JPH0255644A - Continuous casting machine for metal strip and method for producing metal strip - Google Patents

Continuous casting machine for metal strip and method for producing metal strip

Info

Publication number
JPH0255644A
JPH0255644A JP63207336A JP20733688A JPH0255644A JP H0255644 A JPH0255644 A JP H0255644A JP 63207336 A JP63207336 A JP 63207336A JP 20733688 A JP20733688 A JP 20733688A JP H0255644 A JPH0255644 A JP H0255644A
Authority
JP
Japan
Prior art keywords
endless belt
divided
cooling
cooling pad
metal ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63207336A
Other languages
Japanese (ja)
Inventor
Shigeru Ogawa
茂 小川
Shigenori Tanaka
重典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63207336A priority Critical patent/JPH0255644A/en
Publication of JPH0255644A publication Critical patent/JPH0255644A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0677Accessories therefor for guiding, supporting or tensioning the casting belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0685Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting belts

Abstract

PURPOSE:To produce a strip at high productivity by independently supporting under pressurizing back faces of endless belts with each divided cooling pad. CONSTITUTION:The cooling pads 3, 3' are composed of the divided cooling pads, which are vertically divided at least into each three pieces, and the endless belts 1, and 1' are supported under pressurizing with the cooling pads 3 and 3' at the back face thereof and introduced and run. The cooling pads introduce the endless belts 1 and 1' so that interval between 1 and 1' comes to wide at the upper part and narrow at the lower part to form an upward wider mold. Distribution of the strip thickness of the metal strip 9 to the width direction detected with a thickness detecting end 10 is transmitted to a hydraulic mechanism for controlling the pressurized force to the divided cooling pads 3-1-3-5 as a signal. Each hydraulic mechanism controls so that the divided cooling pads 3-1-3-5 come to the prescribed position by adjusting the pressurized force P1-P5. By this control, the metal strip 9 having the prescribed thickness distribution without any surface flaw, etc., can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶湯から直接薄帯を連続的に製造する。金属
薄帯連続鋳造機とその操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention continuously produces a ribbon directly from a molten metal. Concerning a metal ribbon continuous casting machine and its operating method.

[従来の技術] 溶湯から金属薄帯が直接製造できると、圧延工程が大幅
に簡易化できるために好ましい。
[Prior Art] It is preferable that a metal ribbon can be directly produced from molten metal because the rolling process can be greatly simplified.

第4図は、特開昭61−27675号公報に記載の、双
ドラム式金属薄板連続鋳造機の例である。溶湯6は、矢
印方向に回転する2本の回転ドラム18−1と18−2
で形成される湯溜り部に注入される。回転ドラムと接し
た溶湯は、m点からn点迄の間で冷却されて凝固シェル
を形成するが、18−1と18−2上にそれぞれ生成し
た凝固シェルはn点で合体して、金属薄板9となって取
り出される。この方法で生産性(トン/時間)を大きく
するためには回転ドラム18−1及び18−2を早く回
転させる事となるが、m点とn点の距離が短いために、
早く回転させると凝固シェルの厚みが不十分で、所定の
厚さの金属薄板が製造できない。又回転ドラムの直径を
大きくすると、極めて大規模な設備となる。
FIG. 4 shows an example of a twin-drum continuous thin metal plate casting machine described in Japanese Patent Application Laid-Open No. 61-27675. The molten metal 6 is transferred to two rotating drums 18-1 and 18-2 that rotate in the direction of the arrow.
The water is injected into the pool formed by the water. The molten metal in contact with the rotating drum is cooled from point m to point n to form a solidified shell, but the solidified shells formed on 18-1 and 18-2 respectively coalesce at point n and form the metal. The thin plate 9 is taken out. In order to increase productivity (tons/hour) with this method, the rotating drums 18-1 and 18-2 must be rotated quickly, but since the distance between points m and n is short,
If it is rotated too quickly, the thickness of the solidified shell will be insufficient, making it impossible to produce a thin metal plate with a predetermined thickness. Furthermore, increasing the diameter of the rotating drum results in extremely large-scale equipment.

