JPH025569A - Static induction transistor - Google Patents

Static induction transistor

Info

Publication number
JPH025569A
JPH025569A JP15729488A JP15729488A JPH025569A JP H025569 A JPH025569 A JP H025569A JP 15729488 A JP15729488 A JP 15729488A JP 15729488 A JP15729488 A JP 15729488A JP H025569 A JPH025569 A JP H025569A
Authority
JP
Japan
Prior art keywords
region
type
drain
static induction
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15729488A
Other languages
Japanese (ja)
Inventor
Nobuhiko Muto
信彦 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15729488A priority Critical patent/JPH025569A/en
Publication of JPH025569A publication Critical patent/JPH025569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a static induction transistor, in which it grows to be non-conductive between a source and a drain through VGS of a small value, by a method wherein a part of a channel region, constituted between a source region and a drain region, is made to be of a second conductivity type. CONSTITUTION:This static induction transistor is possessed of an N-type source region 1, an N-type drain region 2, and a P-type gate region 3 and a channel region 4 is composed of a P-type first channel region 5 and an N-type second channel region 6. In a case that VDS is made to increase with VGS fixed at zero volt, it grows into a conductive state between the drain region 2 and the source region 1 when the P-type first channel region becomes depleted with the increase of a reverse bias voltage between the N-type drain region 2 and the P-gate region 3 and a potential barrier between the N-type source region 1 and the P-type first channel region 5 becomes small enough. In a state that the value of VDS is small before the transistor is put under the above potential condition, a drain current does not flow between the N-type source region 1 and the drain region 2, and the transistor can be possessed of a characteristic equivalent to that of a conventional static induction transistor under such a condition that the value of VDS is large after it is put under the above potential condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は静電誘導トランジスタに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to static induction transistors.

〔従来の技術〕[Conventional technology]

従来、静電誘導トランジスタのチャネル領域は、ソース
領域およびドレイン領域と同じ導電型の半導体層により
構成されていた。
Conventionally, the channel region of a static induction transistor has been comprised of a semiconductor layer of the same conductivity type as the source region and drain region.

第3図は従来の静電誘導トランジスタの一例の断面模式
図である。
FIG. 3 is a schematic cross-sectional view of an example of a conventional static induction transistor.

この静電誘導トランジスタは、N型ソース領域1、N型
ドレイン領域2、P型ゲート領域3およびN型チャネル
領域7とから構成されている。
This static induction transistor is composed of an N-type source region 1, an N-type drain region 2, a P-type gate region 3, and an N-type channel region 7.

このような構造をもつ従来の静電誘導トランジスタでは
、第4図に示すような電流・電圧特性が得られる。第4
図中横軸はドレイン・ソース間電圧Vos(ボルト)、
縦軸はドレイン電流In  (アンペア)であり、ゲー
ト・ソース間電圧VGS(ボルト)をパラメータとして
いる。VOSによって立上り電圧の変化するダイオード
特性となる。V、gの値はゲート・ソース間のPN接合
が順バイアスとならないように、通常0ボルト以下の負
の電圧が印加される。
In a conventional static induction transistor having such a structure, current/voltage characteristics as shown in FIG. 4 are obtained. Fourth
The horizontal axis in the figure is the drain-source voltage Vos (volts),
The vertical axis is the drain current In (ampere), with the gate-source voltage VGS (volt) as a parameter. It has diode characteristics where the rising voltage changes depending on the VOS. As for the values of V and g, a negative voltage of 0 volt or less is usually applied so that the PN junction between the gate and source does not become forward biased.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

VGSの値がOボルトに近い場合、少くともVGSが0
ボルトの場合には、チャネル領域がソース領域、ドレイ
ン領域と同じN型の領域であるため、■D5がOボルト
であってもソース・ドレイン間が導通状態となっている
。従って、VDSがOボルトから僅かに正の値をもつと
、直ちにIDが流れ始める。すなわち、第4図における
VGSが0ボルトの場合、原点付近の電流・電圧特性の
傾きが0ではない。ところが、応用上、VDSがOボル
トの近い十分小さな値のときには完全に非導通状態であ
り、VDsがある程度高い値のときになって始めて導通
状態となる特性が望まれる場合が多い。このような特性
を得るためには、従来の静電誘導トランジスタにおいて
は、VGSの値としである程度大きな負の値を印加しな
ければならないという欠点があった。
If the VGS value is close to O volts, at least VGS is 0
In the case of volts, the channel region is the same N-type region as the source and drain regions, so even if D5 is O volts, the source and drain are in a conductive state. Therefore, as soon as VDS has a slightly positive value from O volts, ID begins to flow. That is, when VGS in FIG. 4 is 0 volts, the slope of the current/voltage characteristics near the origin is not 0. However, in many applications, it is desired that the capacitor be completely non-conductive when VDS is a sufficiently small value close to O volts, and become conductive only when VDS is a certain high value. In order to obtain such characteristics, conventional electrostatic induction transistors have the disadvantage that a relatively large negative value must be applied as the VGS value.

