JPH0255403B2 - - Google Patents

Info

Publication number
JPH0255403B2
JPH0255403B2 JP1085063A JP8506389A JPH0255403B2 JP H0255403 B2 JPH0255403 B2 JP H0255403B2 JP 1085063 A JP1085063 A JP 1085063A JP 8506389 A JP8506389 A JP 8506389A JP H0255403 B2 JPH0255403 B2 JP H0255403B2
Authority
JP
Japan
Prior art keywords
liquid
insecticidal
wick
heating
insecticide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1085063A
Other languages
Japanese (ja)
Other versions
JPH01308204A (en
Inventor
Takahiro Hasegawa
Takanobu Kashiwabara
Akira Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earth Corp
Original Assignee
Earth Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earth Chemical Co Ltd filed Critical Earth Chemical Co Ltd
Priority to JP1085063A priority Critical patent/JPH01308204A/en
Publication of JPH01308204A publication Critical patent/JPH01308204A/en
Publication of JPH0255403B2 publication Critical patent/JPH0255403B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は加熱蒸散殺虫方法、詳しくは殺虫液中
に吸液芯の一部を浸漬して該芯に殺虫液を吸液さ
せると共に、該芯の上部を間接加熱して吸液され
た殺虫液を蒸散させる方式の加熱蒸散殺虫方法に
関する。 従来技術とその問題点 従来より殺虫等の目的で薬剤を加熱蒸散させる
方法としては電気蚊取器に代表されるような装置
を用いて繊維板等の多孔質基材(固型マツト)に
吸着させた殺虫剤を加熱して蒸散させる方法が汎
用されている。しかしながら該方法では一枚の固
型マツトに含浸させ得る殺虫剤量は自づと制限を
受け、該マツトの取替え及び使用済マツトの廃棄
が必須である。しかもマツトに吸着させた殺虫剤
の揮散率は経時的に低下していく重大な欠点があ
るに加え、マツトに吸着させた殺虫剤の有効揮散
率はたかだか約50%にすぎず、該マツトの殺虫剤
残存率が10%程度にもおよび、長時間に亘る安定
した殺虫効果を持続させ得ず、経済的にも尚かな
りの不利を伴う。 上記固型マツト使用に見られるマツト取替えの
問題及び短時間内に殺虫効果が消失する欠点を解
消し、長期に亘り殺虫効果を持続させ得る加熱蒸
散方法として、殺虫剤を溶液形態で吸上芯(吸液
芯)により吸上げつつこれを加熱蒸散させる方法
が考えられ、事実このような吸液芯利用による殺
虫剤蒸散装置が種々提案されている。これら装置
は適当な容器に殺虫剤の溶剤溶液を入れ、これを
フエルト等の吸液芯を利用して吸上げつつ該吸液
芯上部より加熱蒸散させるべくしたものである。 しかしながらかかる吸上式加熱蒸散型装置は、
実際にこれを用いた場合、いずれも吸液芯の加熱
によつて殺虫剤液を構成する溶剤が速やかに揮散
し、該芯内部で殺虫剤液が次第に濃縮され、樹脂
化したり、芯材が燻焼したりして、目づまりを起
し引続く殺虫液の吸上げ及び蒸散を不能とし、長
期に亘る持続効果は発揮できず、しかも殺虫効果
の経時的低下を避け得ず、更に有効揮散率が低く
残存率が高いものであつた。このような吸上芯利
用による加熱蒸散方法に見られる各種の弊害の生
ずる原因としては、芯の種類及び溶剤の種類は勿
論のこと、殺虫剤の種類、濃度、加熱条件等の多
数が考えられ、上記弊害を解消することは困難で
あると考えられた。 本発明は上記従来の加熱蒸散殺虫方法に見られ
る欠点を解消した加熱蒸散殺虫方法を提供するこ
とを目的とする。殊に本発明は、吸液芯の目づま
り等を回避し、長期に亘る持続効果を奏し得、し
かも殺虫剤総揮散量及び有効揮散率の向上を計り
得る改良された上記方法を提供することを目的と
する。 問題点を解決するための手段 本発明は殺虫液中に吸液芯の一部を浸漬して該
芯に殺虫液を吸液させると共に、該芯の上部を間
接加熱して吸液された殺虫液を蒸散させる加熱蒸
散殺虫方法において、上記殺虫液として殺虫剤有
効成分としてのピレスロイド系化合物を炭素数10
〜18の脂肪族炭化水素溶剤に溶解させた溶液を用
いると共に、吸液芯として無機粉体を糊剤で粘結
させた吸液芯を用い、且つ表面温度が70〜150℃
の発熱体にて上記芯の上部を表面温度が約60℃〜
130℃未満となる温度に間接加熱することを特徴
とする加熱蒸散殺虫方法に係る。 本発明方法によれば、吸液芯の目づまりを惹起
せず、その長寿命化を可能をすると共に、これに
基づいて殺虫剤の蒸散性(揮散量及び有効揮散
率)を顕著に向上でき、約200時間の長期間に亘
つて優れた殺虫効果を持続発揮させ得る。本発明
方法により達成される上記効果は、殊に特定の殺
虫液を用いると共に、上記特定組成の芯を用い且
つ該芯を加熱すべき発熱体の表面温度及び芯上部
の加熱温度を上記特定範囲とする場合に認められ
るのである。 本発明において殺虫剤としては、従来より害虫
駆除に用いられる各種のピレスロイド系殺虫剤が
包含される。それらの具体例としては以下のもの
を例示できる。 〇 3−アリル−2−メチルシクロペンタ−2−
エン−4−オン−1−イル dl−シス/トラン
ス−クリサンテマート(一般名アレスリン:商
品名ピナミン:住友化学工業株式会社製、以下
AAという) 〇 3−アリル−2−メチルシクロペンタ−2−
エン−4−オン−1−イル d−シス/トラン
ス−クリサンテマート(商品名ピナミンフオル
テ:住友化学工業株式会社製、以下ABとい
う) 〇 d−3−アリル−2−メチルシクロペンタ−
2−エン−4−オン−1−イル d−トランス
−クリサンテマート(商品名エキスリン:住友
化学工業株式会社製、以下ACという) 〇 3−アリル−2−メチルシクロペンタ−2−
エン−4−オン−1−イル d−トランス−ク
リサンテマート(一般名バイオアレスリン、以
下ADという) 〇 N−(3,4,5,6−テトラヒドロフタリ
ミド)−メチル dl−シス/トランス−クリサ
ンテマート(一般名フタルスリン:商品名ネオ
ピナミン:住友化学工業株式会社製、以下AE
という) 〇 2−メチル−4−オキソ−3−(2−プロピ
ニル)シクロペント−2−エニル−クリサンテ
マート 〇 (S)−2−メチル−オキソ−3−(2−プロ
ピニル)シクロペント−2−エニル(1R)−シ
ス/トランス−クリサンテマート(一般名プラ
レトリン:特公昭52−45768号公報 〇 [(ペンタフルオロフエニル)−メチル]−
1R,3R−3−(2,2−ジクロロエチニル)−
2,2−ジメチル−シクロプロパンカルボキシ
レート(一般名フエンフルスリン:特開昭55−
133302号参照) 〇 5−ベンジル−3−フリルメチル d−シ
ス/トランス−クリサンテマート(一般名レス
メトリン:商品名クリスロンフオルテ:住友化
学工業株式会社製、以下AFという) 〇 5−(2−プロパルギル)6−フリルメチル
クリサンマート(一般名フラメトリン、以下
AGという) 〇 3−フエノキシベンジル 2,2−ジメチル
−3−(2′,2′−ジクロロ)ビニルシクロプロ
パン カルボキシレート(一般名ペルメトリ
ン:商品名エクスミン:住友化学工業株式会社
製、以下AHという) 〇 3−フエノキシベンジル d−シス/トラン
ス−クリサンテマート(一般名フエノトリン:
商品名スミスリン:住友化学工業株式会社製、
以下AIという) 〇 α−シアノフエノキシベンジル イソプロピ
ル−4−クロロフエニルアセテート(一般名フ
エンバレレート:商品名スミサイジン:住友化
学工業株式会社製、以下AJという) 〇 (S)−α−シアノ−3−フエノキシベンジ
ル(1R,シス)−3−(2,2−ジクロロビニ
ル)−2,2−ジメチルシクロプロパンカルボ
キシレート(以下ALという) 〇 (R,S)−α−シアノ−3−フエノキシベ
ンジル(1R,1S)−シス/トランス−3−(2,
2−ジクロロビニル)2,2−ジメチルクロプ
ロパンカルボキシレート(以下AMという) 〇 α−シアノ−3−フエノキシベンジル d−
シス/トランス−クリサンテマート(以下AN
という) 〇 1−エチニル−2−メチル−2−ペンテニル
シス/トランス−クリサンテマート(以下
AOという) 〇 1−エチニル−2−メチル−2−ペンテニル
2,2−ジメチル−3−(2−メチル−1−
プロペニル)シクロプロパン−1−カルボキシ
レート(以下APという) 〇 1−エチニル−2−メチル−2−ペンテニル
2,2,3,3−テトラメチルシクロプロパ
ンカルボキシレート(以下AQという) 〇 1−エチニル−2−メチル−2−ペンテニル
2,2−ジメチル−3−(2,2−ジクロロ
ビニル)シクロプロピン−2−カルボキシレー
ト(以下ARという) 〇 3−アリル−2−メチルシクロペンタ−2−
エン−4−オン−1−イル 2,2,3,3−
テトラメチルシクロプロパンカルボキシレート
(一般名テラレトリン) 上記殺虫剤には、通常用いられている効力増強
剤、揮散率向上剤、消臭剤、香料等の各種添加剤
を任意に添加することができる。効力増強剤とし
ては、ピペロニルブトキサイド、N−プロピルイ
ゾーム、MGK−264、サイネピリン222、サイネ
ピリン500、リーセン384、IBTA、S−421等を、
揮散率向上剤としてはフエネチルイソチオシアネ
ート、ハイミツクス酸ジメチル等を、消臭剤とし
てはラウリル酸メタクリレート(LMA)等を、
香料としてはシトラール、シトロネラール等を
夫々例示できる。 上記殺虫剤は溶液形態に調製される。該殺虫剤
溶液を調製するための溶剤としては、各種の有機
溶剤、代表的には炭化水素系溶剤をいずれも使用
できるが、特に沸点範囲が150〜350℃の脂肪族炭
化水素(パラフイン系炭化水素及び不飽和脂肪族
炭化水素)は好ましく、上記沸点範囲のn−パラ
フイン中には炭素数10〜18のものが包含される
〔Dictionary of Organic Compounds,5th
ed.1982年参照〕。之等のうちで特にn−パラフイ
ン、イソパラフイン等は、実用上毒性がなく、臭
いがなくしかも火災の危険も極めて少ない点にお
いて好適である。 上記殺虫剤の溶剤溶液は、用いるべきピレスロ
イド系殺虫剤の種類に応じて適宜決定され特に限
定されるものではないが、通常殺虫剤濃度が約1
〜10重量%、好ましくは3〜8重量%となるよう
に調製されるのがよい。 本発明ではまた吸液芯として、無機粉体を糊剤
で粘結させてなる無機質成型芯を用いる。その具
体例としては磁器多孔質、グラスフアイバー、石
綿等の無機繊維を石膏やベントナイト等の結合剤
で固めたものや、カオリン、活性白土、タルク、
ケイソウ土、クレー、パーライト、石膏、ベント
ナイト、アルミナ、シリカ、アルミナシリカ、チ
タニウム、ガラス質火山岩焼成粉末、ガラス質火
山灰焼成粉末等の鉱物質粉末を単独で又は木粉、
炭粉、活性炭等と共に、糊剤例えばデキストリ
ン、デンプン、アラビアゴム、合成糊CMC等で
固めたものを例示できる。特に好ましい吸液芯
は、上記鉱物質粉末単独或いはその100重量部と
木粉もしくは該木粉に等重量までの炭粉及び/又
は活性炭を混合した混合物10〜300重量部とに、
糊剤を全吸液芯重量の5〜25重量%となるまで配
合し、更にこれらに水を加えて練合後、押出成型
し乾燥することにより製造される。該吸液芯は吸
