JPH0256297B2 - - Google Patents

Info

Publication number
JPH0256297B2
JPH0256297B2 JP60292271A JP29227185A JPH0256297B2 JP H0256297 B2 JPH0256297 B2 JP H0256297B2 JP 60292271 A JP60292271 A JP 60292271A JP 29227185 A JP29227185 A JP 29227185A JP H0256297 B2 JPH0256297 B2 JP H0256297B2
Authority
JP
Japan
Prior art keywords
water
cement
soil
soluble
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60292271A
Other languages
Japanese (ja)
Other versions
JPS62153151A (en
Inventor
Yoshinori Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP29227185A priority Critical patent/JPS62153151A/en
Publication of JPS62153151A publication Critical patent/JPS62153151A/en
Publication of JPH0256297B2 publication Critical patent/JPH0256297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ソイルセメント壁体の造成に際し、
使用するセメントミルク中へ水溶性高分子と水に
可溶な硫酸塩とからなる混和剤を添加し、セメン
トミルクを増粘させることにより、セメントミル
クの地中あるいは地下水中の逸脱を防止すること
を特徴とするソイルセメント連続壁工法に関する
ものである。 (従来の技術) ソイルセメント連続壁工法は、オーガーマシン
で地盤を掘削しながら、セメントミルク等の硬化
液をその先端から噴出させ、現位置において土砂
とセメントミルク等の硬化液を混合し、場合によ
つてはH銅等を建て込んでソイルセメント壁体を
造成する工法で、止水壁、土留め壁、地盤改良等
の用途に用いられるものである。 この工法は、現位置土砂混練方式であるため廃
土処理量が少なく、工期も短かく、価格も低廉に
できる利点をもつており、近年多く採用されるよ
うになつた。 (発明が解決しようとする問題点) ソイルセメント連続壁工法は、オーガーマシン
で地盤を掘削しながら、セメントミルク等の硬化
剤をオーガーマシンの先端より噴出させながら、
掘削土砂と現位置で混合するが、セメントミルク
の粘度が低いため、掘削現場の地層が砂れき層で
透水性の大きい場合には、セメントミルクが地
中、または地下水中へ逸脱する現象が起る欠点が
あつた。一方、水中または海中で、この工事を行
う場合にはセメントミルクの水中または海中への
拡散が起り、汚染の原因となる欠点もあつた。 最近は、これらの欠点を捕い、ソイルセメント
連続壁工法の施工を改善するためにセメントミル
ク中へ水溶性高分子を添加し、セメントミルクを
増粘させる方法が特願昭60−29860号AS61−
191714号に開示されている。 しかしながら、水溶性高分子の使用はソイルセ
メントの施工性の改善が図れる反面、セメントミ
ルク中へ水溶性高分子を添加したときに起る水溶
性高分子のママコ現象を防ぐため、水に予め水溶
性高分子を溶解または分散させたものを添加する
方法を一般的に行わなければならない。この結
果、水溶性高分子の添加作業が繁雑になるため、
添加方法の改善が望まれていた。 本発明は、これらの問題点を解決すべく鋭意研
究の結果、セメントミルクの粘性をあげるため
に、使用する水溶性高分子に、水に可溶な硫酸塩
を混合してなる混和剤を添加することにより、マ
マコ現象を防ぎ、作業性が著しく改善されること
を見い出し、本発明をなすに至つたものである。 (問題点を解決するための手段) すなわち、本発明はセメントミルクを用いるソ
イルセメント壁体を造成する工法において、セメ
ントミルクに水溶性高分子100重量部と水に可溶
な硫酸塩300〜5000重量部とからなる混和剤を添
加することを特徴とするソイルセメント連続壁工
法である。 セメントミルクに増粘剤として添加する水溶性
高分子は、アルキルセルロース、ヒドロキシアル
キルセルロース、カルボキシアルキルセルロー
ス、アルキルヒドロアルキルセルロース、カルボ
キシアルキルヒドロキシアルキルセルロースなど
の水溶性セルロース誘導体、例えば、メチルセル
ロース(MC)、ヒドロキシエチルセルロース
(HEC)、ヒドロキシプロピルセルロース
(HPC)、ヒドロキシプロピルメチルセルロース
(HPMC)、カルボキシメチルヒドロキシエチル
セルロース(CMHEC)等のほか、グアガム、ア
ルギン酸ナトリウム、カラギーナン、トラガント
ガムなどの水溶性天然ガム類およびその誘導体、
α化デンプン、カルボキシメチル化デンプンなど
の水溶性デンプンおよびその誘導体、ポリアクリ
ル酸ナトリウム、ポリアクリルアミド、ポリエチ
レンオキサイド、ポリビニルアルコール、スチレ
ン・無水マレイン酸共重合体などの水溶性合成高
分子など各種のものが使用できる。 これに対し、本発明に使用する水に可溶な硫酸
塩としては、硫酸マグネシウム、硫酸ナトリウ
ム、硫酸カリウム等が挙げられ、本発明の硬化を
達成するためには水溶性高分子100重量部に対し、
水に可溶な硫酸塩300〜5000重量部混合するのが
適当である。300重量部未満では水溶性高分子の
ママコ防止効果がなく、5000重量部を越えると、
それ以上の効果が得られず、逆に経済的に不利と
なる。 水溶性高分子と水に可溶な硫酸塩とからなる混
和剤の添加量は、セメントに対する水溶性高分子
の添加量が0.05〜2重量%の範囲になるように添
加するのが適当である。0.05重量%以下にする
と、セメントミルクの増粘が十分でなく、水溶性
高分子を添加したセメントミルクが地中あるいは
地下水中へ逸脱してしまう。また、水溶性高分子
の添加量が2%を超えると、セメントミルクの粘
度が高くなりすぎてポンプ輸送が困難となり、セ
メントミルクの硬化がおくれて強度の発現に時間
がかかる上に、経済的にも不利であり、好ましく
ない。 セメントスラリーに本発明の混和剤を添加する
方法は、直接セメントスラリーに添加して撹拌混
合できるが、水に予め溶解、または分散させたも
のをセメントスラリーに添加してもよい。 さらに、この場合に本発明の混和剤以外にベン
トナイト、山粘土、その他の添加剤を必要に応じ
て添加併用することができることは言うまでもな
い。 本発明の方法により造成したソイルセメント壁
体は、セメントスラリーの土中、または地下水中
への逸脱が防止されているので、通常の工法によ
るソイルセメント壁体よりも強度が大きいが、更
に強度が必要が場合は、H鋼材を建てこんで補強
することもできる。 (発明の効果) 本発明の混和剤を添加して増粘したセメントス
ラリーを用いるソイルセメント連続壁工法によれ
ばセメントスラリーに混和剤を直接添加すること
ができるので、従来の水溶性高分子のみの添加の
ように、水に予め水溶性高分子を溶解または分散
させたものをセメントスラリーに添加する方法と
較べ、作業の簡素化が図れる。 また、砂地や砂れき層などの透水性の大きい地
層においても、セメントスラリーの土中または地
下水中への逸脱損失を防ぐことができ、工事に必
要なセメント量を大幅に節減できるので経済的に
有利である上に、強度の大きい良質の壁体をつく
ることができる。 また、水中あるいは海中における工事において
は、セメントミルクの水中または海中への拡散が
防止され、水や海水を汚染することなく、工事を
