JPH0255910B2 - - Google Patents

Info

Publication number
JPH0255910B2
JPH0255910B2 JP56117015A JP11701581A JPH0255910B2 JP H0255910 B2 JPH0255910 B2 JP H0255910B2 JP 56117015 A JP56117015 A JP 56117015A JP 11701581 A JP11701581 A JP 11701581A JP H0255910 B2 JPH0255910 B2 JP H0255910B2
Authority
JP
Japan
Prior art keywords
electrolyte
batteries
battery
zinc
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56117015A
Other languages
Japanese (ja)
Other versions
JPS5819876A (en
Inventor
Deii Eichi Jurian Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56117015A priority Critical patent/JPS5819876A/en
Publication of JPS5819876A publication Critical patent/JPS5819876A/en
Publication of JPH0255910B2 publication Critical patent/JPH0255910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、種々の型の一次電池又は二次電池用
の電解液に関するものである。 〔従来の技術〕 従来より電源の改良を目指して、種々の一次電
池及び二次電池の性能、特に大きさ、重量及び容
量を改善する多くの研究がなされた。これらは、
主として補聴器、宇宙及び衛星装置並びに電動無
害車の分野に応用されている。 この間に、当然そのような電池に使用される電
解液も研究された。ここで興味ある因子は、電極
及びその他の電池部品に対し容量を減衰させる作
用を及ぼす電流の導電率である。この因子は、電
解液の濃度、温度、電極の溶解度及び添加物によ
り変化する。その他考慮すべきことは、化学反応
による電荷移動率であり、多くの再充電可能な電
池における樹枝状結晶の生成、電極構造の劣化、
容量の減少及びそのための耐用寿命の短縮の問題
である。 種々の添加剤が異なる型の電気化学的電池で試
験され、また、電気メツキ工業で時々使用される
無機質或いは有機質の添加剤が樹枝状結晶生成の
抑制、電荷移動の改善、内部抵抗の減少、或いは
一般的な電池の性能及び寿命の改善のため試験さ
れた。参考文献として次のようなものがある。 米国特許第4074028号(Will社1987年2月14日)
「樹枝状結晶を抑制する電解液及びその電解液を
充填した再充電可能な水性亜鉛−ハロゲン電池」 米国特許第3466195号(Spellman ESB社1969
年9月9日)「電解液に対するケイ酸塩イオンの
添加」 米国特許第3433679号(Spellman F&B社
1969年3月18日)「電解液に添加したリチウムイ
オン」 米国特許第3658593号(Caiola Soc.Acc.フラ
ンス1972年4月25日)「プロピレン炭酸塩のテト
ラブチルアンモニウム塩化物」 米国特許第3540935号(Keating Nutt EI
Pont1970年11月17日)「樹枝状結晶を防止するた
めのシアン化ナトリウムの添加」 米国特許第3716412号(Peters ESB Ltd.U.
K.1973年2月16日)「酸性電解液に対する無定形
シリカ」 米国特許第3669743号(Swindells Melpar1972
年6月13日)「固体亜鉛塩複合電解質」 また、添加剤を電極構造にも添加して容量損失
及び電極劣化作用の減少を助け、或いは更に電解
液の電極構造への浸透を改善して、入手可能な材
料を有効に利用する試みが行われた。 これまで使用され提案された大部分の変性剤及
び添加剤では、電極やその他の電池部品と酸化し
たり、適合しなかつたり、非可逆的に反応した
り、或いは消散してそれらの有効性が失われたり
するため、電気化学的電池で連続的に繰返し使用
する際に長時間にわたる十分な安定性が得られな
かつた。 〔課題を解決するための手段〕 本発明は、一次又は二次電池用の電解液に、こ
れらの電池の電極物質にシアン化物又はフエリシ
アン化物が用いられているかどうかに関係なく、
導電率を増加させ電極の溶解度を減少させる添加
剤として、カリウム又はナトリウムのフエロシア
ン化物又はフエリシアン化物を含有させることに
より、上記の課題を解決した。 これらのフエロシアン化物にはヘキサシアノ鉄
()酸塩(Fe(CN)6 4-が含まれ、フエリシアン
化物にはヘキサシアノ鉄()酸塩(Fe(CN)6 3-
が含まれている。 本発明による電解液は、例えば次のようにして
調製することができる。先ず、20℃で濃度1.12
g/ml(2.6モル濃度)13重量%の水酸化カリウ
ム(KOH)を用意し、これに1.14〜1.2g/mlの
濃度が得られるまでフエリシアン化カリウム
(K3Fe(CN)6)を添加する。或いは、蒸留水に
100ml当たり15gのKOHの粒剤(KOH85%)と
4gのフエリシアン化カリウム(K3Fe(CN)6
とを容解してもよい。この絶対比は特に臨界的な
ものではなく、多くの場合、非常に少量のフエリ
シアン化カリウムを従来の種々の電池の電解液に
添加するだけでも、かなり性能が改善される。 種々の型の電池に使用される電解液の濃度は、
大きく異なつていて、特定の動作温度及び条件並
びに電池の部品及び電極に適合するように選択さ
れる。本発明により電解液又は添加剤を使用する
ときの選択基準も、同様に、使用目的及び使用条
件により製造業者が変えうるものであり、本明細
書に指針として示す望ましい範囲から外れてよい
場合もあるであろう。 〔作用〕 種々の電気化学的電池の充放電中における化学
反応は、十分には解明されておらず、多くの競合
反応系が関与していることが多い。電気化学的電
池の技術分野における当業者にとつて、本発明を
使用するのに、関係する反応の全部を十分に理解
することは余り重要ではない。以下に述べる作用
の説明は、概念的なものである。 本発明による電解液は、特に銀−亜鉛(Ag−
Zn)電池、ニツケル−カドミウム(Ni−Cd)電
池、ニツケル−亜鉛(Ni−Zn)電池、ニツケル
−鉄(Ni−Fe)電池、酸化鉛(PbO)電池のよ
うな再充電可能な電池に用いて多くの効果がある
が、その他の電池にも有効である。 その大きな理由は、本発明による電解液が、ヘ
キサシアノ鉄酸塩(Fe(CN)6)イオンの存在に
より、通常のKOHのみの電解液よりイオン濃度
が高くなり電荷移動率が大きくなる点にあると考
えられる。したがつて、電池の内部抵抗が減少
し、導電率が改善される。また、同じ理由によ
り、電極の電気化学的容量したがつて電極の材料
が従来より有効に利用され、電池の出力電圧、蓄
積容量及び効率が改善される。また、電解液に
Fe(CN)6イオンが加わることにより、低温にお
いても従来よりイオン濃度が高くなり電荷移動率
が大きくなる。したがつて、電池の低温性能が向
上する。更に、Fe(CN)6イオンの存在により、