液速度が1〜40時間、好ましくは8〜21時間であ
るのが望ましい。この吸液速度とは、液温25℃の
n−パラフイン液中に直径7mm×長さ70mmの吸液
芯をその下部より15mmまで浸漬し、芯頂にn−パ
ラフインが達するまでの時間を測定することによ
り求められた値を意味する。また上記吸液芯中に
は、上記鉱物質粉末、木粉及び糊剤の他更に必要
に応じてマカライトグリーン等の色素、ソルビン
酸及びその塩類、デヒドロ酢酸等のカビ止め剤等
を配合することもできる。 本発明方法の実施に適した装置としては、従来
公知の各種吸上式加熱蒸散型装置をいずれも利用
できる。その例としては、例えば特公昭52−
12106号公報、実開昭58−45670号公報等に記載の
ものを例示でき、その一具体例は添附図面に示す
通りである。 第1図は本発明方法の実施に適した吸上式加熱
蒸散型装置の概略図であり、該装置は吸液芯1を
支持するための芯支持体2を有する殺虫剤液収容
容器3と、上記容器内にその上部を突出して挿入
された吸液芯1と、その上側面部を間接的に加熱
するための中空円板状発熱体4、該発熱体4を支
持するための支持部5及び支持脚6を有する発熱
体支持台7とから成つており、上記発熱体4は、
これに通電して発熱させるためのコード(図示せ
ず)を有している。 また上記装置に利用される発熱体としては、通
常通電により発熱する発熱体が汎用されている
が、これに限定されることなく、例えば空気酸化
発熱材、白金触媒等を利用した発熱材等の公知の
いかなる発熱体であつてもかまわない。 本発明方法によれば、殺虫液組成物が吸液芯よ
り蒸散し得る適当な温度に該吸液芯を加熱するこ
とにより、所望の殺虫効果が奏される。上記加熱
温度は、殺虫剤の種類等に応じて適宜に決定さ
れ、特に限定されないが、通常約70〜150℃、好
ましくは135〜145℃の範囲の発熱体表面温度とさ
れ、これは吸液芯表面温度130℃未満、好ましく
は約60以上130℃未満となる条件を満たすように
選択される必要がある。この条件を満たさない場
合、上記殺虫液及び吸液芯を組み合わせても本発
明所期の効果は奏し難くなる。 かくして本発明によれば、吸液芯の目づまりを
確実に回避して、充分な殺虫効果を奏し得る殺虫
剤濃度にて殺虫剤を長期間持続して揮散させ得
る。 実施例 以下本発明を更に詳しく説明するため実施例を
挙げる。 実施例 1 パーライト60重量部及び木粉20重量部に澱粉20
重量部と水を加えて練合後、押出成型乾操して、
多孔質吸液芯(直径7mm×長さ70mm、吸油速度約
14時間)を調製した。 また、下記第1表に示す殺虫剤及び有機溶剤の
夫々を所定割合で用いて殺虫液組成物(No.1〜
13)を得た。
INDUSTRIAL APPLICATION FIELD The present invention relates to a heating transpiration insecticidal method, more specifically, a part of a liquid-absorbing wick is immersed in an insecticidal liquid to cause the wick to absorb the insecticidal liquid, and the upper part of the wick is indirectly heated to absorb the insecticidal liquid. The present invention relates to a heating transpiration insecticidal method that evaporates a liquid insecticidal liquid. Conventional technology and its problems Traditionally, the method of heating and evaporating chemicals for the purpose of killing insects, etc. is to adsorb them onto a porous substrate (solid pine) such as fiberboard using a device such as an electric mosquito repellent. A commonly used method is to evaporate the insecticide by heating it. However, in this method, the amount of insecticide that can be impregnated into one solid pine is naturally limited, and it is necessary to replace the pine and dispose of the used pine. Moreover, the volatilization rate of insecticides adsorbed to pine trees decreases over time, which is a serious drawback, and the effective volatilization rate of insecticides adsorbed to pine trees is only about 50% at most. The insecticide residual rate is as high as about 10%, making it impossible to maintain a stable insecticidal effect over a long period of time, and resulting in considerable economic disadvantages. As a heating transpiration method that can maintain the insecticidal effect over a long period of time, it solves the problem of replacing the pine and the disadvantage that the insecticidal effect disappears within a short period of time when using solid pine. A method of heating and evaporating the insecticide while sucking it up with a liquid-absorbing wick has been considered, and in fact, various insecticide evaporation devices using such a liquid-absorbing wick have been proposed. In these devices, a solvent solution of an insecticide is placed in a suitable container, which is sucked up using a liquid-absorbing wick made of felt, etc., and then heated and evaporated from the upper part of the liquid-absorbing wick. However, such a suction type heating evaporation type device,
When this is actually used, the solvent that makes up the insecticide liquid quickly evaporates due to the heating of the liquid-absorbing core, and the insecticide liquid gradually becomes concentrated inside the core, turning into a resin or causing the core material to evaporate. Smoking or burning causes clogging, making it impossible to subsequently suck up and evaporate the insecticidal liquid, making it impossible to achieve a long-term sustained effect, and furthermore, the insecticidal effect inevitably decreases over time, and the effective volatilization rate was low and the survival rate was high. There are many possible causes of the various adverse effects seen in such heating transpiration methods using wicks, including the type of wick and the type of solvent, as well as the type of insecticide, concentration, heating conditions, etc. It was thought that it would be difficult to eliminate the above-mentioned disadvantages. An object of the present invention is to provide a heat transpiration insecticidal method that eliminates the drawbacks of the conventional heat transpiration insecticide methods. In particular, it is an object of the present invention to provide an improved method as described above, which can avoid clogging of the liquid absorbent wick, achieve a long-lasting effect, and improve the total amount of insecticide volatilization and effective volatilization rate. With the goal. Means for Solving the Problems The present invention involves immersing a part of a liquid-absorbing wick in an insecticidal liquid to make the wick absorb the insecticidal liquid, and indirectly heating the upper part of the wick to kill insects. In the heating transpiration insecticidal method of evaporating a liquid, a pyrethroid compound with a carbon number of 10 is used as the insecticidal liquid as an active ingredient of the insecticide.