第5図は、垂直型の双ベルト式金属薄板連続鋳造機の例
である6溶湯6は、矢印方向に回転するプーリー19−
1.19−2.19−3に張り渡されて走行する無端ベ
ルトlと、同期して張り渡されて走行する無端ベルト1
′とで形成される湯溜り部に注入される。無端ベルト1
及び1″は、裏面が冷却袋[20で冷却されているため
、無端ベルトに接した溶湯は凝固シェルを形成し、凝固
が大兄完了した金属板21として取り出される。この方
法で薄い板厚の金属板を製造するには、無端ベルト1と
1′との間隔tを狭くすることとなるが、この方法でt
を小さくし過ぎると、溶湯の注入流22が無端ベルトに
当って、無端ベルトを損傷し又金属板21の表面肌が損
われるため、好ましくない。 以上述べた如く、双ドラ
ム式金属薄板連続鋳造機は、板厚の薄い金属薄板が製造
できるが、高い生産性を得る事は容易でなく、又双ベル
ト式金属薄板連続鋳造機は、例えば第5図で19−1と
19−2との距離を大きく配する事によって、高い生産
性が得られるが、薄い金属板の製造は容易ではない。
Fig. 5 shows an example of a vertical double-belt continuous metal sheet casting machine.
1.19-2. Endless belt l running stretched across 19-3 and endless belt 1 running stretched synchronously
It is injected into the pool formed by . Endless belt 1
1'' is cooled by the cooling bag [20] on the back side, so the molten metal in contact with the endless belt forms a solidified shell, and is taken out as the metal plate 21 that has completely solidified. In order to manufacture a metal plate, the distance t between the endless belts 1 and 1' must be narrowed.
If is too small, the molten metal injection flow 22 will hit the endless belt, damaging the endless belt and damaging the surface texture of the metal plate 21, which is not preferable. As mentioned above, the twin-drum continuous thin metal sheet casting machine can produce thin metal sheets, but it is not easy to achieve high productivity, and the twin-belt continuous thin metal sheet casting machine, for example, Although high productivity can be obtained by arranging a large distance between 19-1 and 19-2 in FIG. 5, it is not easy to manufacture thin metal plates.

[発明が解決しようとする課題] 本発明は、薄い金属帯を高い生産性で製造できる金属薄
帯連続鋳造機と、その操業方法を開示するものである。
[Problems to be Solved by the Invention] The present invention discloses a continuous metal strip casting machine that can manufacture thin metal strips with high productivity, and a method for operating the same.

[11題を解決するための手段および作用]第1図は本
発明の金属薄帯連続鋳造機の模式図で、(A)は側面を
示す図、(B)はX−X断面図。
[Means and operations for solving problem 11] Fig. 1 is a schematic diagram of a continuous metal ribbon casting machine of the present invention, in which (A) is a side view and (B) is a cross-sectional view taken along line XX.

(C)はY−Y断面図である。(C) is a YY sectional view.

(1)本発明の薄帯連続鋳造機は、上広鋳型の長辺壁を
形成し矢印2の方向に無端状に回動する無端ベルト1と
、矢印2′の方向に回動する無端ベルト1′を有する。
(1) The continuous ribbon casting machine of the present invention consists of an endless belt 1 that forms the long side walls of the upper wide mold and rotates endlessly in the direction of arrow 2, and an endless belt that rotates in the direction of arrow 2'. 1'.

本発明の無端ベルトI及び1″はそれぞれ張力を付与し
て張り渡された、金属ベルトである。例えば5−1.5
−2.5−3.5−4はテンションプーリーで、無端ベ
ルト1に張力を付与し、矢印2方向に走行せしめる。本
発明で無端ベルトl及び1′は、第1図(B)及び(C
)にみられる如く、互いに対面して平行に走行する。
The endless belts I and 1'' of the present invention are metal belts stretched under tension. For example, 5-1.5
-2.5-3.5-4 is a tension pulley that applies tension to the endless belt 1 and causes it to run in the two directions of the arrows. In the present invention, the endless belts l and 1' are shown in FIGS.
), they run parallel to each other, facing each other.

無端ベルトl及び1′は、冷却パッド3及び3′により
裏面が加圧支承され誘導されて走行する。本発明で冷却
パッドは、1及び1″の間隔が上部(例えばX−X断面
)では広く、下部(例えばY−Y断面)では狭くなるよ
うに、1及び1″を誘導し上広鋳型を形成する。
The endless belts 1 and 1' are supported under pressure by cooling pads 3 and 3' on their back surfaces and guided to run. In the present invention, the cooling pad is formed by guiding 1 and 1'' so that the interval between 1 and 1'' is wide at the upper part (for example, the X-X cross section) and narrower at the lower part (for example, the Y-Y cross section). Form.

第1図で6は溶湯で、例えばノズル7を介して、無端ベ
ルトl、1′とサイド堰4,4′で形成された湯溜り部
に注入される。
In FIG. 1, the molten metal 6 is injected, for example, through a nozzle 7 into a sump formed by the endless belts 1, 1' and the side weirs 4, 4'.

無端ベルト1及び1′の裏面は、冷却パッド3及び3′
により、例えば水冷等の手段で、冷却されている。
The back surfaces of the endless belts 1 and 1' are provided with cooling pads 3 and 3'.
It is cooled by, for example, water cooling.

湯溜り部に注入された溶湯は、従って、無端ベルト1及
び1′上に凝固シェル8及び81を形、成するが。
The molten metal poured into the sump thus forms solidified shells 8 and 81 on the endless belts 1 and 1'.

湯溜り部の下端で、8及び8′は合体して、金属薄帯9
となる。
At the lower end of the pool, 8 and 8' are combined to form a thin metal strip 9.
becomes.

本発明で、例えば冷却パッド3は、縦に少なくとも3分
割された分割冷却パッドよりなる。
In the present invention, for example, the cooling pad 3 is composed of a divided cooling pad that is vertically divided into at least three parts.