電解液内への例えば亜鉛(Zn++)イオンがカド
ミウム(Cd++)イオンの溶解度が著しく減少す
る。したがつて、再充電可能な電池において、電
極溶解度の減少及び電極状態の変更により樹枝状
結晶の生成が抑制される。また、銀−亜鉛電池で
は、亜鉛電極への銀イオンの移動による電池の劣
化が大きく減少し、特別な分離板に頼ることなく
再使用の寿命を著しく延ばすことができる。後述
の実験データに示す260サイクルという数字は、
従来の銀−亜鉛電池のサイクル寿命に比べると極
めて大である。 本発明による電解液は、電極物質にシアン化物
又はフエリシアン化物が用いられているかどうか
に関係なく、カリウム又はナトリウムのフエロシ
アン化物又はフエリシアン化物を含有する点に特
徴があり、電気化学的電池(一次又は二次電池)
に対する溶液状の電解液として、又は電解液への
溶液もしくは塩の形の添加剤として用いることが
できる。本発明の電解液に含まれる金属(Fe)
結合は(CN)6を保持していて、上述のように充
放電に関係があるFe(CN)6複合体が繰返し使用
によつても消失しない。 特に、亜鉛電極を有する再充電可能な電池の場
合、後述のように適当なフツ化物NaF又はKFを
少量添加すること及び亜鉛酸塩ZnOで電解液を飽
和させることが有益である。 〔発明の効果〕 本発明の効果は上述のとおりであるが、これら
を要約すると次のとおりである。 (1) 電池の内部抵抗が低下する。 (2) 低温度における性能がよくなる。 (3) 電池の出力電圧が上がる。 (4) 効率が向上する。 (5) 電極材料の利用率がよくなる。 (6) 樹枝状結晶の生成を抑制する。 (7) 電池の寿命が延びる。 これらの効果は、多かれ少なかれ、後述する本
発明の実施例のすべてに存在するが、各実施例に
おいて個々に改めて記載はしない。 〔実施例〕 1 通常の銀−亜鉛(Ag−Zn)型の予め充電し
た乾式蓄電池に対し、20℃で濃度1.12g/mlの
水酸化カリウム(KOH)に1.14g/mlの濃度
が得られるまでフエリシアン化カリウム
(K3Fe(CN)6)を添加した本発明の電解液を使
用した。公称容量2Ahの4個の市販のAg−Zn
に対し、従来の電解液と本発明の電解液を使用
して、実際の容量を測定すると共に急速放電を
繰返して比較した結果は、表1のとおりであつ
た。
[Industrial Application Field] The present invention relates to electrolytes for various types of primary or secondary batteries. [Prior Art] Aiming at improving power supplies, many studies have been conducted to improve the performance, particularly the size, weight, and capacity of various primary and secondary batteries. these are,
It is mainly applied in the fields of hearing aids, space and satellite equipment, and electric non-hazardous vehicles. During this time, of course, the electrolytes used in such batteries were also studied. The factor of interest here is the current conductivity, which has a capacity-damping effect on the electrodes and other battery components. This factor varies with electrolyte concentration, temperature, electrode solubility and additives. Other considerations are the rate of charge transfer due to chemical reactions, the formation of dendrites in many rechargeable batteries, deterioration of the electrode structure,
The problem is a decrease in capacity and therefore a shortened service life. Various additives have been tested in different types of electrochemical cells, and inorganic or organic additives sometimes used in the electroplating industry have been shown to inhibit dendrite formation, improve charge transfer, reduce internal resistance, Or tested to improve the performance and lifespan of general batteries. References include the following: U.S. Patent No. 4074028 (Will Corporation February 14, 1987)
"Dendrite-Suppressing Electrolyte and Rechargeable Aqueous Zinc-Halogen Battery Filled with the Electrolyte" U.S. Pat. No. 3,466,195 (Spellman ESB, 1969)
September 9, 2013) “Addition of silicate ions to electrolytes” U.S. Patent No. 3,433,679 (Spellman F&B, Inc.)
March 18, 1969) “Lithium ions added to electrolyte” U.S. Patent No. 3658593 (Caiola Soc.Acc. France April 25, 1972) “Tetrabutylammonium chloride of propylene carbonate” U.S. Patent No. 3540935 Keating Nutt EI
Pont November 17, 1970) “Addition of Sodium Cyanide to Prevent Dendrites” U.S. Patent No. 3716412 (Peters ESB Ltd.U.
K. February 16, 1973) "Amorphous Silica for Acidic Electrolytes" U.S. Patent No. 3,669,743 (Swindells Melpar 1972)
