量配合し
たケイ酸カルシウム質成形体形成性水性スラリー
を脱水プレス成形したのち蒸熱処理してフロア板
を得るものであつて、充填材として5〜25%の繊
維状ウオラスナイトおよび10〜15%のタルク粉末
を用い、補強用繊維として4〜8%の木材パルプ
を用いることを特徴とする(但し%はスラリー中
の全固形分当りの重量%を意味する)。 以下、この製法を工程順に説明する。 ケイ質原料および石灰質原料としては、各種ケ
イ酸カルシウム成形体の製造に普通に用いられる
もの、例えばケイ石粉末、シリコンダスト、フエ
ロシリコンダスト、消石灰、生石灰、セメント等
を用いることができる。これらケイ酸質原料およ
び石灰質原料は、望ましくはCaO/SiO2がモル
比で1.0±0.2になるような比率で配合する。 繊維状ウオラストナイトとしては、市販品たと
えば米国インターペース社のNYARD−Gやイ
ンドのウオルケムプライベート社のケモリツト
を、そのまま用いることができる。本発明の製法
において、繊維状ウオラストナイトは、成形性を
よくするとともに、一定の添加率までは製品強度
を向上させるのに役立つ。さらに、僅かではある
が二次加工性をよくする作用もある。適量は5〜
25%、特に好ましい量は10〜25%である。 タルク粉末としては、普通に市販されている
325メツシユ篩通過程度(平均粒径10μ程度)の
ものを使うことができる。本発明の製法におい
て、タルク粉末は、そのへき開性に基づき、製品
の切削加工時に生じる割れの伝播を防ぐととも
に、切削面と工具との間で固体潤滑剤として作用
し、快削性を実現する。但し製品強度を低下させ
る傾向があり、効果が顕著で強度低下が許容でき
る10〜15%の範囲で使われる。 補強用の木材パルプとしては、針葉樹の未漂白
クラフトパルプが補強力大であり最も好ましい
が、これらに限られるわけではない。補強用繊維
は、多すぎると製品の密度を低くするとともにケ
イ酸カルシウムの水和反応を阻害して強度低下を
招くもので、その配合率は8%以下、望ましくは
5〜7%とする。木材パルプは単に補強作用がす
ぐれているだけでなく、微粉末状原料が脱水成形
時に漏出するのを抑制する能力がすぐれている。
木材パルプはその一部を他の有機繊維または無機
繊維にかえてもよいが、石綿を併用することはも
ちろん好ましくない。 上記の諸原料は、重量比で約2〜4倍量の水と
よく混合してスラリー化する。 原料スラリーの成形は、脱水プレス法によるケ
イ酸カルシウム系板状成形体成形の常法に従つて
行うことができる。 得られた生成形体は型から取出し、5〜10Kg/
cm2程度の水蒸気により約7〜14時間処理して、含
水ケイ酸カルシウム結晶をマトリツクスとする硬
化物を形成させる。この蒸熱養性のあと乾燥し
て、ケイ酸カルシウム質フロア板を得る。 本発明の製法によるフロア板は、そのままでフ
ロア板として使うこともできるが、製造後または
製造工程の任意の段階で、裏面から鉄板で補強し
ておけば、より高度の耐荷重強度を有するものと
なる。 発明の効果 本発明の製法によれば、石綿を補強に用いたも
のに匹敵する二次加工性を有するケイ酸カルシウ
ム質フロア板を、石綿を全く使用することなしに
容易に製造することが可能である。 したがつて、本発明によれば製造工程および製
品の二次加工工程における石綿粉塵発生が原因の
健康障害のおそれもなくなり、断熱性、制電性、
不燃性など多くの特長を有し歩行感もすぐれてい
るケイ酸カルシウム質フロア板を従来以上に広く
利用することが可能になる。 実施例 以下、実施例を示して本発明を説明する。 実施例 1 ケイ石粉末、消石灰(CaO/SiO2=1)、充填
材および針葉樹末漂白パルプ(全固形分当り6
%)の混合物に3倍量の水を加えて撹拌し、得ら
れた原料スラリーを型枠に入れ、プレス圧5000
Kg/cm2でプレスして厚さ15mmの板状に成形する。
得られた生成生体をオートクレーブに移し、10
Kg/cm2の水蒸気圧下で9時間蒸熱養生した後、
105℃で乾燥する。 上記方法によりフロア板を製造した場合、充填
材として繊維状ウオラストナイト、タルク粉末ま
たはこれらの両方を用いたときの製品物性の変化
は第1表および第2表のとおりで、ウオラストナ
イトとタルクの併用によつて初めて、二次加工性
がよく強度もあるフロア板が得られた。 またの場合、脱水成形工程における漏れによる
粉体原料の損失は1〜3%程度であつたが、木材
パルプのかわりに岩綿、耐アルカリ性ガラス繊
維、レーヨンスフ等を用いると、損失量は5〜12
%であつた(但しウオラストナイトとタルクを10
%ずつ配合した場合)。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a method for manufacturing calcium silicate floorboards. BACKGROUND OF THE INVENTION Floor boards made of calcium silicate plate-shaped molded bodies are known, but the conventional ones have secured the strength necessary for flooring by using asbestos as a reinforcing material. Calcium silicate plates using asbestos as a reinforcing material are
Asbestos has excellent strength and workability due to its excellent reinforcing properties, and is easy to manufacture. However, in recent years, asbestos has become difficult to use due to problems such as resource depletion and environmental pollution caused by asbestos scattered during cutting. It has become desirable to develop a method for manufacturing a calcium silicate floor board that does not use asbestos and has the same performance as products that use asbestos. However, when fibers other than asbestos are used as a reinforcing material, the moldability of the raw material mixture deteriorates, and the product is likely to be unable to withstand secondary processing such as cutting and perforation, and its bending strength is likely to be poor. The lack of bending strength can be compensated for by lining it with a steel plate. It has been extremely difficult to solve the problem of decreased secondary workability. Problems to be Solved by the Invention The purpose of the present invention is to overcome the above-mentioned problems in manufacturing calcium silicate floor boards without using asbestos, and to overcome the problems described above when manufacturing calcium silicate floor boards without using asbestos. The purpose is to provide a method for manufacturing floor boards comparable to used products. Means for Solving the Problems The floor board manufacturing method of the present invention, which has succeeded in achieving the above object, consists of calcium silicate, which is made by blending specific amounts of specific fillers and reinforcing fibers with silicate raw materials and calcareous raw materials. A floor board is obtained by dehydrating and press-molding a quality molded body-forming aqueous slurry and then steaming it, using 5 to 25% fibrous volasnite and 10 to 15% talc powder as fillers for reinforcement. It is characterized by using 4 to 8% of wood pulp as the fiber (where % means weight % based on the total solid content in the slurry). Hereinafter, this manufacturing method will be explained step by step. As the siliceous raw material and calcareous raw material, those commonly used in the production of various calcium silicate molded bodies, such as silica powder, silicon dust, ferrosilicon dust, slaked lime, quicklime, and cement, can be used. These siliceous raw materials and calcareous raw materials are desirably blended in such a ratio that the molar ratio of CaO/SiO 2 is 1.0±0.2. As the fibrous wollastonite, commercially available products such as NYARD-G manufactured by Interpace, Inc. in the United States and Chemorite manufactured by Walchem Private Limited in India can be used as they are. In the production method of the present invention, fibrous wollastonite improves moldability and is useful for improving product strength up to a certain addition rate. Furthermore, it also has the effect of improving secondary processability, albeit slightly. The appropriate amount is 5~