第1図(B)及び(C)は、冷却パッド3が5分割され
た分割冷却パッド3−1.・・・、3−5よりなる例で
あるが、分割数は金属薄帯の幅や操業条件にあうように
設定できる。又冷却パッド3′も分割冷却パッドで構成
してもよい。
FIGS. 1(B) and 1(C) show a divided cooling pad 3-1. in which the cooling pad 3 is divided into five parts. ..., 3-5, but the number of divisions can be set to suit the width of the metal ribbon and operating conditions. Further, the cooling pad 3' may also be constituted by a divided cooling pad.

本発明では各分割冷却パッドは、無端ベルトの裏面を独
立して、例えばpH・・・、P、の加圧力で、加圧支承
する。加圧力P工、・・・、P、は、それぞれの分割冷
却パッドに独立した加圧機構、例えば油圧機構(図示し
ない)、を配する事によって達せられる。
In the present invention, each divided cooling pad independently supports the back surface of the endless belt under pressure of, for example, pH..., P. The pressurizing forces P, .

第1図(A)で、Y−Yに達した時、凝固シェル8及び
8″は金属薄帯の幅方向に均一な厚さに生成している事
が望ましい、しかし金属薄帯の幅が広い場合はX−xか
らY−Yに至る間の冷却条件の変動によって、凝固シェ
ル8及び8′の厚さは不均一となり易い、第1図(C)
は厚さが不均一な例を示す模式図である。例えば分割冷
却パッド3−2に相応する位置では凝固シェル8と8′
は薄く、8と8′の間に未凝固溶湯6が介在し、又例え
ば分割冷却パッド3−3に相応する位置では凝固シェル
8と8′は厚く生成している。凝固シェルの厚さが第1
図(C)のように不均一な際に、一体物(分割冷却パッ
ドで形成されていない)の冷却パッドを用いると、金属
薄帯に表面割れ疵が発生し易く、又金属薄帯の厚さも不
揃となり易い。本発明では冷却パッドは分割冷却パッド
よりなり、各分割冷却パッドは凝固シェルの厚さに見合
った加圧力で、それぞれ無端ベルトの裏面を独立して加
圧支承するため、金属薄帯の表面割れ疵や厚さの不揃を
防止する。
In Fig. 1 (A), when Y-Y is reached, it is desirable that the solidified shells 8 and 8'' have a uniform thickness in the width direction of the metal ribbon, but the width of the metal ribbon is If it is wide, the thickness of the solidified shells 8 and 8' tends to become non-uniform due to variations in cooling conditions from X-x to Y-Y, as shown in Figure 1 (C).
is a schematic diagram showing an example in which the thickness is non-uniform. For example, at the position corresponding to the divided cooling pad 3-2, solidified shells 8 and 8'
is thin, and the unsolidified molten metal 6 is interposed between 8 and 8', and the solidified shells 8 and 8' are thick at positions corresponding to, for example, the divided cooling pads 3-3. The thickness of the solidified shell is the first
If an integral cooling pad (not formed by split cooling pads) is used when the cooling pad is uneven as shown in Figure (C), surface cracks are likely to occur in the thin metal strip, and the thickness of the thin metal strip may be affected. Otherwise, it is likely to become uneven. In the present invention, the cooling pad is composed of divided cooling pads, and each divided cooling pad independently supports the back surface of the endless belt with a pressing force commensurate with the thickness of the solidified shell. Prevents scratches and uneven thickness.

本発明では、冷却パッド3は少なくとも3分割されてい
る。本発明者等の知見によると、金属薄帯の幅方向の両
端部(第1図(C)で3−1及び3−5相応部)は幅方
向の中央部(第1図(C)で3−2〜3−4相応部)に
比べて凝固シェルの生長が早く、従って、少なくとも3
分割された分割冷却パッドで構成する事が好ましい。
In the present invention, the cooling pad 3 is divided into at least three parts. According to the findings of the present inventors, both ends of the metal ribbon in the width direction (corresponding parts 3-1 and 3-5 in Fig. 1(C)) are located at the center part in the width direction (parts corresponding to 3-1 and 3-5 in Fig. 1(C)). 3-2 to 3-4 corresponding parts), the growth of the solidified shell is faster than that of the corresponding parts 3-2 to 3-4.
It is preferable to configure it with divided cooling pads.

(2)第1図(A)で10は板厚検出端で、金属薄帯9
の板厚を幅方向に複数箇所に亘って測定する。
(2) In Figure 1 (A), 10 is the plate thickness detection end, and the metal ribbon 9
Measure the plate thickness at multiple locations in the width direction.

本発明の請求項(2)は、前記(1)の金属薄帯連続鋳
造機と板厚検出端10を用いて、板厚分布が所望の金属
薄帯を製造する方法である。
Claim (2) of the present invention is a method for manufacturing a metal ribbon having a desired thickness distribution using the metal ribbon continuous casting machine of the above (1) and the plate thickness detection end 10.