(June 13, 2015) "Solid Zinc Salt Composite Electrolyte" Additives can also be added to the electrode structure to help reduce capacity loss and electrode deterioration effects, or even improve electrolyte penetration into the electrode structure. , attempts were made to make effective use of available materials. Most modifiers and additives used and proposed to date oxidize, are incompatible, react irreversibly with electrodes and other battery components, or dissipate, reducing their effectiveness. Because of this, sufficient stability over a long period of time could not be obtained during continuous repeated use in electrochemical cells. [Means for Solving the Problems] The present invention provides an electrolytic solution for primary or secondary batteries, regardless of whether cyanide or ferricyanide is used in the electrode material of these batteries.
The above problem was solved by including potassium or sodium ferrocyanide or ferricyanide as an additive that increases the electrical conductivity and reduces the solubility of the electrode. These ferrocyanides include hexacyanoferrate () (Fe(CN) 6 4- ) ;
It is included. The electrolytic solution according to the present invention can be prepared, for example, as follows. First, the concentration is 1.12 at 20℃.
Prepare 13% by weight potassium hydroxide (KOH) g/ml (2.6 molar concentration) and add potassium ferricyanide ( K3Fe (CN) 6 ) to it until a concentration of 1.14-1.2 g/ml is obtained. . Or in distilled water
15g KOH granules (KOH85%) and 4g potassium ferricyanide ( K3Fe (CN) 6 ) per 100ml
may be understood as This absolute ratio is not particularly critical, and in many cases, even the addition of very small amounts of potassium ferricyanide to the electrolytes of various conventional cells will significantly improve performance. The concentration of electrolyte used in various types of batteries is
They vary widely and are selected to suit the particular operating temperature and conditions and battery components and electrodes. Selection criteria for the use of electrolytes or additives in accordance with the present invention may likewise be varied by the manufacturer depending on the intended use and conditions of use, and may deviate from the desirable ranges provided as a guideline herein. There will be. [Effect] Chemical reactions during charging and discharging of various electrochemical batteries are not fully understood, and many competing reaction systems are often involved. It is not critical for those skilled in the electrochemical cell art to fully understand all of the reactions involved in using the present invention. The description of the operation described below is conceptual. The electrolyte according to the invention is particularly suitable for silver-zinc (Ag-zinc)
Used in rechargeable batteries such as Zn) batteries, nickel-cadmium (Ni-Cd) batteries, nickel-zinc (Ni-Zn) batteries, nickel-iron (Ni-Fe) batteries, and lead oxide (PbO) batteries. It has many effects, but it is also effective for other batteries. The main reason for this is that the electrolytic solution according to the present invention has a higher ion concentration and a higher charge transfer rate than a normal electrolytic solution containing only KOH due to the presence of hexacyanoferrate (Fe(CN) 6 ) ions. it is conceivable that. Therefore, the internal resistance of the battery is reduced and the conductivity is improved. Also, for the same reason, the electrochemical capacity of the electrodes and therefore the electrode materials are utilized more effectively than before, improving the output voltage, storage capacity and efficiency of the battery. In addition, the electrolyte