25%, particularly preferred amounts are 10-25%. Talc powder is commonly available commercially.
A material that can pass through a 325 mesh sieve (average particle size of about 10μ) can be used. In the manufacturing method of the present invention, talcum powder prevents the propagation of cracks that occur during cutting of the product due to its cleavability, and also acts as a solid lubricant between the cutting surface and the tool, achieving free machinability. . However, it tends to reduce the strength of the product, so it is used within a range of 10 to 15% where the effect is significant and the strength reduction is acceptable. As the reinforcing wood pulp, unbleached coniferous kraft pulp is most preferable as it has great reinforcing power, but it is not limited to these. If the amount of reinforcing fiber is too large, it will lower the density of the product and inhibit the hydration reaction of calcium silicate, resulting in a decrease in strength, so the blending ratio should be 8% or less, preferably 5 to 7%. Wood pulp not only has an excellent reinforcing effect, but also has an excellent ability to suppress leakage of fine powder raw materials during dehydration and molding.
Although a portion of the wood pulp may be replaced with other organic or inorganic fibers, it is of course not preferable to use asbestos in combination. The above raw materials are thoroughly mixed with water in an amount of about 2 to 4 times by weight to form a slurry. The raw material slurry can be shaped according to the conventional method of forming a calcium silicate plate-shaped body by a dehydrating press method. The obtained green body is taken out from the mold and weighs 5 to 10 kg/
A cured product having a matrix of hydrated calcium silicate crystals is formed by treatment with water vapor of about cm 2 for about 7 to 14 hours. This steam-curing process is followed by drying to obtain a calcium silicate floorboard. The floor board manufactured by the method of the present invention can be used as a floor board as is, but if it is reinforced with a steel plate from the back side after manufacturing or at any stage during the manufacturing process, it will have a higher load-bearing strength. becomes. Effects of the Invention According to the manufacturing method of the present invention, it is possible to easily manufacture calcium silicate floor boards that have secondary processability comparable to those using asbestos for reinforcement, without using asbestos at all. It is. Therefore, according to the present invention, there is no fear of health problems caused by the generation of asbestos dust during the manufacturing process and the secondary processing process of products, and the present invention has improved insulation, antistatic,
Calcium silicate floorboards, which have many features such as non-combustibility and provide an excellent walking feel, can now be used more widely than ever before. Examples Hereinafter, the present invention will be explained with reference to Examples. Example 1 Silica stone powder, slaked lime (CaO/SiO 2 = 1), filler and bleached softwood pulp (6% per total solids)
%), add 3 times the amount of water and stir, put the obtained raw material slurry into a mold and press at a pressure of 5000.
Press at Kg/cm 2 and form into a plate with a thickness of 15 mm.
Transfer the obtained living organism to an autoclave and incubate for 10
After steam curing for 9 hours under water vapor pressure of Kg/ cm2 ,
Dry at 105℃. Tables 1 and 2 show the changes in product physical properties when fibrous wollastonite, talc powder, or both are used as fillers when manufacturing floor boards using the above method. By using talc in combination, a floor board with good secondary processability and strength was obtained for the first time. In this case, the loss of powder raw material due to leakage during the dehydration molding process was about 1 to 3%, but if rock wool, alkali-resistant glass fiber, rayon cloth, etc. were used instead of wood pulp, the loss was about 5 to 3%. 12
% (however, wollastonite and talc were added at 10%).
%).

