JPH0255516A - High speed removal of short circuit - Google Patents

High speed removal of short circuit

Info

Publication number
JPH0255516A
JPH0255516A JP20416188A JP20416188A JPH0255516A JP H0255516 A JPH0255516 A JP H0255516A JP 20416188 A JP20416188 A JP 20416188A JP 20416188 A JP20416188 A JP 20416188A JP H0255516 A JPH0255516 A JP H0255516A
Authority
JP
Japan
Prior art keywords
short
bypass
circuit
current
bypass conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20416188A
Other languages
Japanese (ja)
Other versions
JPH0789701B2 (en
Inventor
Terukazu Sekiguchi
関口 輝一
Kunikazu Izumi
泉 邦和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP63204161A priority Critical patent/JPH0789701B2/en
Publication of JPH0255516A publication Critical patent/JPH0255516A/en
Publication of JPH0789701B2 publication Critical patent/JPH0789701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To prevent a device against the spreading of accident at the fault point of short circuit and development to service interruption by shorting the circuit on the load side of a fuse and by quickly reducing the current flowing to the fault point. CONSTITUTION:When a shorting fault occurs on the load side, the current +I flows to an immobile bypass conductor 11 and a magnetic field BA is generated, while to a mobile bypass conductor 12 the backward current -I flows and a magnetic field BB is generated. However, the generated field BB will hardly act on the immobile bypass conductor 11 blocked by magnetic transmitting bodies 15, so that only the mobile bypass conductor 12 will be positioned in the magnetic field due to the generated field BA between the facing edges of a cut section of the magnetic transmitting bodies 15. On that account, on the mobile bypass conductor 12 the downward force F will act which separates it from the immobile bypass conductor 11 by the current -I flowing there and the field BA. The mobile bypass contact 12a is thereby lowered downward and comes into contact with an immobile bypass contact 11a. A bypass circuit small in resistance value is therefore formed to the power source side of shorting fault point, so that the spreading of accident disaster is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば低圧配電系統の各需用家の分岐点に挿入
し2、需用室側で発生した短絡故障部への電流の流入を
抑止して事故の拡大を最小限に噴上めると共に、引込線
用ヒユーズあるいは高圧側ヒユーズのような短絡保護装
置の遮断動作の促進を図って、短絡事故を配電系統から
迅速に除去して災害を最小限にくい止めるとともに広域
停電への発展を防止する高速短絡除去方法に関するもの
である。
Detailed Description of the Invention (Industrial Field of Application) The present invention can be inserted into the branch point of each customer in a low-voltage power distribution system, for example, and prevent current from flowing into a short-circuit failure part that occurs in the customer room. In addition to suppressing the spread of accidents and promoting the cutoff of short-circuit protection devices such as drop-in line fuses or high-voltage fuses, short-circuit accidents can be quickly removed from the power distribution system to prevent disasters. The present invention relates to a high-speed short circuit removal method that minimizes the occurrence of short circuits and prevents the development of widespread power outages.

(従来技術とその問題点) 配電系統から需用家に電力を供給する場合、般には第1
図のように高圧配電線0)の電圧を柱上変圧器(2)に
より降圧して低圧配電線(3)に導いたのち、引込線(
4)により電力量計(5)を介して需用家(6)に供給
することが行われる。
(Prior art and its problems) When supplying electricity from the distribution system to consumers, generally the first
As shown in the figure, the voltage of the high voltage distribution line 0) is stepped down by the pole transformer (2) and led to the low voltage distribution line (3), and then the voltage of the drop line (
4), the electricity is supplied to the consumer (6) via the electricity meter (5).

ところでこの場合引込線(4)以降における短絡事故に
よる障害の除去のため、一般に第1図に示すように引込
線(4)の分岐部(4a)の近傍に直列に引込用ヒユー
ズ(7)を設けることが多く行われている方法である。
By the way, in this case, in order to eliminate failures due to short-circuit accidents after the lead-in line (4), generally a lead-in fuse (7) is provided in series near the branch part (4a) of the lead-in line (4), as shown in Figure 1. This is the method that is often used.