By adding Fe(CN) 6 ions, the ion concentration is higher than before, even at low temperatures, and the charge transfer rate is increased. Therefore, the low temperature performance of the battery is improved. Furthermore, due to the presence of Fe(CN) 6 ions,
For example, the solubility of zinc (Zn ++ ) ions and cadmium (Cd ++ ) ions in the electrolyte is significantly reduced. Thus, in rechargeable batteries, dendrite formation is suppressed by reducing electrode solubility and changing electrode conditions. Additionally, in silver-zinc batteries, battery deterioration due to migration of silver ions to the zinc electrode is greatly reduced, and the reuse life can be significantly extended without relying on special separators. The number 260 cycles shown in the experimental data described below is
This is extremely long compared to the cycle life of conventional silver-zinc batteries. The electrolytic solution according to the invention is characterized in that it contains potassium or sodium ferrocyanide or ferricyanide, regardless of whether cyanide or ferricyanide is used in the electrode material, and is suitable for use in electrochemical cells (primary or secondary battery)
It can be used as an electrolyte in the form of a solution or as an additive in the form of a solution or salt to an electrolyte. Metal (Fe) contained in the electrolyte of the present invention
The bond retains (CN) 6 , and as mentioned above, the Fe(CN) 6 complex, which is involved in charging and discharging, does not disappear even after repeated use. Particularly in the case of rechargeable batteries with zinc electrodes, it is advantageous to add a small amount of a suitable fluoride NaF or KF and to saturate the electrolyte with zincate ZnO, as described below. [Effects of the Invention] The effects of the present invention are as described above, and they can be summarized as follows. (1) The internal resistance of the battery decreases. (2) Better performance at low temperatures. (3) Battery output voltage increases. (4) Efficiency is improved. (5) Improved utilization of electrode materials. (6) Suppress the formation of dendrites. (7) Battery life is extended. Although these effects exist to a greater or lesser extent in all of the embodiments of the present invention described below, they will not be individually described again in each embodiment. [Example] 1. For a conventional silver-zinc (Ag-Zn) type pre-charged dry storage battery, a concentration of 1.14 g/ml of potassium hydroxide (KOH) is obtained at 20°C with a concentration of 1.12 g/ml. The electrolytic solution of the present invention to which potassium ferricyanide (K 3 Fe(CN) 6 ) was added was used up to the point in time. 4 commercially available Ag-Zn with nominal capacity 2Ah
On the other hand, Table 1 shows the results of measuring the actual capacity and repeatedly performing rapid discharge using the conventional electrolytic solution and the electrolytic solution of the present invention.