進めることができる。 セメントスラリーに添加する水溶性高分子の量
をコントロールすることによつて、セメントスラ
リーの流動性が保たれているので、ポンプによる
セメントスラリーの輸送やオーガーマシン先端か
らの噴出、混合作業をスムーズに行うことができ
る。 また、現位置土砂混練方式であり、一行程で壁
体を形成できるので、工期が短かく、廃土も少な
いソイルセメント連続壁工法の長所を有してお
り、止水壁、土留め壁、地盤改良等の用途に広く
用いることができる。 (実施例) 以下に本発明の方法を実施例により説明する
が、実施例中%は重量%である。 実施例1〜4、比較例1 高炉セメントB種233gと水466gからなるセメ
ントスラリーに、水溶性高分子としてヒドロキシ
エチルセルロース(HECダイセル、SP600)100
重量部に、硫酸マグネシウムを100重量部、1000
重量部、2000重量部、5000重量部配合してなる4
種の混和剤をセメントに対し、それぞれ2.99%、
5.50%、25.5%直接添加して混練した4種のセメ
ントスラリーを用意した。 また、比較例として硫酸マグネシウムを配合し
ないHEC単独をセメントに対し0.5%直接添加し
たセメントスラリーを用意した。 これらのセメントスラリーと含水比14.6%、湿
潤密度2.03、PH12.6の掘削土1530gとを混練して
ソイルセメントスラリーを調製し、次の試験を行
つた。 ソイルセメントスラリーの粘度測定: B型粘土計により25℃、60rpmにおける粘土を
測定した。 ソイルセメントセメントスラリーの浸透性評価: 寒水石8厘(2.5mm)800c.c.を入れた1メスシ
リンダーの中へ、上記のソイルセメントスラリー
200c.c.を入れ、5分、10分、30分後の寒水石層上
のソイルセメントスラリーの減少量(c.c.)を測定
すると共に、目視による寒水石層への浸透性を評
価した。 ◎……浸透性がない 〇……浸透性がほとんどない △……浸透性が少しある ×……浸透性がある 一軸圧縮強度および圧縮ひずみ測定: ソイルセメントスラリーをモールドに充填し、
7日後の一軸圧縮強度および圧縮ひずみを測定し
た。 試験結果を表1に示す。
(Industrial Application Field) The present invention provides the following features when constructing a soil cement wall:
To prevent cement milk from escaping into the ground or underground water by adding an admixture consisting of a water-soluble polymer and a water-soluble sulfate to the cement milk used to thicken the cement milk. This article relates to a soil cement continuous wall construction method characterized by: (Conventional technology) The soil-cement continuous wall construction method uses an auger machine to excavate the ground and squirts a hardening liquid such as cement milk from the tip of the auger machine. In some cases, this is a method of constructing soil-cement walls by erecting H copper, etc., and is used for purposes such as water-stop walls, earth retaining walls, and ground improvement. This construction method uses in-situ soil mixing, so it has the advantage of reducing the amount of waste soil to be treated, shortening the construction period, and being inexpensive, so it has been widely adopted in recent years. (Problems to be solved by the invention) The soil-cement continuous wall construction method uses an auger machine to excavate the ground while squirting a hardening agent such as cement milk from the tip of the auger machine.
It is mixed with the excavated soil at the site, but since the viscosity of cement milk is low, if the stratum at the excavation site is gravel and has high permeability, the cement milk may escape into the ground or into groundwater. There were flaws. On the other hand, when this construction is carried out underwater or under the sea, there is also the drawback that cement milk spreads into the water or the sea, causing pollution. Recently, in order to address these drawbacks and improve the construction of the soil-cement continuous wall method, a method of thickening cement milk by adding water-soluble polymers to cement milk has been proposed in Japanese Patent Application No. 60-29860 AS61. −
No. 191714. However, while the use of water-soluble polymers can improve the workability of soil cement, it is necessary to pre-dissolve them in water to prevent the phenomenon of water-soluble polymers that occurs when water-soluble polymers are added to cement milk. Generally speaking, a method of adding dissolved or dispersed polymers must be used. As a result, the work of adding water-soluble polymer becomes complicated.