しかし低圧配電線において使用される引込用ヒユーズは
■系統運用上種類が限られていること、■ 引込用ヒユ
ーズの設置部から電力量計までの電線長(線路抵抗)が
各需用室毎にまちまちであること、■短絡故障の状況が
多岐に亘ること、■ 場合によっては高圧側ヒユーズの
みであること、などから短絡電流とヒユーズの定格電流
との電流協調がとれず、予想以上にヒユーズの動作時間
が延びて災害の拡大や停電の発生などを招く場合がある
。例えば電力量計は一定期間毎に検定品と交換されるが
、この場合引込線には断路器を備えていないのが通常で
あるため、電力量計の交換を活線状態のままで行わざる
を得ない。このため例えば交換作業時の電線着脱中にお
いて、作業者のミスによりアーク短絡が発生したような
ときには、短絡電流がアーク電圧により大幅に制限され
て引込用ヒユーズの遮断動作の遅れを招く。このためア
ーク熱により家庭の壁を焦がしたり、作業者が火傷を負
う事故の発生を招く場合がある。
However, the types of lead-in fuses used in low-voltage distribution lines are limited in terms of system operation; The short circuit current and the rated current of the fuse cannot be coordinated due to the fact that short circuit failures occur in a wide variety of situations, and in some cases it is only the high voltage side fuse. The operating time may be extended, leading to the spread of disasters and power outages. For example, a watt-hour meter is replaced with a certified one at regular intervals, but in this case, the service line is usually not equipped with a disconnect switch, so the watt-hour meter must be replaced while the line is still live. I don't get it. Therefore, for example, when an arc short circuit occurs due to an operator's error while attaching or removing electric wires during replacement work, the short circuit current is significantly limited by the arc voltage, resulting in a delay in the disconnection operation of the lead-in fuse. As a result, the arc heat may scorch the walls of homes or cause accidents in which workers may suffer burns.

(発明の目的) 本発明は故障点に流れる短絡電流の急減と引込用ヒユー
ズの遮断動作の迅速化を小型安価な装置により図りうる
方法を提案し、上記のような短絡故障点における災害の
拡大や停電への発展を防止したものである。
(Objective of the Invention) The present invention proposes a method that can rapidly reduce the short-circuit current flowing at the fault point and speed up the breaking operation of the lead-in fuse using a small and inexpensive device, and prevent the spread of disasters at the short-circuit fault point as described above. This prevents the situation from developing into power outages or power outages.

(問題点を解決するための本発明の手段)第2図に示す
ように分岐点(4a)以降の引込線(4)間(以下負荷
側と呼ぶ場合がある)に短絡事故Sが発生した場合、短
絡電流は電源をもたない需用室側から供給されることな
く、低圧配電線(3)側(以下電源側と呼ぶ場合がある
)からのみ供給される。従って短絡事故発生後直ちに短
絡事故発生点の電源側である引込用ヒユーズ(7)の需
用家(6)側において急速に強制短絡して、電源から見
たインピーダンスが短絡故障時のそれに比して著しく少
ないバイパス回路Bを作れば、短絡故障点Sに流れる電
流を象、減することができ、前記したようなアークの象
、速な消滅を図ってアークにより需用家の壁を焦がした
りするのを防ぐことができる。
(Means of the present invention for solving the problem) When a short circuit accident S occurs between the service line (4) after the branch point (4a) (hereinafter sometimes referred to as the load side) as shown in Figure 2. The short circuit current is not supplied from the utility room side which does not have a power source, but is supplied only from the low voltage distribution line (3) side (hereinafter sometimes referred to as the power source side). Therefore, immediately after a short circuit occurs, a forced short circuit occurs quickly on the consumer (6) side of the lead-in fuse (7), which is the power supply side where the short circuit occurred, and the impedance seen from the power supply becomes smaller than that at the time of the short circuit. By creating a bypass circuit B with a significantly smaller amount, it is possible to reduce the current flowing to the short-circuit fault point S, and prevent the arc mentioned above from burning the wall of the consumer by quickly extinguishing it. You can prevent it from happening.

またバイパス回路により、短絡故障のみの場合に比べて
大きな電流を引込用ヒユーズ(7)に流すことができる
。従って溶断を迅速確実として遮断動作の迅速化が図ら
れ、短絡故障の発生した需用家(6)を配電系統から迅
速に除去して、短絡故障の継続による他需用家の停電を
招くおそれも少な(できる。
Furthermore, the bypass circuit allows a larger current to flow through the lead-in fuse (7) than in the case of only a short-circuit failure. Therefore, the cut-off operation can be made quickly and reliably, and the customer (6) where the short-circuit failure has occurred can be quickly removed from the power distribution system, thereby preventing the risk of causing a power outage for other customers due to the continuation of the short-circuit failure. There are also few (can be done).