A solution dissolved in ~18 aliphatic hydrocarbon solvents is used, and a liquid absorbent core made of inorganic powder caked with a glue is used as the liquid absorbent core, and the surface temperature is 70 to 150℃.
The surface temperature of the upper part of the above wick is approximately 60℃~ with the heating element.
The present invention relates to a heat transpiration insecticidal method characterized by indirect heating to a temperature of less than 130°C. According to the method of the present invention, it is possible to extend the life of the liquid absorbent wick without causing clogging, and based on this, it is possible to significantly improve the transpiration performance (volatilization amount and effective volatilization rate) of the insecticide. Excellent insecticidal effect can be maintained for a long period of about 200 hours. The above-mentioned effects achieved by the method of the present invention are particularly achieved by using a specific insecticidal liquid, using a wick having the above-mentioned specific composition, and controlling the surface temperature of the heating element that heats the wick and the heating temperature of the upper part of the wick within the above-mentioned specific range. It is recognized if In the present invention, the insecticide includes various pyrethroid insecticides conventionally used for pest control. Specific examples thereof include the following. 〇 3-allyl-2-methylcyclopent-2-
En-4-one-1-yl dl-cis/trans-chrysanthemate (generic name: allethrin; trade name: pinamine; manufactured by Sumitomo Chemical Co., Ltd.; hereinafter referred to as
AA) 〇 3-allyl-2-methylcyclopent-2-
En-4-one-1-yl d-cis/trans-chrysanthemate (trade name: Pinamine Forte: manufactured by Sumitomo Chemical Co., Ltd., hereinafter referred to as AB) 〇 d-3-allyl-2-methylcyclopenta-
2-en-4-one-1-yl d-trans-chrysanthemate (trade name Exrin: manufactured by Sumitomo Chemical Co., Ltd., hereinafter referred to as AC) 〇 3-allyl-2-methylcyclopenta-2-
En-4-one-1-yl d-trans-chrysanthemate (generic name bioallethrin, hereinafter referred to as AD) 〇 N-(3,4,5,6-tetrahydrophthalimido)-methyl dl-cis/trans- Chrysantemate (generic name: phthalthrin; trade name: neopinamine; manufactured by Sumitomo Chemical Co., Ltd., hereinafter AE)
〇 2-Methyl-4-oxo-3-(2-propynyl)cyclopent-2-enyl-chrysanthemate 〇 (S)-2-methyl-oxo-3-(2-propynyl)cyclopent-2-enyl (1R)-cis/trans-chrysanthemate (generic name prarethrin: Japanese Patent Publication No. 52-45768 〇 [(pentafluorophenyl)-methyl]-
1R,3R-3-(2,2-dichloroethynyl)-
2,2-dimethyl-cyclopropanecarboxylate (common name: fenfluthrin: JP-A-1986-
133302) 〇 5-benzyl-3-furylmethyl d-cis/trans-chrysanthemate (generic name: Resmethrin; trade name: Chryslonfuorte; manufactured by Sumitomo Chemical Co., Ltd., hereinafter referred to as AF) 〇 5-(2 -propargyl) 6-furylmethyl chrysanmate (generic name: flamethrin, hereafter
〇 3-Phenoxybenzyl 2,2-dimethyl-3-(2',2'-dichloro)vinylcyclopropane carboxylate (generic name: permethrin; trade name: Exmin: manufactured by Sumitomo Chemical Co., Ltd., hereinafter AH) 3-Phenoxybenzyl d-cis/trans-chrysanthemate (common name: phenothrin:
Product name Sumitrin: Manufactured by Sumitomo Chemical Co., Ltd.
(hereinafter referred to as AI) 〇 α-cyanophenoxybenzyl isopropyl-4-chlorophenyl acetate (generic name: Fuenvalerate; trade name: Sumicidine: manufactured by Sumitomo Chemical Co., Ltd., hereinafter referred to as AJ) 〇 (S)-α-cyano- 3-Phenoxybenzyl (1R, cis)-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate (hereinafter referred to as AL) 〇 (R,S)-α-cyano-3- Phenoxybenzyl (1R, 1S)-cis/trans-3-(2,
2-dichlorovinyl) 2,2-dimethylchloropropanecarboxylate (hereinafter referred to as AM) 〇 α-Cyano-3-phenoxybenzyl d-
cis/trans-chrysanthemate (hereinafter referred to as AN)
〇 1-ethynyl-2-methyl-2-pentenyl cis/trans-chrysanthemate (hereinafter referred to as
AO) 〇 1-ethynyl-2-methyl-2-pentenyl 2,2-dimethyl-3-(2-methyl-1-
propenyl) cyclopropane-1-carboxylate (hereinafter referred to as AP) 〇 1-ethynyl-2-methyl-2-pentenyl 2,2,3,3-tetramethylcyclopropanecarboxylate (hereinafter referred to as AQ) 〇 1-ethynyl- 2-Methyl-2-pentenyl 2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropyne-2-carboxylate (hereinafter referred to as AR) 〇 3-allyl-2-methylcyclopenta-2-
En-4-one-1-yl 2,2,3,3-
Tetramethyl cyclopropane carboxylate (common name: telarethrin) Various commonly used additives such as efficacy enhancers, volatilization rate improvers, deodorants, fragrances, etc. can be optionally added to the above insecticide. Efficacy enhancers include piperonyl butoxide, N-propylisome, MGK-264, cinepirin 222, cinepirin 500, Riesen 384, IBTA, S-421, etc.
As a volatilization rate improver, use phenethyl isothiocyanate, dimethyl himixate, etc., as a deodorizer, use lauric acid methacrylate (LMA), etc.
Examples of fragrances include citral and citronellal. The above insecticides are prepared in solution form. As a solvent for preparing the insecticide solution, various organic solvents, typically hydrocarbon solvents, can be used, but aliphatic hydrocarbons (paraffinic hydrocarbons) with a boiling point range of 150 to 350°C can be used. Hydrogen and unsaturated aliphatic hydrocarbons) are preferred, and the n-paraffins having the boiling point range above include those having 10 to 18 carbon atoms [Dictionary of Organic Compounds, 5th