板厚検出端10が検出した金属薄帯9の幅方向の板厚分
布は1例えば第1図(C)の分割冷却パッド3−1〜3
−5の加圧力を制御する油圧機構に信号として伝えられ
、各油圧機構は加圧力P0〜P、を調整して、分割冷却
パッド3−1〜3−5が所望の位置となるように制御す
る。この制御によって表面ワレ疵等がなく且つ所望の板
厚分布の金属薄帯9が得られる。
The plate thickness distribution in the width direction of the metal ribbon 9 detected by the plate thickness detection end 10 is 1, for example, the divided cooling pads 3-1 to 3 in FIG. 1(C).
-5 is transmitted as a signal to the hydraulic mechanism that controls the pressurizing force, and each hydraulic mechanism adjusts the pressurizing force P0 to P and controls the divided cooling pads 3-1 to 3-5 to be in the desired position. do. By this control, a metal ribbon 9 free from surface cracks and the like and having a desired thickness distribution can be obtained.

(3)本発明の請求項(3)は、前記(1)及び(2)
で述べた金属薄帯連続鋳造機と板厚検出端10を用いて
、金属薄帯を製造する他の方法である。この方法では、
各分割冷却パッドが無端ベルトに加える加圧力を、鋳片
に加わる加圧力が鋳片の幅方向で均一となるように設定
する。即ち例えば第1図(C)で、P工〜P、を同じ単
位長さ当りの加圧力に設定する。
(3) Claim (3) of the present invention is based on the above (1) and (2).
This is another method of manufacturing a metal ribbon using the metal ribbon continuous casting machine and the plate thickness detection end 10 described in . in this way,
The pressure applied to the endless belt by each divided cooling pad is set so that the pressure applied to the slab is uniform in the width direction of the slab. That is, for example, in FIG. 1(C), P to P are set to the same pressing force per unit length.

この均一加圧は金属薄帯9の表面割れ疵の発生を有効に
防止する。この方法で、板厚検出端10が検出した金属
薄帯9の板厚分布は、各分割水冷バッド3−1〜3−5
にそれぞれ独立して設けた、冷却水流量調節弁及び冷却
水温度調整器に信号として伝られ、各分割水冷パッドが
無端ベルトに注水する冷却水の水量と水温をそれぞれ独
立に制御する。第2図は分割冷却パッド(例えば3−1
)が、無端ベルト1を加圧し冷却する機構を説明する図
である。
This uniform pressurization effectively prevents the occurrence of surface cracks on the metal ribbon 9. With this method, the plate thickness distribution of the metal ribbon 9 detected by the plate thickness detection end 10 is
The signal is transmitted as a signal to a cooling water flow rate control valve and a cooling water temperature regulator, which are respectively provided independently, and each divided water cooling pad independently controls the amount and temperature of cooling water injected into the endless belt. Figure 2 shows a divided cooling pad (e.g. 3-1
) is a diagram illustrating a mechanism for pressurizing and cooling the endless belt 1.

14は固定支持部で、油圧15により分割冷却パッド3
−1はPの力で無端ベルト1を加圧する。11は分割冷
却パッド3−1内に設けた冷却水配管で、冷却水16は
冷却水温度調整器13と冷却水流量調節弁12を経て、
冷却パッド3−1に供給され、冷却水スプレーノズル1
7から無端ベルト1に吹きつける。この冷却水の水量と
水温の制御によって、第1図(C)の凝固シェル8の凝
固厚さが?A整されて、第1図(A)で、Y−Yに達し
た時の凝固シェル8は金属薄帯9の幅方向に所望の厚さ
分布で生成される事となり、望ましい寸法、形状の金属
薄帯が得られる。
14 is a fixed support part, and the divided cooling pad 3 is connected by hydraulic pressure 15.
-1 presses the endless belt 1 with a force of P. 11 is a cooling water pipe provided in the divided cooling pad 3-1, and the cooling water 16 passes through a cooling water temperature regulator 13 and a cooling water flow rate control valve 12.
The cooling water is supplied to the cooling pad 3-1 and the cooling water spray nozzle 1
Spray from 7 onto endless belt 1. By controlling the amount and temperature of the cooling water, the solidified thickness of the solidified shell 8 shown in FIG. 1(C) can be adjusted to ? A solidified shell 8 is formed with the desired thickness distribution in the width direction of the metal ribbon 9 when the solidified shell 8 reaches Y-Y in FIG. A metal ribbon is obtained.