【表】 2 通常のニツケル−カドミウム(Ni−Cd)型
の電池に、KOH又はNaOHの従来の電解液に
代えて、上述の実施例1の如く調製した本発明
の電解液を使用した。この電池も、同様に、従
来の電池の普通のものより改善された特性並び
に出力レベルを示した。他の改善度は、電極及
び電池の具体的構造によつて決まる。 市販のNi−Cdポケツト式排気型電池とNi−
Cd焼結式排気型電池を用いて比較試験した結
果は表2のとおりであつた。
Table 2 In a conventional nickel-cadmium (Ni-Cd) type battery, the electrolyte of the present invention prepared as in Example 1 above was used in place of the conventional electrolyte of KOH or NaOH. This cell also exhibited improved characteristics and power levels over conventional cells. Other improvements will depend on the specific construction of the electrode and cell. Commercially available Ni-Cd pocket exhaust type batteries and Ni-
Table 2 shows the results of a comparative test using a Cd sintered exhaust type battery.

【表】【table】

【表】 3 通常のニツケル−鉄(Ni−Fe)型の電池も、
同様に本発明の電解液の使用によつて改善され
た。 4 金属−空気型、好ましくは亜鉛−空気型の電
池も、同様に本発明の電解液の使用によつて改
善された。 5 ニツケル−亜鉛(Ni−Zn)型の電池も、同
様に本発明の電解液の使用によつて改善され
た。 6 本発明による電解液を用いるニツケル−亜鉛
(Ni−Zn)型の再充電可能な電池の電解液に、
亜鉛酸塩ZnO、非常にフツ化物KF又はNaF及
びNa2B4O7、K3BO3又はオルトホウ酸H3BO3
等の形のホウ素を添加した。 本実施例では、本発明の電解液を従来構成のニ
ツケル−亜鉛(Ni−Zn)電池に使用した。この
電解液は、上述の実施例同様、濃度1.12g/mlの
KOH溶液に濃度が1.14〜1.18g/mlとなるようフ
エリシアン化カリウムを添加して作つた。再充電
可能な電池で電極が亜鉛をベースとする場合に
は、少量のフツ化カリウムKF又はフツ化ナトリ
ウムNaF及びNa2B4O7、K3BO2又はオルトホウ
酸H3BO3等の形のホウ素を添加し、更に亜鉛電
極の溶解度を抑制するために電解液を亜鉛酸塩
ZnOで飽和させるのが有益であることが判つた。 本発明による電解液は、上述したように濃度
1.12g/mlの水酸化カリウムKOHに濃度が約1.14
〜1.2g/mlまで増えるようにフエリシアン化カ
リウム(K3Fe(CN)6)を添加して作る。その絶
対比は、電解液に添加する(K3Fe(CN)6)が非
常に少量であつても性能を大幅に改善するのに十
分であるから、決して臨界的なものではない。 本発明による電解液は、上記実施例での使用に
なんら限定されるものではなく、その他の電極装
置及び添加剤と共にも使用できる。このような添
加剤は、電極導電率や過電位を変えたり或いはガ
スの発生や自己放電等を減少させたりするのに使
用されることが多く、その幾つかの例をあげる
と、黒鉛状炭素、Ni、Pb、Mn、V、Ti、Zr、
Hf、Nb、Hg等がある。本発明による電解液を
使用する場合に、かかる幾つかの添加剤をシアン
水銀酸カリウム(K2Hg(CN)4)のようなシアン
化物又はフエリシアン化物の形で付加することは
有利である。 以上、本発明の本質、好適な実施例、種々の利
点及び効果について説明したが、本発明を本明細
書中に記載又は開示した特定の実施例に限定され
るように解釈すべきではない。これらは、制限的
にではなく単に例示的に記載したにすぎないもの
である。本発明は、その要旨を逸脱することな
く、当業者によつて種々の変形、変更をなしうる
ものである。
[Table] 3 Ordinary nickel-iron (Ni-Fe) batteries also
Improvements were likewise made with the use of the electrolyte of the invention. 4. Batteries of the metal-air type, preferably of the zinc-air type, have likewise been improved by the use of the electrolytes of the present invention. 5 Nickel-zinc (Ni-Zn) type batteries were similarly improved by the use of the electrolyte of the present invention. 6. The electrolyte of a rechargeable battery of the nickel-zinc (Ni-Zn) type using the electrolyte according to the invention includes:
zincate ZnO , highly fluoride KF or NaF and Na2B4O7 , K3BO3 or orthoboric acid H3BO3
Boron was added in the form of In this example, the electrolytic solution of the present invention was used in a conventionally configured nickel-zinc (Ni-Zn) battery. This electrolyte had a concentration of 1.12 g/ml as in the above example.
It was prepared by adding potassium ferricyanide to a KOH solution to a concentration of 1.14 to 1.18 g/ml. If the electrodes are based on zinc in rechargeable batteries, small amounts of potassium fluoride KF or sodium fluoride NaF and forms such as Na 2 B 4 O 7 , K 3 BO 2 or orthoboric acid H 3 BO 3 Adding boron and zincate to the electrolyte to further suppress the solubility of the zinc electrode
It was found that saturation with ZnO is beneficial. The electrolyte according to the present invention has a concentration as described above.
Concentration of about 1.14 to 1.12g/ml potassium hydroxide KOH
It is made by adding potassium ferricyanide (K 3 Fe(CN) 6 ) to increase the concentration to ~1.2 g/ml. The absolute ratio is by no means critical since even very small amounts (K 3 Fe(CN) 6 ) added to the electrolyte are sufficient to significantly improve performance. The electrolyte according to the invention is not limited in any way to its use in the above embodiments, but can also be used with other electrode devices and additives. Such additives are often used to alter electrode conductivity, overpotential, or reduce gassing, self-discharge, etc., to name a few examples: graphitic carbon. , Ni, Pb, Mn, V, Ti, Zr,
There are Hf, Nb, Hg, etc. When using the electrolyte according to the invention, it is advantageous to add some such additives in the form of cyanides or ferricyanides, such as potassium cyanomercurate (K 2 Hg(CN) 4 ). Although the essence, preferred embodiments, and various advantages and effects of the present invention have been described above, the present invention should not be construed to be limited to the specific embodiments described or disclosed herein. These are merely illustrative rather than restrictive. The present invention can be modified and changed in various ways by those skilled in the art without departing from the spirit thereof.