一方平行に間隔をおいて配置した例えば10crn長の
2本の導体に1000 A以上の電流を流したとき、こ
の流通電流とこれにより生ずる発生磁界との相互作用(
フレミングの左手の法則)にもとづき、導体には第3図
に示す充分な駆動力が働いて移動させる。
On the other hand, when a current of 1000 A or more is passed through two conductors, for example, 10 crn long, arranged in parallel with an interval, the interaction between this flowing current and the generated magnetic field (
Based on Fleming's left-hand rule), a sufficient driving force as shown in FIG. 3 acts on the conductor to move it.

従って以上から前記の引込線の引込用ヒユーズの負荷側
の両線にそれぞれ導体を接続すれば、短絡によって一般
に生ずる数1000Aの電流が流れたとき、電磁力の作
用により導体をその間隔を変えるように運動させること
ができ、導体のそれぞれに接点を設けて電磁力作用時こ
れを閉成させるようにすれば、電流の検出器を設けたり
、動作電源を必要とすることなく、導体それ自身で電流
を検知して働く簡単小型安価なバイパス回路を作り得る
Therefore, from the above, if a conductor is connected to both wires on the load side of the lead-in fuse of the above-mentioned lead-in line, when a current of several thousand amperes, which generally occurs due to a short circuit, flows, the distance between the conductors will be changed by the action of electromagnetic force. By providing a contact point on each conductor and closing it when an electromagnetic force is applied, the conductor itself can generate current without requiring a current detector or an operating power source. You can create a simple, small, and inexpensive bypass circuit that detects and works.

本発明は以上の着想にもとづくもので、次に実施例図を
用いて具体的に説明する。
The present invention is based on the above-mentioned idea, and will be specifically explained below using embodiment figures.

(実施例) 第4図は本発明の一実施例図である。図において、(1
1)は不動バイパス導体、(lla)はその一端に近い
部分に上方に向けて設けた不動バイパス接点、(llb
)は引込線接続端子、(11,c)は引込用ヒユーズ側
接続端子、(12)は可動バイパス導体、(12a)は
可動バイパス接点であって、上記不動バイパス接点(l
la)と対向する折返し部を有し、導体(12)上に設
けられる。(12b)は引込線接続端子、(12C)は
引込用ヒユーズ側接続端子であって、接続端子(12c
)には一端が不動バイパス導体(11)の方向へ可動し
うるように、可動バイパス導体(12)の端部が軸止め
(12d)され、かつ電流の流通を阻害しないように接
続端子(12c)と可動バイパス導体(11)間は、例
えば可撓性をもつ金属編組体(12e)により接続され
る。また接続端子(12b) と可動バイパス導体(1
2)の他端とは、可動バイパス導体が不動バイパス導体
(11)側に動いて接点(lla) (12a)が接触
しうるように金属接続体(12f) 、例えば可撓性を
もつ金属編組体によって接続される。(13)は固定位
置決め絶縁体であって、不動バイパス導体(11)と可
動バイパス導体(12)とを接点(lla)と(12a
)とが対向するように所定の間隔で固定する。(14)
は可動位置決め絶縁体であって、不動バイパス導体(1
1)を固定し、また可動バイパス導体(12)を支承穴
(14a)により動きうるように支承する。(15)は
磁気伝達体、(15a)は可動バイパス導体の挿入用割
部であって、可動バイパス導体(12)が割部(15a
)内に位置し、かつ不動バイパス導体(11)を包囲す
るように位置決め絶縁体(13) (14)に固定され
る。
(Embodiment) FIG. 4 is a diagram showing an embodiment of the present invention. In the figure, (1
1) is an immovable bypass conductor, (lla) is an immovable bypass contact provided facing upward near one end of the conductor, (llb
) is a lead-in line connection terminal, (11, c) is a lead-in fuse side connection terminal, (12) is a movable bypass conductor, and (12a) is a movable bypass contact, which is connected to the stationary bypass contact (l).
It has a folded part facing la) and is provided on the conductor (12). (12b) is a lead-in line connection terminal, and (12C) is a lead-in fuse side connection terminal.
), the end of the movable bypass conductor (12) is fixed to the shaft (12d) so that one end can move in the direction of the immovable bypass conductor (11), and the connecting terminal (12c) is fixed to the shaft so as not to impede the flow of current. ) and the movable bypass conductor (11) are connected, for example, by a flexible metal braid (12e). Also, the connecting terminal (12b) and the movable bypass conductor (1
2) The other end is a metal connecting body (12f), such as a flexible metal braid, so that the movable bypass conductor can move toward the stationary bypass conductor (11) and contact the contact (lla) (12a). Connected by the body. (13) is a fixed positioning insulator, which connects the immovable bypass conductor (11) and the movable bypass conductor (12) to the contact point (lla) and (12a).
) are fixed at a predetermined interval so that they are facing each other. (14)
is a movable positioning insulator and a stationary bypass conductor (1
1) is fixed, and the movable bypass conductor (12) is movably supported by the bearing hole (14a). (15) is a magnetic transmission body, (15a) is a split part for inserting a movable bypass conductor, and the movable bypass conductor (12) is a split part (15a).
) and are fixed to the positioning insulators (13) (14) so as to surround the stationary bypass conductor (11).