ed.1982]. Among these, n-paraffin, isoparaffin, etc. are particularly preferred because they are practically non-toxic, odorless, and pose a very low risk of fire. The solvent solution of the above insecticide is appropriately determined depending on the type of pyrethroid insecticide to be used and is not particularly limited, but the insecticide concentration is usually about 1.
The content is preferably adjusted to 10% by weight, preferably 3 to 8% by weight. In the present invention, an inorganic molded core made by caking inorganic powder with a sizing agent is used as the liquid-absorbing core. Specific examples include porous porcelain, glass fiber, inorganic fibers such as asbestos hardened with binders such as gypsum and bentonite, kaolin, activated clay, talc, etc.
Mineral powders such as diatomaceous earth, clay, perlite, gypsum, bentonite, alumina, silica, alumina-silica, titanium, glassy volcanic rock fired powder, glassy volcanic ash fired powder, etc. alone or wood powder,
Examples include those hardened with charcoal powder, activated carbon, etc., as well as adhesives such as dextrin, starch, gum arabic, synthetic glue CMC, etc. A particularly preferred liquid-absorbing wick includes the above-mentioned mineral powder alone or 100 parts by weight of the mineral powder and 10 to 300 parts by weight of wood flour or a mixture of the wood flour and charcoal powder and/or activated carbon up to an equal weight.
It is manufactured by blending a sizing agent to 5 to 25% by weight of the total weight of the absorbent core, adding water to the mixture, kneading, extrusion molding, and drying. It is desirable that the liquid absorption core has a liquid absorption rate of 1 to 40 hours, preferably 8 to 21 hours. This liquid absorption rate is determined by immersing a liquid absorbent core with a diameter of 7 mm x length of 70 mm in an n-paraffin liquid at a temperature of 25°C to a depth of 15 mm from the bottom, and measuring the time it takes for the n-paraffin to reach the top of the core. means the value determined by Furthermore, in addition to the mineral powder, wood flour, and sizing agent mentioned above, pigments such as macarite green, sorbic acid and its salts, and mold inhibitors such as dehydroacetic acid may be added to the liquid-absorbing core as necessary. You can also do it. As an apparatus suitable for carrying out the method of the present invention, any of various conventionally known suction type heating evaporation apparatuses can be used. As an example, for example,
Examples include those described in Japanese Utility Model Publication No. 12106, Japanese Utility Model Application Publication No. 58-45670, etc., and one specific example thereof is shown in the attached drawing. FIG. 1 is a schematic diagram of a suction type heating evaporation type device suitable for carrying out the method of the present invention, and the device includes an insecticide liquid storage container 3 having a wick support 2 for supporting a liquid absorption wick 1; , a liquid-absorbing wick 1 inserted into the container with its upper part protruding, a hollow disk-shaped heating element 4 for indirectly heating the upper side surface thereof, and a support part for supporting the heating element 4. 5 and a heating element support stand 7 having support legs 6, the heating element 4 has:
It has a cord (not shown) for energizing it to generate heat. In addition, as the heating element used in the above-mentioned device, a heating element that generates heat when energized is commonly used, but it is not limited to this, and examples include heating elements using air oxidation heating materials, platinum catalysts, etc. Any known heating element may be used. According to the method of the present invention, the desired insecticidal effect is achieved by heating the liquid absorbent core to an appropriate temperature at which the insecticidal liquid composition can evaporate from the liquid absorbent core. The above-mentioned heating temperature is appropriately determined depending on the type of insecticide, etc., and is not particularly limited, but it is usually a heating element surface temperature in the range of about 70 to 150 degrees Celsius, preferably 135 to 145 degrees Celsius, and this It needs to be selected so as to satisfy the condition that the core surface temperature is less than 130°C, preferably about 60°C or more and less than 130°C. If this condition is not met, even if the above-mentioned insecticidal liquid and liquid-absorbing core are combined, it will be difficult to achieve the desired effect of the present invention. Thus, according to the present invention, it is possible to reliably avoid clogging of the liquid-absorbing wick and volatilize the insecticide for a long period of time at an insecticide concentration that provides a sufficient insecticidal effect. Examples Examples will be given below to explain the present invention in more detail. Example 1 60 parts by weight of perlite, 20 parts by weight of wood flour and 20 parts by weight of starch
After adding part by weight and water and kneading, extrusion molding and drying,
Porous liquid absorbent core (diameter 7mm x length 70mm, oil absorption rate approx.
14 hours) was prepared. In addition, insecticidal liquid compositions (No. 1 to
13).