本発明の目的は、小さなVGgの値でソース・ドレイン
間が非導通状態となる静電誘導トランジスタを提供する
ことにある。
An object of the present invention is to provide a static induction transistor in which the source and drain become non-conductive at a small VGg value.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第1導電型であるソース領域とドレイン領域
および第1導電型と反対導電型の第2導電型であるゲー
ト領域を有する静電誘導トランジスタにおいて、前記ソ
ース領域とドレイン領域との間に構成されるチャネル領
域の一部が第2導電型である事を特徴とする。
The present invention provides a static induction transistor having a source region and a drain region of a first conductivity type and a gate region of a second conductivity type opposite to the first conductivity type, in which a region between the source region and the drain region is provided. A part of the channel region formed in is of the second conductivity type.

〔作用〕[Effect]

本発明の構造によれば、ソース領域よりドレイン領域に
流れる担体に対して、チャネル領域における反対導電型
の領域が内蔵電位による電位障壁を形成するために、V
Gsが0ボルトの場合にもVDsが小さい場合にはソー
ス・ドレイン間が非導通状態であるという特性を実現で
きる。
According to the structure of the present invention, since the region of the opposite conductivity type in the channel region forms a potential barrier due to a built-in potential with respect to carriers flowing from the source region to the drain region, V
Even when Gs is 0 volts, it is possible to realize the characteristic that the source and drain are in a non-conductive state when VDs is small.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面模式図である。FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention.

この実施例の静電誘導トランジスタは、N型ソース領域
1、N型ドレイン領域2、P型ゲート領域3を有し、チ
ャネル領域4はP型の第1チヤネル領域5、N型の第2
チヤネル領域6とから構成されている。本実施例は、ド
レイン電流に寄与する担体が電子である、いわゆるN型
の静電誘導トランジスタであるが、各領域の導電型をす
べて反対にすれば当然ドレイン電流に寄与する担体が正
孔であるP型の静電誘導トランジスタを構成することが
できる。
The static induction transistor of this embodiment has an N-type source region 1, an N-type drain region 2, and a P-type gate region 3, and a channel region 4 includes a P-type first channel region 5, an N-type second channel region
It is composed of a channel region 6. This example is a so-called N-type static induction transistor in which the carriers contributing to the drain current are electrons, but if the conductivity types of each region are all reversed, the carriers contributing to the drain current are holes. A certain P-type static induction transistor can be constructed.

本実施例において、VGSがOボルト、VDSがOボル
トの熱平衡状態では、N型ソース領域1とP型第1チャ
ネル領域5の間には内蔵電位が発生し、これがN型ソー
ス領域1中の電子にとって電位障壁となるため、N型ソ
ース領域1とN型ドレイン領域2とが非導通状態となる
特性が得られる。VGSをOボルトに固定しておき、V
Dsを増加させた場合、導通状態となるのは、N型ドレ
イン領域2とP型ゲート領域3との間の逆バイアス電圧
の増加に伴いP型第1チャネル領域5が空乏化し、かつ
N型ソース領域1とP型第1チャネル領域5との間の電
位障壁が十分小さくなるときである。このような電位条
件となるまでのVDSの値の小さな状態では、N型ソー
ス領域1とN型ドレイン領域2との間にドレイン電流は
流れず、このような電位条件となった後のV05の値の
大きな状態では、従来の静電誘導トランジスタと同等の
特性を得ることが′できる。
In this embodiment, in a thermal equilibrium state where VGS is O volts and VDS is O volts, a built-in potential is generated between the N-type source region 1 and the P-type first channel region 5, and this is generated in the N-type source region 1. Since it acts as a potential barrier for electrons, a characteristic is obtained in which the N-type source region 1 and the N-type drain region 2 are in a non-conductive state. Fix the VGS to the O bolt, and
When Ds is increased, conduction occurs because the P-type first channel region 5 is depleted as the reverse bias voltage between the N-type drain region 2 and the P-type gate region 3 increases, and the N-type This is when the potential barrier between the source region 1 and the P-type first channel region 5 becomes sufficiently small. In the state where the value of VDS is small until such a potential condition is reached, no drain current flows between the N-type source region 1 and the N-type drain region 2. When the value is large, it is possible to obtain characteristics equivalent to those of conventional static induction transistors.

第2図に本実施例で得られた電流・電圧特性を示す。FIG. 2 shows the current/voltage characteristics obtained in this example.