(16)はケースであって、以上でバイパス装置Bを形
成し、これは接続端子(llb) (llc) 、 (
12b) (12c)とにより、第2図のように引込み
用ヒユーズ(7)の負荷側引込線の両線(4b) (4
c)に直列に接続される。
(16) is a case, and the above forms a bypass device B, which has connection terminals (llb) (llc), (
12b) (12c), both wires (4b) (4) of the load side lead-in wire of the lead-in fuse (7) are connected as shown in Figure 2.
c) connected in series.

(作用) 高速バイパス装置Bの需用室側において短絡故障が発生
すると、不動バイパス導体(11)には、第4図中の矢
印方向に電流(+■)が流れ、可動バイパス導体(12
)には逆方向に電流(−■)が流れる。
(Function) When a short-circuit failure occurs on the utility room side of the high-speed bypass device B, a current (+■) flows through the immovable bypass conductor (11) in the direction of the arrow in FIG.
), current (-■) flows in the opposite direction.

このため不動バイパス導体(11)の周囲には第5図(
a)中の矢印方向の磁界BAが発生し、可動バイパス導
体(12)には不動バイパス導体(11)と逆方向の磁
界Bl+を発生ずる。しかし発生磁界BIlは磁気伝達
体(15)にさえぎられて殆ど不動バイパス導体(11
)に作用せず、可動バイパス導体のみが第5図(b)の
ように発生磁界B、による磁気伝達体(15)の対向す
る割部端間の磁界中に位置することになる。
For this reason, the area around the immovable bypass conductor (11) is as shown in Fig. 5 (
A magnetic field BA in the direction of the arrow in a) is generated, and a magnetic field Bl+ in the opposite direction to that of the stationary bypass conductor (11) is generated in the movable bypass conductor (12). However, the generated magnetic field BIl is blocked by the magnetic transmitter (15) and is almost entirely blocked by the stationary bypass conductor (11).
), and only the movable bypass conductor is located in the magnetic field between the opposing split ends of the magnetic transfer body (15) due to the generated magnetic field B, as shown in FIG. 5(b).

このため可動バイパス導体(12)には、ここに流れる
電流と磁界Bとにより不動バイパス導体(11)から離
す下方への力Fが作用し、これにより可動バイパス接点
(12a)も下方に下がって不動バイパス接点(Ila
)に接触する。従って短絡故障発生点の電源側には抵抗
値の極めて小さいバイパス回路Bが形成されるので短絡
事故災害の不拡大などを図りうる。
Therefore, a downward force F is applied to the movable bypass conductor (12) due to the current flowing therein and the magnetic field B, which causes it to separate from the immovable bypass conductor (11), and as a result, the movable bypass contact (12a) also moves downward. Fixed bypass contact (Ila)
). Therefore, since a bypass circuit B having an extremely small resistance value is formed on the power supply side at the point where the short circuit failure occurs, it is possible to prevent short circuit accidents from spreading.