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ケイ酸質原料、石灰質原料、充填材および補
強用繊維を主材とするケイ酸カルシウム成形体形
成性の水性スラリーを脱水プレス成形したのち蒸
熱処理してケイ酸カルシウム質フロア板を製造す
るに当たり、スラリー中の全固形分基準で5〜25
重量%の繊維状ウオラストナイトおよび10〜15重
量%のタルク粉末を充填材として、また4〜6重
量%の木材パルプを補強用繊維として、それぞれ
用いることを特徴とするケイ酸カルシウム系フロ
ア板の製造法。
1. In producing a calcium silicate floor board by dehydrating press molding an aqueous slurry capable of forming a calcium silicate molded body, which is mainly composed of a silicic acid raw material, a calcareous raw material, a filler, and a reinforcing fiber, and then steaming it. , 5 to 25 based on the total solid content in the slurry
A calcium silicate floor board characterized by using fibrous wollastonite in an amount of 10 to 15% by weight as a filler, and talc powder in an amount of 10 to 15% by weight as a filler, and wood pulp as a reinforcing fiber in an amount of 4 to 6% by weight. manufacturing method.
JP8803686A 1986-04-18 1986-04-18 Manufacture of floor board Granted JPS62246855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8803686A JPS62246855A (en) 1986-04-18 1986-04-18 Manufacture of floor board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8803686A JPS62246855A (en) 1986-04-18 1986-04-18 Manufacture of floor board