第4図に示した従来の静電誘導トランジスタの電流・電
圧特性を横軸に沿って平行移動させたような特性が得ら
れ、VOSの小さな領域では■、5が0ボルトの場合に
おいてもドレイン電流が流れない特性が実現している。
The current-voltage characteristics of the conventional static induction transistor shown in Figure 4 are shifted in parallel along the horizontal axis, and in the small VOS region ■, even when 5 is 0 volts, the drain It has the characteristic that no current flows.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、VDSの小さな
領域ではVGSの値にかかわらずドレイン電流が流れな
い特性の静電誘導トランジスタが実現できる。また、ド
レイン電流が流れ始めるVDSの値は、ソース領域およ
びドレイン領域と反対導電型のチャネル領域の不純物濃
度または厚さを変化させることにより制御することがで
きるため、回路設計上の自由度が増す利点もある。
As described above, according to the present invention, it is possible to realize a static induction transistor having a characteristic that no drain current flows in a small VDS region regardless of the value of VGS. In addition, the value of VDS at which the drain current begins to flow can be controlled by changing the impurity concentration or thickness of the channel region of the opposite conductivity type to the source region and drain region, increasing the degree of freedom in circuit design. There are also advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面模式図、第2図は第1
図に示した実施例の電流電圧特性を表す特性図、第3図
は従来の静電誘導I・ランジスタの一例の断面模式図、
第4図は第3図に示l−た従来例の電流電圧特性を表す
特性図である。 1・・・N型ソース領域、2・・・N型ドレイン領域、
3・・・P型ゲート領域、4・・・チャネル領域 5・
・・P型第1チャネル領域、6・・・N型第2チヤネル
領域、7・・・N型チャネル領域。 代理友 弁理士 内 原  晋 尤 ? 閃
FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention, and FIG.
A characteristic diagram showing the current-voltage characteristics of the embodiment shown in the figure, FIG. 3 is a schematic cross-sectional diagram of an example of a conventional electrostatic induction I transistor,
FIG. 4 is a characteristic diagram showing the current-voltage characteristics of the conventional example shown in FIG. 1... N-type source region, 2... N-type drain region,
3...P-type gate region, 4...channel region 5.
. . . P-type first channel region, 6 . . N-type second channel region, 7 . . . N-type channel region. My agent friend, patent attorney Shinji Uchihara? Flash

Claims (1)

【特許請求の範囲】[Claims] 第1導電型であるソース領域とドレイン領域および第1
導電型と反対導電型の第2導電型であるゲート領域を有
する静電誘導トランジスタにおいて、前記ソース領域と
ドレイン領域との間に構成されるチャネル領域の一部が
第2導電型である事を特徴とする静電誘導トランジスタ
The source region and drain region of the first conductivity type and the first
In a static induction transistor having a gate region of a second conductivity type opposite to the conductivity type, a part of the channel region formed between the source region and the drain region is of the second conductivity type. Characteristics of static induction transistors.
JP15729488A 1988-06-24 1988-06-24 Static induction transistor Pending JPH025569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15729488A JPH025569A (en) 1988-06-24 1988-06-24 Static induction transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15729488A JPH025569A (en) 1988-06-24 1988-06-24 Static induction transistor

Publications (1)

Publication Number Publication Date
JPH025569A true JPH025569A (en) 1990-01-10

Family

ID=15646517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15729488A Pending JPH025569A (en) 1988-06-24 1988-06-24 Static induction transistor

Country Status (1)

Country Link
JP (1) JPH025569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369291A (en) * 1993-03-29 1994-11-29 Sunpower Corporation Voltage controlled thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369291A (en) * 1993-03-29 1994-11-29 Sunpower Corporation Voltage controlled thyristor

Similar Documents

Publication Publication Date Title
KR870006672A (en) Resonant Tunneling Heterojunction Bipolar Transistor Device
US4066917A (en) Circuit combining bipolar transistor and JFET's to produce a constant voltage characteristic
US4694313A (en) Conductivity modulated semiconductor structure
US6628161B2 (en) Reference voltage circuit
JP2011187055A (en) Band gap reference circuit and method for producing the circuit
US5151757A (en) Heterojunction field-effect transistor
US4118640A (en) JFET base junction transistor clamp
JPH025569A (en) Static induction transistor
US5497011A (en) Semiconductor memory device and a method of using the same
JPH0794988A (en) Mos type semiconductor clamping circuit
JPH01817A (en) logic circuit
JP2671790B2 (en) Differential negative resistance transistor
US5442220A (en) Constant voltage diode having a reduced leakage current and a high electrostatic breakdown voltage
JPS63252464A (en) Semiconductor device
JP3248791B2 (en) Semiconductor device
JPS602681Y2 (en) level shift circuit
JP2002190575A (en) Semiconductor device and manufacturing method thereof
JPH10261807A (en) Semiconductor diode
JPH11307786A (en) Semiconductor diode
JPH04370977A (en) Quantized field-effect transistor
JPH03209760A (en) Semiconductor device
JPH05167077A (en) Semiconductor device
JPS602876B2 (en) semiconductor rectifier circuit
JPS61207081A (en) Semiconductor device
JP2671304B2 (en) Logic circuit