なお以」二の例は反撥力を利用したものであるが、例え
ば第6図のように可動バイパス導体(12)をループ状
に折返して短絡故障発生時不動バイパス導体(11)と
可動バイパス導体(12)に同方向の電流を流すことに
より、可動バイパス導体(12)に不動バイパス導体(
11)方向への吸引電磁力Fを発生させ、それぞれの導
体面に対向配置された接点(Ila) と(12a)を
接触させて引込線(4a) (4b)間にバイパス回路
を作るようにすることもできる。なお第6図中の(16
)は磁気遮蔽体であって、可動バイパス導体(12)の
不動バイパス導体(11)との対向部分以外の部分を覆
って、この部分により生じた磁界が可動バイパス導体(
12)が位置する磁界に影響を与えないようにして動作
の確実さを増すようにしたものであって、これは実施例
Iの磁気伝達体(15)と共に省略できる。
The second example uses repulsive force, but for example, as shown in Figure 6, the movable bypass conductor (12) is folded back into a loop so that when a short circuit occurs, the immovable bypass conductor (11) and the movable bypass conductor By passing current in the same direction through (12), the movable bypass conductor (12) is connected to the immovable bypass conductor (
11) Generate an attractive electromagnetic force F in the direction and bring the contacts (Ila) and (12a) placed opposite each other into contact with each other to create a bypass circuit between the drop-in wires (4a) and (4b). You can also do that. Note that (16
) is a magnetic shield that covers the movable bypass conductor (12) other than the portion facing the immovable bypass conductor (11), and the magnetic field generated by this portion is transmitted to the movable bypass conductor (
12) does not affect the magnetic field in which it is located, thereby increasing the reliability of operation, and can be omitted together with the magnetic transmitting member (15) of Embodiment I.

また以上の実施例においては2本のバイパス導体のうち
1本を可動としたが、2木のバイパス導体を共に可動と
することにより、短絡故障電流が流れてから接点が接触
するまでの時間を短縮することができる。
In addition, in the above embodiment, one of the two bypass conductors was made movable, but by making both of the two bypass conductors movable, the time from when the short circuit fault current flows until the contacts make contact can be increased. Can be shortened.

また以上では引込用ヒユーズの負荷側の短絡故障に本発
明を使用した場合について説明したが、高圧配系統に適
用することによって、例えば絶縁部分の劣化を生じた場
合、或いは落雷等の異常電圧によりアーク短絡故障が発
生したような場合に効果を挙げることができる。また更
に一般的な電気配線回路にも応用が可能である。
In addition, although the present invention has been described above for a short-circuit failure on the load side of a lead-in fuse, by applying it to a high-voltage distribution system, it can be applied to a high-voltage distribution system, for example, when deterioration of the insulation part occurs, or when abnormal voltage due to lightning strikes etc. This can be effective in cases where an arc short circuit failure occurs. Furthermore, it can also be applied to general electrical wiring circuits.

(発明の効果) 以」二のように本発明は短絡故障を自ら検出してヒユー
ズの負荷側で回路を短絡し、これにより短絡故障点に流
れる電流を急速に小さくすると共に、ヒユーズの遮断動
作の促進を図ってヒユーズの動作遅れのために生ずる被
害の波及を最小限にとどめことができ、しかも装置は小
型簡単安価であって各引込線へ使用も容易であるので、
特に配電線の保守管理に大きな寄与をなすものである。
(Effects of the Invention) As described in Section 2 below, the present invention detects a short-circuit fault by itself and shorts the circuit on the load side of the fuse, thereby rapidly reducing the current flowing to the short-circuit fault point and preventing the fuse from breaking. In addition, the device is small, simple, and inexpensive, and can be easily used on each service line.
In particular, it makes a significant contribution to the maintenance and management of power distribution lines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配電系統図、 の原理説明図、第4図。 例図とその作用説明図、 施例図である。 第2図、第3図は本発明 第5図は本発明の一実施 第6図は本発明の他の実 Figure 1 is a power distribution system diagram. Fig. 4 is a diagram explaining the principle of . Example diagram and its action diagram, It is an example figure. Figures 2 and 3 show the invention Figure 5 shows one implementation of the present invention. FIG. 6 shows another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)負荷が短絡保護装置を介して電源に接続された電
気回路において、前記短絡保護装置の負荷側近傍の両線
のそれぞれに平行配置した対向接点を有する第1、第2
バイパス導体を直列に接続して設け、負荷側における短
絡事故発生時生ずる過大な流通電流にもとづき前記バイ
パス導体に働く電磁力による第1、第2バイパス導体間
隔の変化により前記接点を閉成し、これにより前記短絡
保護装置設置点の負荷側近傍の線間を強制短絡して、短
絡事故発生点の電流の急減と短絡保護装置の流通電流の
増大を図って、短絡事故災害の不拡大を図りながら短絡
保護装置による負荷遮断の迅速化を図るようにしたこと
を特徴とする高速短絡除去方法。
(1) In an electric circuit in which a load is connected to a power source via a short-circuit protection device, first and second contacts each having opposing contacts arranged in parallel on each of both wires near the load side of the short-circuit protection device;
Bypass conductors are connected in series, and the contact is closed by changing the distance between the first and second bypass conductors due to an electromagnetic force acting on the bypass conductor based on an excessive current that occurs when a short circuit occurs on the load side, This forcibly shorts the lines near the load side of the short-circuit protection device installation point, rapidly reducing the current at the point where the short-circuit accident occurs and increasing the current flowing through the short-circuit protection device, thereby preventing the spread of short-circuit accident disasters. A high-speed short-circuit removal method characterized in that the short-circuit protection device speeds up load shedding.
JP63204161A 1988-08-17 1988-08-17 High-speed short circuit removal method Expired - Lifetime JPH0789701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63204161A JPH0789701B2 (en) 1988-08-17 1988-08-17 High-speed short circuit removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63204161A JPH0789701B2 (en) 1988-08-17 1988-08-17 High-speed short circuit removal method