Publications (2)

Publication Number Publication Date
JPS62246855A JPS62246855A (en) 1987-10-28
JPH0256298B2 true JPH0256298B2 (en) 1990-11-29

Family

ID=13931597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8803686A Granted JPS62246855A (en) 1986-04-18 1986-04-18 Manufacture of floor board

Country Status (1)

Country Link
JP (1) JPS62246855A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115902B2 (en) * 1988-05-06 1995-12-13 信越化学工業株式会社 Cement composition for extrusion molding
JP2506208B2 (en) * 1988-12-28 1996-06-12 株式会社アスク Asbestos inorganic cured product and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114426A (en) * 1975-03-31 1976-10-08 Matsushita Electric Works Ltd Solid compound
JPS54109653A (en) * 1978-01-30 1979-08-28 Johns Manville Highhdensity nonnasbestos tvelumolite heat insulator
JPS58156567A (en) * 1982-03-10 1983-09-17 松下電工株式会社 Manufacture of fiber reinforced cement board
JPS5964558A (en) * 1982-09-30 1984-04-12 三菱電機株式会社 Manufacture of heat-resistant soft composite body
JPS6126547A (en) * 1984-07-13 1986-02-05 ニチアス株式会社 Manufacture of cementitious board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114426A (en) * 1975-03-31 1976-10-08 Matsushita Electric Works Ltd Solid compound
JPS54109653A (en) * 1978-01-30 1979-08-28 Johns Manville Highhdensity nonnasbestos tvelumolite heat insulator
JPS58156567A (en) * 1982-03-10 1983-09-17 松下電工株式会社 Manufacture of fiber reinforced cement board
JPS5964558A (en) * 1982-09-30 1984-04-12 三菱電機株式会社 Manufacture of heat-resistant soft composite body
JPS6126547A (en) * 1984-07-13 1986-02-05 ニチアス株式会社 Manufacture of cementitious board

Also Published As

Publication number Publication date
JPS62246855A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
JP2010222190A (en) Method for producing calcium silicate board
JPH0256298B2 (en)
JP2956039B2 (en) Manufacturing method of wet cement board
CN116239361A (en) Calcium silicate board prepared by using calcium silicate fiber crystals and preparation method thereof
JP5000902B2 (en) Lightweight inorganic plate and method for producing the same
JP5118738B2 (en) Wood cement board and manufacturing method thereof
JPH02141454A (en) Production of high-strength calcium silicate molded body
JP4127749B2 (en) Calcium silicate material for inner wall material or ceiling material and method for producing the same
JPH0780166B2 (en) Manufacturing method of calcium silicate compact
JP2019151521A (en) Calcium silicate plate and method for producing the same
JP2004010402A (en) Fiber-containing gypsum board and its manufacturing process
JP4886196B2 (en) Manufacturing method of lightweight inorganic board
JP4312872B2 (en) Calcium silicate molded body and method for producing the same
JP3376410B2 (en) Natural porous soil wall material and its dry production method
JPH0354978B2 (en)
JPS61261247A (en) Manufacture of cementitious board
JP3550269B2 (en) Manufacturing method of inorganic plate
JP2601781B2 (en) Cement fiberboard
KR100885202B1 (en) Preparation method of slag board having no asbestos
CN116283127A (en) Plant fiber reinforced calcium silicate board with high hanging property and preparation method thereof
JPS6374949A (en) Manufacture of calcium silicate formed body
CN1029223C (en) Mixture for manufacture of shaped articles
JP4249833B2 (en) Method for producing calcium silicate molded body
CN117510174A (en) Novel calcium silicate board for passive fireproof system
JP4814411B2 (en) Calcium silicate plate and method for producing the same