It has been desired to improve the addition method. As a result of intensive research to solve these problems, the present invention has been developed by adding an admixture made by mixing a water-soluble sulfate to the water-soluble polymer used to increase the viscosity of cement milk. The inventors have discovered that by doing so, the mako phenomenon can be prevented and workability is significantly improved, leading to the present invention. (Means for Solving the Problems) That is, the present invention provides a method of constructing a soil cement wall using cement milk, in which 100 parts by weight of a water-soluble polymer and 300 to 5,000 parts by weight of a water-soluble sulfate are added to the cement milk. This soil cement continuous wall construction method is characterized by adding an admixture consisting of parts by weight. Water-soluble polymers added to cement milk as thickeners include water-soluble cellulose derivatives such as alkylcellulose, hydroxyalkylcellulose, carboxyalkylcellulose, alkylhydroalkylcellulose, and carboxyalkylhydroxyalkylcellulose, such as methylcellulose (MC), Hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), carboxymethylhydroxyethylcellulose (CMHEC), etc., as well as water-soluble natural gums such as guar gum, sodium alginate, carrageenan, gum tragacanth, and their derivatives,
Various products such as water-soluble starches and their derivatives such as pregelatinized starch and carboxymethylated starch, water-soluble synthetic polymers such as sodium polyacrylate, polyacrylamide, polyethylene oxide, polyvinyl alcohol, and styrene/maleic anhydride copolymers. can be used. On the other hand, water-soluble sulfates used in the present invention include magnesium sulfate, sodium sulfate, potassium sulfate, etc. In order to achieve the hardening of the present invention, 100 parts by weight of the water-soluble polymer On the other hand,
It is appropriate to mix 300 to 5000 parts by weight of a water-soluble sulfate. If it is less than 300 parts by weight, the water-soluble polymer has no effect of preventing mako, and if it exceeds 5,000 parts by weight,
No further effect can be obtained, and on the contrary, it is economically disadvantageous. It is appropriate to add the admixture consisting of a water-soluble polymer and a water-soluble sulfate so that the amount of water-soluble polymer added to the cement is in the range of 0.05 to 2% by weight. . If it is less than 0.05% by weight, the cement milk will not thicken sufficiently and the cement milk to which the water-soluble polymer has been added will escape into the ground or underground water. In addition, if the amount of water-soluble polymer added exceeds 2%, the viscosity of the cement milk becomes too high, making it difficult to pump, which delays the hardening of the cement milk and takes time to develop strength. It is also disadvantageous and undesirable. The admixture of the present invention can be added directly to the cement slurry and mixed by stirring, but it may also be added to the cement slurry after being dissolved or dispersed in water. Furthermore, in this case, it goes without saying that in addition to the admixture of the present invention, bentonite, mountain clay, and other additives can be added and used in combination as necessary. The soil-cement walls constructed by the method of the present invention are stronger than soil-cement walls constructed by conventional construction methods because the cement slurry is prevented from escaping into the soil or