Publications (2)

Publication Number Publication Date
JPH0255516A true JPH0255516A (en) 1990-02-23
JPH0789701B2 JPH0789701B2 (en) 1995-09-27

Family

ID=16485845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63204161A Expired - Lifetime JPH0789701B2 (en) 1988-08-17 1988-08-17 High-speed short circuit removal method

Country Status (1)

Country Link
JP (1) JPH0789701B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156974A (en) * 1974-11-13 1976-05-19 Omron Tateisi Electronics Co IJODENRYUKENSHUTSUKI
JPS5541506A (en) * 1978-09-18 1980-03-24 Hitachi Ltd Position detection system in crt display unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156974A (en) * 1974-11-13 1976-05-19 Omron Tateisi Electronics Co IJODENRYUKENSHUTSUKI
JPS5541506A (en) * 1978-09-18 1980-03-24 Hitachi Ltd Position detection system in crt display unit

Also Published As

Publication number Publication date
JPH0789701B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US6936779B2 (en) Bypass recloser assembly
KR840001584B1 (en) Wireless emergency power interrupting system for multibranch circuits
JPH0255516A (en) High speed removal of short circuit
CN213304974U (en) Self-healing control system for mine power distribution network
CN213754084U (en) Dual-power supply system adopting power supplies with different grounding modes
EP0691046B1 (en) Arrangement for disconnecting branches of a low voltage supply network under short circuit conditions
CN112271710A (en) Self-healing control system and method for mine power distribution network
WO2019092834A1 (en) Dc interrupting device
CA2451177C (en) Spacer for an insulator assembly
JP3248962B2 (en) How to protect the inverter distribution system
CN112467703B (en) Bus-tie dead zone protection device suitable for 110 kilovolt network characteristics
CN1039679A (en) AC power circuit and fuse thereof
US2313118A (en) Electrical protective distribution system
Austin et al. Fault Diagnosis Algorithm and Protection of Electric Power Systems in an Alternative Distribution System
Varodi et al. Diagnosis of short circuit and the earthing of a transformer station
Cranos et al. Spot Networks and Connected Building Systems
KR20010013527A (en) Direct grounding system capable of limiting ground fault current
WO2024035250A1 (en) Neutral tear protection device in low-voltage electrical installations
Matthews Power arc-over on overhead distribution lines and newly developed equipment for protection against conductor burndown from that cause
US1329255A (en) Automatic protective gear for electrical systems
Castenschiold Ground-fault protection of electrical systems with emergency or standby power
JPH01286732A (en) Current limiting unit
RU85410U1 (en) DEVICE FOR DETERMINING THE TERMINATION OF INSULATED WIRES OF AIR LINES WITH A VOLTAGE OVER 1000 V AT THEIR LOCATION ON THE SUPPORTS OF THE CONTACT AC NETWORK
Rosen The fused ring main unit-options for choice
Bornard et al. Evolution of protection and control. Balance between centralized and decentralized intelligence