【表】 尚、第1表中溶剤の項における記号は次のもの
を示す。 BB…沸点180〜210℃/760mmHgの脂肪族炭化水
素 BC…沸点210〜240℃/760mmHgの脂肪族炭化水
素 BD…沸点240〜270℃/760mmHgの脂肪族炭化水
素 BE…沸点270〜300℃/760mmHgの脂肪族炭化水
素 上記で調製した殺虫液組成物の夫々50mlを、第
1図に示す容器3に入れ、発熱体4に通電して吸
液芯1の上側面部を温度135℃に加熱し、該加熱
による組成物試料中の殺虫剤の蒸散試験を行なつ
た。 尚、発熱体4としては内径10mm及び厚さ10mmの
中空円板状発熱体を用いた。また殺虫剤の揮散蒸
気を揮散蒸気を毎時間毎にシリカゲルカラムに吸
引捕集し、このシリカゲルをクロロホルムで抽出
し、濃縮後、ガスクロマトグラフにて定量分析し
た。 殺虫液組成物試料の加熱開始より10時間後、
100時間後、200時間後及び300時間後の1時間当
りの殺虫剤揮散量mg/hrを求めた結果を下記第2
表に示す。
[Table] The symbols in the solvent section of Table 1 indicate the following. BB...Aliphatic hydrocarbon with a boiling point of 180-210℃/760mmHg BC...Aliphatic hydrocarbon with a boiling point of 210-240℃/760mmHg BD...Aliphatic hydrocarbon with a boiling point of 240-270℃/760mmHg BE...Boiling point 270-300℃/ Aliphatic hydrocarbon at 760 mmHg 50 ml of each of the insecticidal liquid compositions prepared above were placed in the container 3 shown in Fig. 1, and the heating element 4 was energized to heat the upper side of the liquid absorbent wick 1 to a temperature of 135°C. Then, a transpiration test of the insecticide in the composition sample by heating was conducted. As the heating element 4, a hollow disc-shaped heating element with an inner diameter of 10 mm and a thickness of 10 mm was used. In addition, the volatilized vapor of the insecticide was collected by suction into a silica gel column every hour, and the silica gel was extracted with chloroform, concentrated, and quantitatively analyzed using a gas chromatograph. 10 hours after the start of heating the insecticidal liquid composition sample,
The results of calculating the amount of insecticide volatilization mg/hr per hour after 100 hours, 200 hours, and 300 hours are shown in the second section below.
Shown in the table.