(4)第3図は、無端ベルト1,1′の幅方向に移動さ
せて設定が可能なサイド堰4を示す図で、(A)は側面
を示す図、(B)は2−2端面図、(C)はW−W端面
図である0本発明の請求項(4)は、前記(1)又は(
2)又は(3゛)で述べた金属薄帯連続鋳造機において
、サイド堰4を、鋳造する金属薄帯の幅に合せた位置に
配する。この際サイド堰4が配された位置の分割冷却パ
ッド(第3図(C)で3−1と3−5)は、無端ベルト
に加える加圧力(第3図(C)でP8及びpg)を制御
して、無端ベルト1をサイド堰4゜4′と分割冷却パッ
ド3−1で挟みつけ、又同時に無端ベルト1′をサイド
堰4,4′と冷却パッド3′で挟みつける。無端ベルト
1や1′とサイド堰4や4′との隙間が大きいと、この
隙間に湯差しが発生して、鋳造作業の継続が困難となる
0本発明ではサイド堰4,4′を配する位置が変っても
、サイド堰が配された位置の分割冷却パッドの加圧力を
、無端ベルトとサイド堰の隙間が大きくならない程度に
大きく、又、ベルト1,1′がサイド堰を咬み込んでサ
イド堰を破損したりしない程度に小さく、独立して制御
できるところに特徴がある。
(4) Figure 3 shows the side weir 4 that can be set by moving it in the width direction of the endless belts 1, 1', (A) is a side view, and (B) is a 2-2 end face. (C) is a WW end view.Claim (4) of the present invention includes the above-mentioned (1) or (
In the metal ribbon continuous casting machine described in 2) or (3), the side weir 4 is arranged at a position that matches the width of the metal ribbon to be cast. At this time, the divided cooling pads (3-1 and 3-5 in Figure 3 (C)) at the position where the side weir 4 is placed apply pressure (P8 and pg in Figure 3 (C)) to the endless belt. The endless belt 1 is sandwiched between the side weirs 4, 4' and the divided cooling pad 3-1, and at the same time, the endless belt 1' is sandwiched between the side weirs 4, 4' and the cooling pad 3'. If the gap between the endless belt 1 or 1' and the side weir 4 or 4' is large, hot water will form in this gap, making it difficult to continue the casting operation.In the present invention, the side weirs 4 and 4' are arranged. Even if the position of the side weir changes, the pressure applied to the divided cooling pad at the position where the side weir is arranged must be large enough that the gap between the endless belt and the side weir does not become large, and that the belts 1 and 1' bite the side weir. It is characterized by being small enough not to damage the side weirs and being able to be controlled independently.

[実施例コ 実施例1 第1図のような構造を有し、ベルト肉厚1mm。[Example code] Example 1 It has a structure as shown in Figure 1, and the belt thickness is 1mm.

ベルト@ 800mm、冷却パッドの最小ギャップ部(
第1同Y−Yの位置:以後「キッシングポイント」と称
する)近傍の曲率半径が600mm 、そして冷却パッ
ドは幅方向に5等分されているような鋳造装置を用いて
、5US304のステンレス鋼組成をもつ温度1490
℃の溶鋼を、湯溜りの表面の高さがキッシングポイント
より500mmとなるように注湯し、肉厚2ma+ 、
板幅800mmの金属薄帯を製造した。当初板幅方向に
5個配置された冷却パッドはすべて同じ位置に制御した
ため鋳片の幅方向の肉厚はほぼ均一であった。これに対
して、鋳片に50μ麺の板クラウンを付与することを目
的として。
Belt @ 800mm, minimum gap of cooling pad (
The radius of curvature near the first Y-Y position (hereinafter referred to as the "kissing point") was 600 mm, and the cooling pad was made of 5US304 stainless steel using a casting machine in which the cooling pad was divided into five equal parts in the width direction. Temperature 1490 with
℃ molten steel was poured so that the height of the surface of the pool was 500mm from the kissing point, and the wall thickness was 2ma+,
A metal ribbon with a width of 800 mm was manufactured. The five cooling pads initially arranged in the width direction of the slab were all controlled at the same position, so the thickness of the slab in the width direction was almost uniform. On the other hand, the purpose was to give the slab a plate crown of 50μ noodles.

片側の冷却パッド3−1.3−5を40μrsH片側に
押し出し、冷却パッド3−2.3−4を10μm鋳片側
に押し出し、冷却パッド3−3の位置は不変としたとこ
ろ、はぼ50μ−の板クラウンを得ることができた。な
おここで片側の冷却パッドのみを動作させたのは装置を
簡単化するためであって1両側の冷却パッドを動作させ
てもよいことは云うまでもない。
When the cooling pad 3-1.3-5 on one side was pushed out to one side by 40 μrsH, and the cooling pad 3-2.3-4 was pushed out to the cast side by 10 μm, and the position of the cooling pad 3-3 remained unchanged, it was approximately 50μ- I was able to get a plate crown. Note that the reason why only the cooling pads on one side are operated is to simplify the apparatus, and it goes without saying that the cooling pads on both sides may be operated.