underground water, but they are even stronger. If necessary, it can be reinforced with H steel. (Effects of the invention) According to the soil cement continuous wall construction method that uses cement slurry thickened by adding the admixture of the present invention, the admixture can be directly added to the cement slurry, so only conventional water-soluble polymers can be used. Compared to the method of adding a water-soluble polymer dissolved or dispersed in water to the cement slurry, the work can be simplified. In addition, even in highly permeable geological formations such as sandy soil and gravel layers, it is possible to prevent cement slurry from escaping into the soil or underground water, which is economically advantageous as it can significantly reduce the amount of cement required for construction. In addition, it is possible to create strong, high-quality walls. Furthermore, during construction work in water or under the sea, diffusion of cement milk into the water or the sea is prevented, and construction work can be carried out without contaminating water or seawater. By controlling the amount of water-soluble polymer added to the cement slurry, the fluidity of the cement slurry is maintained, making transportation of the cement slurry by a pump, ejection from the tip of an auger machine, and mixing operations smooth. It can be carried out. In addition, it uses an in-situ soil mixing method, and the wall can be formed in one process, so it has the advantages of the soil cement continuous wall construction method, which shortens the construction period and produces less waste soil. It can be widely used for ground improvement, etc. (Example) The method of the present invention will be explained below with reference to Examples, in which % is by weight. Examples 1 to 4, Comparative Example 1 A cement slurry consisting of 233 g of B type blast furnace cement and 466 g of water was added with 100 g of hydroxyethyl cellulose (HEC Daicel, SP600) as a water-soluble polymer.
To parts by weight, 100 parts by weight of magnesium sulfate, 1000 parts by weight
Parts by weight, 2000 parts by weight, 5000 parts by weight 4
2.99% seed admixture to cement, respectively.
Four types of cement slurries were prepared by directly adding and kneading 5.50% and 25.5%. In addition, as a comparative example, a cement slurry was prepared in which 0.5% of HEC alone without magnesium sulfate was directly added to the cement. These cement slurries were mixed with 1530 g of excavated soil having a water content of 14.6%, a wet density of 2.03, and a pH of 12.6 to prepare a soil cement slurry, and the following tests were conducted. Viscosity measurement of soil cement slurry: Clay was measured at 25°C and 60 rpm using a B-type clay meter. Permeability evaluation of soil cement cement slurry: Place the above soil cement slurry into a measuring cylinder containing 8 liters of Kansui stone (2.5 mm) 800 c.c.
200 c.c. was added, and the amount of decrease (cc) of the soil cement slurry on the ansuistone layer was measured after 5, 10, and 30 minutes, and the permeability to the ansuistone layer was visually evaluated. ◎...No permeability〇...Almost no permeability△...Some permeability ×...Permeability Measurement of unconfined compressive strength and compressive strain: Fill the mold with soil cement slurry,
Unconfined compressive strength and compressive strain were measured after 7 days. The test results are shown in Table 1.