【表】 上記第2表より、本発明によれば、向上された
殺虫剤揮散量を長期に亘り持続し得ることが明白
である。 比較例 1 殺虫液組成物として殺虫剤AGの2.1Wt%を溶
剤BCに溶解して調製した組成物を用い、また吸
液芯として実施例1と同様にして作成した多孔質
吸液芯[パーライト80重量部に澱粉20重量部と水
とを加えて練合後、押出成形乾操したもの、直径
7mm×長さ70mm、吸油速度約14時間]を用い、実
施例1と同様にして、第1図に示す装置と同様の
装置の容器3内に上記組成物50mlを入れ、発熱体
4に通電し、発熱体の表面温度と吸液芯の表面温
度とを種々変化させて吸液芯1を加熱し、該加熱
による組成物中の殺虫剤の蒸散試験を行ない、加
熱開始より10,100及び200時間後の1時間当りの
殺虫剤揮散量(mg/hr)を求めた。 得られた結果を、上記試験において採用した発
熱体の表面温度(℃)及び吸液芯の表面温度
(℃)と共に、下記第3表に示す。
[Table] From Table 2 above, it is clear that according to the present invention, the improved amount of pesticide volatilization can be sustained over a long period of time. Comparative Example 1 A composition prepared by dissolving 2.1 Wt% of insecticide AG in solvent BC was used as the insecticidal liquid composition, and a porous liquid absorbent core [perlite] prepared in the same manner as in Example 1 was used as the liquid absorbent core. 80 parts by weight of starch, 20 parts by weight of starch, and water were added, kneaded, extruded and dried, diameter 7 mm x length 70 mm, oil absorption rate of about 14 hours], and in the same manner as in Example 1. 50 ml of the above composition was placed in a container 3 of a device similar to the device shown in Fig. 1, and the heating element 4 was energized to variously change the surface temperature of the heating element and the surface temperature of the liquid absorbent wick. was heated, and a transpiration test of the insecticide in the composition due to the heating was conducted to determine the amount of insecticide volatilized per hour (mg/hr) 10, 100, and 200 hours after the start of heating. The obtained results are shown in Table 3 below, along with the surface temperature (°C) of the heating element and the surface temperature (°C) of the liquid absorbent core used in the above test.