実施例2 上記実施例と同じ鋳造装置を用いて、当初がら80μ重
の板クラウンの鋳片を鋳造することを目的として、冷却
パッド3−1.3−5を鋳片側に64μm押し出し、冷
却パッド3−2.3−4を鋳片側に16μm押し出した
位置に位置制御して鋳造したところ、板クラウンはほぼ
80μ思が達成されたが、凝固シェル厚さの幅方向分布
と出側板厚の幅方向分布の不適合による不均一圧下が原
因となって縦割れが発生した。そこでその時発生してい
た圧下刃の平均値が、各分割パッドに均一にかがるよう
に分割パッドの位置制御を圧力制御に切り換えた。その
結果縦割れは解消されたが、鋳片の板クラウンはほぼ零
となってしまった。そこでこれまで各冷却パッドに均一
にそれぞれ2N m3/分供給していた冷却水を、冷却
パッド3−3に3Nm3/分、冷却パッド3−2.3−
4に2.7Nm3/分、冷却パッド3−1.3−5に2
Nm3/分と配分したところ、はぼ板クラウン80μm
の割れのない鋳片を得ることができた。
Example 2 Using the same casting equipment as in the above example, the cooling pad 3-1.3-5 was extruded by 64 μm to the casting side for the purpose of casting a plate crown slab weighing 80 μ from the beginning. When 3-2.3-4 was positioned and cast at a position where it was pushed out by 16 μm on the casting side, the plate crown achieved a thickness of approximately 80 μm, but the width direction distribution of the solidified shell thickness and the width of the outlet side plate thickness were Vertical cracks occurred due to uneven reduction due to mismatch in directional distribution. Therefore, the position control of the divided pads was switched to pressure control so that the average value of the rolling blade that was occurring at that time was uniformly applied to each divided pad. As a result, the vertical cracks were eliminated, but the plate crown of the slab was reduced to almost zero. Therefore, the cooling water that had been uniformly supplied to each cooling pad at 2Nm3/min, was now supplied to cooling pad 3-3 at 3Nm3/min, and cooling water was supplied to cooling pad 3-2.
2.7Nm3/min on cooling pad 3-1.3-5
When distributed as Nm3/min, the crown of the plate was 80 μm.
We were able to obtain a slab without any cracks.

実施例3 上記実施例と同じ鋳造装置を用いて、板幅600Ill
+の鋳片を鋳造するため、第3図のようにサイド堰をそ
れぞれ100mmずつ鋳片側に押し込んだ位置に設定し
た。このとき冷却パッド3−2〜3−4は位置制御とし
たが、サイド堰を押す形となる冷却パッド3−1および
3−5は湯差しを避け、さらにサイド堰を咬み込まない
程度の押し力として、150kgの押し力を常に加える
ように圧力制御とした。この結果、湯差しを生ずること
もなく、板幅600m++++の鋳片を順調に鋳造する
ことができた。
Example 3 Using the same casting equipment as in the above example, a plate width of 600 Ill was made.
In order to cast a positive slab, the side weirs were set at positions that were pushed 100 mm into each side of the cast as shown in Figure 3. At this time, the positions of the cooling pads 3-2 to 3-4 were controlled, but the cooling pads 3-1 and 3-5, which push the side weirs, should be pressed to avoid the hot water and not to bite the side weirs. The pressure was controlled so that a pushing force of 150 kg was constantly applied. As a result, slabs with a plate width of 600m+++++ could be smoothly cast without producing hot water.

[発明の効果] 本発明では冷却パッドの形状を、第1図(A)のX−X
とY−Yとの間隔を長く配する事により、高い生産性で
鋳造しても必要な厚さの凝固シェルが形成でき、従って
金属薄帯を高速度で安定して生産する事ができる。
[Effects of the Invention] In the present invention, the shape of the cooling pad is
By arranging a long interval between Y and Y, a solidified shell of the necessary thickness can be formed even when casting is performed with high productivity, and thus metal ribbon can be stably produced at high speed.

本発明では板厚の薄い金属薄帯を生産する事ができるが
、本発明では1と1′で上広鋳型を形成するため、薄い
板厚の金属薄帯を鋳造しても無端ベルトを損傷したり、
金属薄板の表面を損う事がない。
In the present invention, it is possible to produce thin metal strips, but since the present invention forms a wide upper mold with 1 and 1', even if thin metal strips are cast, the endless belt may be damaged. or
It does not damage the surface of the thin metal plate.

本発明は凝固シェルを無理なく加圧するために、金属薄
帯の割れ疵の発生を防止できる。
The present invention can prevent the occurrence of cracks in the metal ribbon because the solidified shell is pressurized without strain.

本発明では凝固シェルの厚さの均一化が図られるために
、寸法精度のよい金属薄帯が得られる。
In the present invention, since the thickness of the solidified shell is made uniform, a metal ribbon with good dimensional accuracy can be obtained.

本発明ではサイド堰は製造する金属薄帯の幅に合せた位
置に配することができるため、鋳造する金属帯の幅を変
更する際の設備の調整が容易である。
In the present invention, the side weir can be placed at a position that matches the width of the metal ribbon to be manufactured, so it is easy to adjust the equipment when changing the width of the metal ribbon to be cast.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明薄帯連続鋳造機の模式図、第2図は分割
冷却パッドが、無端ベルトを加圧し冷却する機構の説明
図。 第3図は、無端ベルトの幅方向に移動させて設定が可能
なサイド堰の例を示す図、 第4図は回転ドラム式金属薄板連続鋳造機の例を示す図
。 第5図は双ベルト式金属薄板連続鋳造機の例を示す図 である。 1.1″:無端ベルト、 2.2’ :無端ベルトの走
行方向、 3.3’ :冷却パッド、 4:サイド堰、
5:テンションプーリー、 6:溶湯、 7:ノズル、
 8:凝固シェル、 9:金属薄帯、10:板厚検出端
、 11:冷却水配管 12:冷却水流量調節弁、 1
3:冷却水温度調整器、14:固定支持部、 15:油
圧、 16:冷却水。 17:冷却水スプレーノズル。 第1図 (A) 第2図 (X−X図 ) (y−y図 ) 第 図 (Z−Z図) (W−W図) 第 図 第 図
FIG. 1 is a schematic diagram of the continuous ribbon casting machine of the present invention, and FIG. 2 is an explanatory diagram of a mechanism in which divided cooling pads pressurize and cool an endless belt. FIG. 3 is a diagram showing an example of a side weir that can be set by moving it in the width direction of an endless belt, and FIG. 4 is a diagram showing an example of a rotating drum type continuous thin metal sheet casting machine. FIG. 5 is a diagram showing an example of a twin-belt type continuous thin metal plate casting machine. 1.1″: Endless belt, 2.2′: Running direction of endless belt, 3.3′: Cooling pad, 4: Side weir,
5: Tension pulley, 6: Molten metal, 7: Nozzle,
8: Solidified shell, 9: Metal ribbon, 10: Plate thickness detection end, 11: Cooling water piping 12: Cooling water flow rate control valve, 1
3: Cooling water temperature regulator, 14: Fixed support part, 15: Oil pressure, 16: Cooling water. 17: Cooling water spray nozzle. Figure 1 (A) Figure 2 (XX diagram) (Y-Y diagram) Figure (Z-Z diagram) (W-W diagram) Figure