Claims (1)

【特許請求の範囲】 1 一次電池又は二次電池用の電解液において、
カリウム又はナトリウムのフエロシアン化物又は
フエリシアン化物を含有することを特徴とする電
解液。 2 フツ化物を含む特許請求の範囲1項記載の電
解液。 3 ホウ酸塩又はオルトホウ酸塩が添加された特
許請求の範囲1又は2項記載の電解液。 4 電池の電極物質の酸化物又は水酸化物を含有
する特許請求の範囲1ないし3項記載の電解液。
[Claims] 1. In an electrolytic solution for a primary battery or a secondary battery,
An electrolytic solution characterized by containing potassium or sodium ferrocyanide or ferricyanide. 2. The electrolytic solution according to claim 1, which contains a fluoride. 3. The electrolytic solution according to claim 1 or 2, to which a borate or orthoborate is added. 4. The electrolytic solution according to claims 1 to 3, which contains an oxide or hydroxide of a battery electrode material.
JP56117015A 1981-07-24 1981-07-24 Electrolyte Granted JPS5819876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117015A JPS5819876A (en) 1981-07-24 1981-07-24 Electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117015A JPS5819876A (en) 1981-07-24 1981-07-24 Electrolyte

Publications (2)

Publication Number Publication Date
JPS5819876A JPS5819876A (en) 1983-02-05
JPH0255910B2 true JPH0255910B2 (en) 1990-11-28

Family

ID=14701330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117015A Granted JPS5819876A (en) 1981-07-24 1981-07-24 Electrolyte

Country Status (1)

Country Link
JP (1) JPS5819876A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162085A (en) * 1985-01-11 1986-07-22 カシオ計算機株式会社 Image display unit
JP6234190B2 (en) * 2013-11-28 2017-11-22 Fdk株式会社 Nickel metal hydride secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963922A (en) * 1972-07-06 1974-06-20
JPS5236726A (en) * 1975-09-15 1977-03-22 Accumulateurs Fixes Cathodeeactivating substance for primary batteries
JPS5338028A (en) * 1976-09-20 1978-04-07 Mazda Motor Corp Acceleration detector for automotive engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963922A (en) * 1972-07-06 1974-06-20
JPS5236726A (en) * 1975-09-15 1977-03-22 Accumulateurs Fixes Cathodeeactivating substance for primary batteries
JPS5338028A (en) * 1976-09-20 1978-04-07 Mazda Motor Corp Acceleration detector for automotive engine

Also Published As

Publication number Publication date
JPS5819876A (en) 1983-02-05

Similar Documents

Publication Publication Date Title
US4563403A (en) Electrolyte for electro-chemical cells
US5206096A (en) Slurry for use in rechargeable metal-air batteries
US20110287304A1 (en) Rechargeable electrochemical battery cell
JP4605988B2 (en) Cathode formulation for low toxicity zinc electrodes with additives whose redox potential is negative with respect to zinc potential
US4268589A (en) Cell having improved rechargeability
JP4388276B2 (en) Cathode formulation for low toxicity zinc electrode with additives whose redox potential is positive with respect to zinc potential
US20100047697A1 (en) Lead-zinc battery
JP2005063674A5 (en)
US20130045415A1 (en) Lead-zinc battery
US7947391B2 (en) Lead-alkaline battery
JP4807923B2 (en) Zinc negative electrode formulation for rechargeable cells with alkaline electrolyte
US9147912B2 (en) Method of producing an electrical potential
Biegler et al. Accelerated testing of additives in zinc plates of nickel zinc cells
US20100062327A1 (en) Non-toxic alkaline electrolyte with additives for rechargeable zinc cells
JPH0255910B2 (en)
KR102213399B1 (en) Battery charge transfer mechanisms
JP2017004934A (en) Aluminum-manganese electrochemical cell
EP0070349B1 (en) Electrolyte for electro-chemical cells
JPS58117658A (en) Sealed lead-acid battery
CA1174728A (en) Electrolyte for electro-chemical cells
US8932753B2 (en) Lead alkaline battery
GB2083683A (en) Electrolytes for electrochemical cells
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
Gueye et al. Electrochemical energy storage technologies: state of the art, case studies, challenges, and opportunities
US3565696A (en) Acid additive for rechargeable batteries employing an organic depolarizer