【表】 上記比較1〜6に示すように、吸液芯温度は満
足するが、発熱体温度が外れる場合、殺虫剤揮散
量は極めて低いばかりか、該殺虫剤揮散量にバラ
ツキの生じることが判る。また発熱体温度は満足
するが吸液芯温度が外れる場合、比較7〜9に示
すように10時間迄の間の揮散量は多すぎる上に、
逆に100時間迄の間はとたんに低い揮散量となり、
200時間迄の間はほとんど揮散していないことが
判る。之等に対して発熱体温度及び吸液芯温度の
両者を満足する本発明の場合、素晴らしい効果が
得られることが明らかである。
[Table] As shown in Comparisons 1 to 6 above, when the liquid absorption core temperature is satisfied but the heating element temperature is out of range, the amount of pesticide volatilization is not only extremely low, but also the amount of pesticide volatilization may vary. I understand. In addition, if the heating element temperature is satisfied but the liquid absorption core temperature is out of range, as shown in Comparisons 7 to 9, the amount of volatilization up to 10 hours is too large, and
On the other hand, up to 100 hours, the amount of volatilization suddenly becomes low,
It can be seen that almost no volatilization occurs up to 200 hours. In contrast, it is clear that excellent effects can be obtained in the case of the present invention, which satisfies both the temperature of the heating element and the temperature of the liquid absorbing core.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に適した装置の一例
の概略図であり、該図中1は吸液芯、3は殺虫液
組成物収容容器及び4は発熱体を夫々示す。
FIG. 1 is a schematic view of an example of an apparatus suitable for carrying out the method of the present invention, in which 1 indicates a liquid absorbent wick, 3 indicates an insecticidal composition container, and 4 indicates a heating element.