Claims (4)

【特許請求の範囲】[Claims] (1)上広鋳型の長辺壁を形成して矢印2の方向に回動
する無端ベルト1と矢印2′の方向に回動する無端ベル
ト1′と、無端ベルト1及び1′の裏面を加圧支承して
誘導する冷却パッド3及び3′を有する金属薄帯連続鋳
造機において、冷却パッドが縦に少なくとも3分割され
た分割冷却パッドよりなり、各分割冷却パッドは無端ベ
ルトの裏面を独立して加圧支承する事を特徴とする、金
属薄帯連続鋳造機。
(1) Endless belt 1 that forms the long side walls of the upper wide mold and rotates in the direction of arrow 2, endless belt 1' that rotates in the direction of arrow 2', and the back surfaces of endless belts 1 and 1'. In a metal ribbon continuous casting machine having cooling pads 3 and 3' guided by pressure bearing, the cooling pad is divided into at least three vertically divided cooling pads, and each divided cooling pad has an independent back surface of an endless belt. A continuous casting machine for metal ribbon, which is characterized by pressurized support.
(2)上広鋳型の長辺壁を形成して矢印2の方向に回動
する無端ベルト1と矢印2′の方向に回動する無端ベル
ト1′と、無端ベルト1及び1′の裏面を加圧支承して
誘導する冷却パッド3及び3′を有し、冷却パッドは縦
に少なくとも3分割された分割冷却パッドよりなり、各
分割冷却パッドは無端ベルトの裏面を独立して加圧支承
する金属薄帯連続鋳造機において、取り出される金属薄
帯の幅方向の板厚分布を測定し、該測定結果に基づいて
各分割冷却パッドによる無端ベルトの加圧支承位置を制
御して、所望の板厚分布の金属薄帯を製造する方法。
(2) Endless belt 1 that forms the long side walls of the upper wide mold and rotates in the direction of arrow 2, endless belt 1' that rotates in the direction of arrow 2', and the back surfaces of endless belts 1 and 1'. It has cooling pads 3 and 3' which are guided by pressure support, and the cooling pad is made up of at least three divided cooling pads vertically, and each divided cooling pad independently supports the back surface of the endless belt by pressure. In a continuous metal ribbon casting machine, the thickness distribution in the width direction of the metal ribbon to be taken out is measured, and based on the measurement results, the pressure support position of the endless belt by each divided cooling pad is controlled to form the desired sheet. A method of producing metal ribbon with thickness distribution.
(3)上広鋳型の長辺壁を形成して矢印2の方向に回動
する無端ベルト1と矢印2′の方向に回動する無端ベル
ト1′と、無端ベルト1及び1′の裏面を加圧支承して
誘導する冷却パッド3及び3′を有し、冷却パッドは縦
に少なくとも3分割された分割冷却パッドよりなり、各
分割冷却パッドは無端ベルトの裏面を独立して加圧支承
する金属薄帯連続鋳造機において、各分割冷却パッドの
無端ベルトに加える加圧支承力を鋳片に加わる加圧力が
鋳片の幅方向で均一となるように設定し、取り出される
金属薄帯の幅方向の板厚分布を測定し、該測定結果に基
づき各分割冷却パッドが無端ベルトに加える冷却水の温
度および又は流量を制御して、所望の板幅分布の金属薄
帯を製造する方法。
(3) Endless belt 1 that forms the long side walls of the upper wide mold and rotates in the direction of arrow 2, endless belt 1' that rotates in the direction of arrow 2', and the back surfaces of endless belts 1 and 1'. It has cooling pads 3 and 3' which are guided by pressure support, and the cooling pad is made up of at least three divided cooling pads vertically, and each divided cooling pad independently supports the back surface of the endless belt by pressure. In a continuous metal ribbon casting machine, the pressure bearing force applied to the endless belt of each divided cooling pad is set so that the pressure applied to the slab is uniform in the width direction of the slab, and the width of the metal ribbon to be taken out is adjusted. A method of manufacturing a metal ribbon with a desired width distribution by measuring the thickness distribution in the direction and controlling the temperature and/or flow rate of the cooling water added to the endless belt by each divided cooling pad based on the measurement results.
(4)上広鋳型の長辺壁を形成して矢印2の方向に回動
する無端ベルト1と矢印2′の方向に回動する無端ベル
ト1′と、無端ベルト1及び1′の裏面を加圧支承して
誘導する冷却パッド3及び3′を有し、冷却パッドは縦
に少なくとも3分割された分割冷却パッドよりなり、各
分割冷却パッドは無端ベルトの裏面を独立して加圧支承
する金属薄帯連続鋳造機において、無端ベルト1の幅方
向に移動可能なサイド堰4を鋳造する金属薄帯の幅に合
せた位置に配し、サイド堰4が配された位置の分割冷却
パッドが無端ベルトに加える加圧支承力を制御して、無
端ベルトをサイド堰4と冷却パッドで挟みつける事を特
徴とする、板幅の異なる金属薄帯を製造する方法
(4) Endless belt 1 that forms the long side walls of the upper wide mold and rotates in the direction of arrow 2, endless belt 1' that rotates in the direction of arrow 2', and the back surfaces of endless belts 1 and 1'. It has cooling pads 3 and 3' which are guided by pressure support, and the cooling pad is made up of at least three divided cooling pads vertically, and each divided cooling pad independently supports the back surface of the endless belt by pressure. In a continuous metal ribbon casting machine, a side weir 4 movable in the width direction of the endless belt 1 is arranged at a position that matches the width of the metal ribbon to be cast, and a divided cooling pad at the position where the side weir 4 is arranged is A method for manufacturing thin metal strips with different widths, characterized by controlling the pressure bearing force applied to the endless belt and sandwiching the endless belt between a side weir 4 and a cooling pad.
JP63207336A 1988-08-23 1988-08-23 Continuous casting machine for metal strip and method for producing metal strip Pending JPH0255644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207336A JPH0255644A (en) 1988-08-23 1988-08-23 Continuous casting machine for metal strip and method for producing metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207336A JPH0255644A (en) 1988-08-23 1988-08-23 Continuous casting machine for metal strip and method for producing metal strip