【表】 実施例 5〜8 水溶性高分子としてヒドロキシエチルセルロー
ス(HECダイセル、SP6000)と硫酸塩として硫
酸マグネシウムを100重量部対2000重量部の割合
に混合してなる混和剤をセメントに対し、それぞ
れ1.05%、2.10%、21.0%、42.0%使用して、実
施例1〜4と同様の方法で試験した。それらの結
果を表2に示す。
[Table] Examples 5 to 8 An admixture prepared by mixing hydroxyethyl cellulose (HEC Daicel, SP6000) as a water-soluble polymer and magnesium sulfate as a sulfate in a ratio of 100 parts by weight to 2,000 parts by weight was added to cement, respectively. Tests were conducted in the same manner as in Examples 1 to 4 using 1.05%, 2.10%, 21.0%, and 42.0%. The results are shown in Table 2.

【表】 実施例9〜10、比較例2〜3 水溶性高分子としてメチルセルロース(信越化
学工業(株)、メトローズ、60SH10000)およびカル
ボキシメチルセルロース(CMCダイセル<1370
>)を使用して実施例3、比較例1と同様の方法
で試験した。それらの結果を表3に示す。 実施例11〜12、比較例4〜5 水溶性高分子としてヒドロキシエチルセルロー
ス(HECダイセル、SP6000)を使用し、水に可
溶な硫酸塩として硫酸ナトリウム、硫酸カリウム
を用いた場合および比較対照として硫酸カルシウ
ム、普通ポルトランドセメントを用いた場合につ
いて、実施例3と同様の方法で試験した。それら
の結果を表4に示す。
[Table] Examples 9-10, Comparative Examples 2-3 Methyl cellulose (Shin-Etsu Chemical Co., Ltd., Metrose, 60SH10000) and carboxymethyl cellulose (CMC Daicel < 1370) as water-soluble polymers
>) was tested in the same manner as in Example 3 and Comparative Example 1. The results are shown in Table 3. Examples 11-12, Comparative Examples 4-5 When hydroxyethyl cellulose (HEC Daicel, SP6000) was used as a water-soluble polymer, and sodium sulfate and potassium sulfate were used as water-soluble sulfates, and sulfuric acid was used as a comparison control. A test was conducted in the same manner as in Example 3 using calcium and ordinary Portland cement. The results are shown in Table 4.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 セメントミルクを用いる壁体を造成する工法
において、セメントミルクに水溶性高分子100重
量部と水に可溶な硫酸塩300〜5000重量部とから
なる混和剤を添加することを特徴とするソイルセ
メント連続壁工法。
1. A method of constructing a wall using cement milk, characterized in that an admixture consisting of 100 parts by weight of a water-soluble polymer and 300 to 5,000 parts by weight of a water-soluble sulfate is added to the cement milk. Cement continuous wall construction method.
JP29227185A 1985-12-26 1985-12-26 Soil cement art Granted JPS62153151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29227185A JPS62153151A (en) 1985-12-26 1985-12-26 Soil cement art