Claims (1)

【特許請求の範囲】[Claims] 1 殺虫液中に吸液芯の一部を浸漬して該芯に殺
虫液を吸液させると共に、該芯の上部を間接加熱
して吸液された殺虫液を蒸散させる加熱蒸散殺虫
方法において、上記殺虫液として殺虫剤有効成分
としてのピレスロイド系化合物を炭素数10〜18の
脂肪族炭化水素溶剤に溶解させた溶液を用いると
共に、吸液芯として無機粉体を糊剤で粘結させた
吸液芯を用い、且つ表面温度が70〜150℃の発熱
体にて上記芯の上部を表面温度が約60℃〜130℃
未満となる温度に間接加熱することを特徴とする
加熱蒸散殺虫方法。
1. A heating transpiration insecticidal method in which a part of a liquid-absorbing wick is immersed in an insecticidal liquid to cause the wick to absorb the insecticidal liquid, and the upper part of the wick is indirectly heated to evaporate the sucked insecticidal liquid, As the insecticidal liquid, a solution in which a pyrethroid compound as an active ingredient of the insecticide is dissolved in an aliphatic hydrocarbon solvent having 10 to 18 carbon atoms is used. Using a liquid core, heat the upper part of the wick with a heating element whose surface temperature is approximately 60 to 130 degrees Celsius.
A heating transpiration insecticidal method characterized by indirect heating to a temperature below.
JP1085063A 1989-04-03 1989-04-03 Method of insecticide by heating and transpiration Granted JPH01308204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1085063A JPH01308204A (en) 1989-04-03 1989-04-03 Method of insecticide by heating and transpiration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1085063A JPH01308204A (en) 1989-04-03 1989-04-03 Method of insecticide by heating and transpiration

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1676084A Division JPS60161902A (en) 1984-01-31 1984-01-31 Insecticidal solution composition for core to suck up solution

Publications (2)

Publication Number Publication Date
JPH01308204A JPH01308204A (en) 1989-12-12
JPH0255403B2 true JPH0255403B2 (en) 1990-11-27

Family

ID=13848175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1085063A Granted JPH01308204A (en) 1989-04-03 1989-04-03 Method of insecticide by heating and transpiration

Country Status (1)

Country Link
JP (1) JPH01308204A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330003A (en) * 1991-05-13 1992-11-18 Earth Chem Corp Ltd Insecticidal liquid composition for liquid-sucking wick
JP3133761B2 (en) * 1992-10-19 2001-02-13 アース製薬株式会社 A method for adjusting the volatility of the heat-evaporated chemical for the absorbent core and the volatility of the heat-evaporated chemical
UA107101C2 (en) * 2012-07-04 2014-11-25 INSECTICID COVER (OPTIONS)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557502A (en) * 1978-10-23 1980-04-28 Earth Chem Corp Ltd Heat volatilization destroying of insect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557502A (en) * 1978-10-23 1980-04-28 Earth Chem Corp Ltd Heat volatilization destroying of insect

Also Published As

Publication number Publication date
JPH01308204A (en) 1989-12-12

Similar Documents

Publication Publication Date Title
JPS63146803A (en) Method for killing insecticide by thermal evaporation
JP6965394B2 (en) Pest control products and pest control methods
JPH0225885B2 (en)
JP2002060308A (en) Expelling and repelling agent of animal and pest insect, and gradual releasant
JP2604239B2 (en) Liquid absorption wick and chemical evaporation method
JPS5940409B2 (en) liquid absorption core
TWI586274B (en) Insect pest control product and insect pest control method
JPH08310907A (en) Aqueous insecticide for thermal transpiration and killing of insect
JP2731789B2 (en) Liquid-absorbing wick, method for producing the same, and method for vaporizing drug
JPH0255403B2 (en)
JP2604219B2 (en) Liquid absorbent core and insecticide method
JPH01296933A (en) Liquid-absorbing wick
JP3032853B2 (en) Liquid wick
JP2691232B2 (en) Liquid absorption wick and chemical evaporation method
JP2519629B2 (en) Container for heating evaporation type equipment
JP2729357B2 (en) Container with liquid absorbent core, kit for heat transpiration type insecticidal device, and transpiration sustaining agent used for these
JP2021095413A (en) Insect pest control product, and insect pest control method
JPH0768085B2 (en) Heat transpiration insecticide method
JP2604224B2 (en) Liquid absorption wick and chemical evaporation method
JP2791918B2 (en) Absorption wick for heat evaporation
JP2729497B2 (en) Heated evaporator
JPH04330003A (en) Insecticidal liquid composition for liquid-sucking wick
JP4247417B2 (en) Insecticidal mat volatilization persistence agent, and insecticidal mat for a long time containing the volatilization persistence agent together with the insecticidal component
JPH06206802A (en) Agent for preventing clogging of insecticidal solution sucking wick
JPH1053502A (en) Sustaining of vaporizability