Publications (1)

Publication Number Publication Date
JPH0255644A true JPH0255644A (en) 1990-02-26

Family

ID=16538058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207336A Pending JPH0255644A (en) 1988-08-23 1988-08-23 Continuous casting machine for metal strip and method for producing metal strip

Country Status (1)

Country Link
JP (1) JPH0255644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106270455A (en) * 2016-08-30 2017-01-04 北京航星机器制造有限公司 A kind of preparation method of large-scale vertical-parting self-curing mo(u)ld
US20190054519A1 (en) * 2017-08-16 2019-02-21 Novelis Inc. Belt casting path control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106270455A (en) * 2016-08-30 2017-01-04 北京航星机器制造有限公司 A kind of preparation method of large-scale vertical-parting self-curing mo(u)ld
US20190054519A1 (en) * 2017-08-16 2019-02-21 Novelis Inc. Belt casting path control
US10906093B2 (en) * 2017-08-16 2021-02-02 Novelis Inc. Belt casting path control

Similar Documents

Publication Publication Date Title
JP3274684B2 (en) Rolled sheet casting
US3812900A (en) Method of operating a multi-roll casting machine during and after freezing of the liquid core of the strand
EP0804981A1 (en) Continuous casting method and apparatus therefor
US4921037A (en) Method and apparatus for introducing differential stresses in endless flexible metallic casting belts for enhancing belt performance in continuous metal casting machines
JPS6017625B2 (en) Twin-roll quenched ribbon manufacturing method and device
KR100550239B1 (en) Continuous casting installation and method for continuous casting of a thin strip
JPH0255644A (en) Continuous casting machine for metal strip and method for producing metal strip
JPH07102429B2 (en) Crown control method in thin casting
JPS6064754A (en) Method and device for casting continuously light-gage hoop
JP2894713B2 (en) Metal strip continuous casting machine
KR100907570B1 (en) Vertical continuous casting method of steel band
JPS63313641A (en) Apparatus for controlling cutting weight of cast slab
JPS61195764A (en) Method and device for controlling pouring rate of continuous casting machine for thin sheet
JPH02112854A (en) Metal strip continuous casting apparatus
JP2898292B2 (en) Metal ribbon continuous casting machine
JPH05293602A (en) Device and method for continuously casting thin metallic sheet
JPH0246960A (en) Method and apparatus of continuous casting
JPS62156051A (en) Production of twin roll type rapid cooled thin hoop metal
JPS61154744A (en) Belt type continuous casting machine
JPS62156050A (en) Production of twin roll type rapid cooled thin hoop metal
JP2582952B2 (en) Metal ribbon continuous casting machine
JPH0494847A (en) Metal strip continuous caster
JPS61186108A (en) Method and installation for continuously manufacturing sheet
JPH02211945A (en) Apparatus for continuously casting metal strip
JPS5741868A (en) Method for controlling pouring condition in continuous casting