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29227185A JPS62153151A (en) 1985-12-26 1985-12-26 Soil cement art

Publications (2)

Publication Number Publication Date
JPS62153151A JPS62153151A (en) 1987-07-08
JPH0256297B2 true JPH0256297B2 (en) 1990-11-29

Family

ID=17779592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29227185A Granted JPS62153151A (en) 1985-12-26 1985-12-26 Soil cement art

Country Status (1)

Country Link
JP (1) JPS62153151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046492U (en) * 1990-05-08 1992-01-21

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161045A (en) * 2005-12-13 2007-06-28 Takehiro Tamaki Cabin partitioning device of automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109255A (en) * 1979-02-15 1980-08-22 Sato Takehiko Grout material composition
JPS57156353A (en) * 1981-03-24 1982-09-27 Nitto Chemical Industry Co Ltd Cement composition for flow-spread floor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109255A (en) * 1979-02-15 1980-08-22 Sato Takehiko Grout material composition
JPS57156353A (en) * 1981-03-24 1982-09-27 Nitto Chemical Industry Co Ltd Cement composition for flow-spread floor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046492U (en) * 1990-05-08 1992-01-21

Also Published As

Publication number Publication date
JPS62153151A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
CN101269938A (en) Tunnel backing cloth slip casting material capable of preventing duct piece float upward and preparation method thereof
CN107698226A (en) A kind of cement-silicate injecting paste material
CN107827422A (en) High waterproof simultaneous grouting slurry for seabed shield tunnel
JPH11279554A (en) Method for stabilizing deep layer mixed soil and system therefor
JP2000309919A (en) Construction method of soil cement underground continuous wall
CN114956768A (en) Anti-dispersion grouting material for grouting and water plugging of water-rich stratum and preparation method and construction method thereof
JP2008088040A (en) Cement composition for fixing bolt and continuous construction method for the same
JP4044887B2 (en) Bolt fixing method
JP2007261921A (en) Grout material for underwater application
JP7198281B2 (en) Cement composition for bolt fixation and bolt fixation method
JPH0256297B2 (en)
JP2631414B2 (en) Mortar filling method to concrete gap in reverse driving method
JPH011819A (en) Soil cement continuous wall construction method
JP2006045877A (en) Underground continuous wall construction method
JP3639054B2 (en) Backfill injection material
JPS61191714A (en) Construction method using soil cement
JP6776391B2 (en) Ground improvement materials, cement milk, and ground improvement methods
JP5882146B2 (en) Long-distance pumping cement admixture, plastic injection material and injection method
JP3686441B2 (en) One-pack type backfill additive and construction method using the additive
JP3088628B2 (en) Self-hardening stabilizer
JP3121446B2 (en) Backfill injection material and two-pack backfill injection method
JP2001214687A (en) Auxiliary method for mountain tunneling method
JP2001003048A (en) Admixture for soil cement
JP2879627B2 (en) Solidification method of civil engineering mud
GB2359074A (en) Bentonite-slag slurries; in-ground hydraulic cut-off barriers