JPH0255269A - Metallic capsule for hip treatment and hip treatment in oxygen atmosphere using same - Google Patents

Metallic capsule for hip treatment and hip treatment in oxygen atmosphere using same

Info

Publication number
JPH0255269A
JPH0255269A JP63204772A JP20477288A JPH0255269A JP H0255269 A JPH0255269 A JP H0255269A JP 63204772 A JP63204772 A JP 63204772A JP 20477288 A JP20477288 A JP 20477288A JP H0255269 A JPH0255269 A JP H0255269A
Authority
JP
Japan
Prior art keywords
capsule
silver
treatment
hip treatment
oxygen atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63204772A
Other languages
Japanese (ja)
Inventor
Tetsuo Ichikizaki
哲雄 市来崎
Kazuhiko Oshiumi
鴛海 和彦
Muneo Moriya
守屋 胸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63204772A priority Critical patent/JPH0255269A/en
Publication of JPH0255269A publication Critical patent/JPH0255269A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish the densification treatment of porous sintered form and sintering of green compact in a capsule by making a HIP treatment in an oxygen atmosphere under specified conditions using silver (alloy) as an oxygen gas-selectively permeable capsule material. CONSTITUTION:A silver (alloy) capsule 1 is packed with an object to be treated 10 such as porous sintered form or green compact form suitable for treatment in an oxidative atmosphere. The resultant capsule 1 is then put to HIP treatment in an oxygen atmosphere at temperatures below the melting point of silver. Because of falling in the melting point of silver with increasing in oxygen partial pressure, said HIP treatment is made at <=770 deg.C, <=700 deg.C, <=620 deg.C or <=540 deg.C under an oxygen partial pressure of 100kgf/cm<2>, 200kgf/cm<2>, 300kgf/cm<2> or 400kgf/cm<2>, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素雰囲気HIP装置(0□HIP)で酸化物
系材料を処理するのに使用する銀又は銀合金カプセル、
及び同カプセルを使用した処理方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a silver or silver alloy capsule used for processing oxide materials in an oxygen atmosphere HIP device (0□HIP);
and a treatment method using the same capsule.

〔従来の技術〕[Conventional technology]

HIP装置を使い、粉末原料の焼結あるいは多孔質材料
の緻密化処理をするためKは、圧力媒体であるガスを透
過しない膜状あるいは板状の金属材料、あるいは処理中
(加温下)には溶融状態となるガラス質材料などでカプ
セルと称する容器を作り、これに上述の粉末原料あるい
は多孔質材料を入れHIP処理を行なう必要がある。
Since HIP equipment is used to sinter powder raw materials or densify porous materials, K is a membrane or plate metal material that does not permeate the pressure medium gas, or during processing (under heating). It is necessary to make a container called a capsule from a glassy material or the like which becomes molten, and to put the above-mentioned powder raw material or porous material into the container and perform HIP treatment.

この方法(カプセルHIP処理)は、高速度鋼粉末材料
の焼結、窒化珪素(313N4 )粉末材料の焼結など
に適用され、一部工業的にも利用されている。
This method (capsule HIP treatment) is applied to the sintering of high-speed steel powder materials, the sintering of silicon nitride (313N4) powder materials, and is also used in some industrial applications.

第5図はカプセル(H工P処理前)25を説明する図で
、原料粉未開を鋼などの金属製カップ27に充填した後
カップごと同一の材質の蓋四をはめ、その端部をシール
溶接四して製作する。
Figure 5 is a diagram illustrating the capsule (before H/P treatment) 25. After filling raw material powder into a cup 27 made of metal such as steel, the cup is fitted with a lid 4 made of the same material, and the end is sealed. Manufactured by welding.

第6図は上記をHIP処理したカプセル()NIP処理
後)26で、加熱・加圧を同時にかけることによシ、原
料粉末(資)が焼結し、焼結体31が得られる。
FIG. 6 shows a capsule (after NIP treatment) 26 obtained by HIPing the above-mentioned capsule, and by applying heat and pressure at the same time, the raw material powder (material) is sintered and a sintered body 31 is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

酸化物系超伝導材料(例えばBa−Y−Cu−0系)は
、臨界温度、臨界電流を向上することが課題といわれて
いる。この課題を解決すべく、臨界温度の向上に関して
は、酸化雰囲気下での焼結、あるいは熱処理の試みが行
なわれ、一方臨界電流の向上に関しては、常圧焼結で製
作された低密度の超伝導材料焼結体を何らかの手段で加
圧することにより緻密化し密度を上げ、臨界電流を上げ
る試みがなされている。
It is said that the problem with oxide-based superconducting materials (for example, Ba-Y-Cu-0-based) is to improve the critical temperature and critical current. To solve this problem, attempts have been made to improve the critical temperature by sintering in an oxidizing atmosphere or heat treatment, while to improve the critical current, low-density super Attempts have been made to densify and increase the density of conductive material sintered bodies by applying pressure by some means to increase the critical current.

これらの試みに対し、鉄系の金属カプセルを用いたHI
P処理の適用が提唱され、カプセル内に酸素ガスを充填
し、これを加圧・加熱し緻密に焼結する試験がなされた
が、鉄系材料をカプセルに使う試験においては、カプセ
ル材がカプセルに充填された酸素ガスによシ酸化され、
破損するか、カプセル材の酸化により充填した酸素ガス
が消費され酸化雰囲気下での焼結がなされないなどの問
題があった。
In response to these attempts, HI using iron-based metal capsules
The application of P treatment was proposed, and tests were conducted in which the capsule was filled with oxygen gas and then pressurized and heated to sinter it into a dense material. However, in tests using iron-based materials for the capsule, the capsule material was is oxidized by oxygen gas filled with
There were problems such as breakage or sintering in an oxidizing atmosphere because the oxygen gas filled in the capsule was consumed due to oxidation of the capsule material.

〔課題を解決するための手段〕[Means to solve the problem]

高温下で酸素の溶解度が高い値を持つ工業的に入手可能
な純銀、あるいはAy−Cu、Ay−C:do、Ap−
Wなどと銀の合金を、酸素ガスを選択的に透過するカプ
セル材として使用し、酸素とアルゴンガスの混合ガスを
圧力媒体ガスとして使用する酸素雰囲気HIP (02
HIP)で処理することによυ、高酸素分圧雰囲気下で
の加圧焼結を行なう。
Commercially available pure silver with high oxygen solubility at high temperatures, or Ay-Cu, Ay-C:do, Ap-
Oxygen atmosphere HIP (02
Pressure sintering is performed in an atmosphere of high oxygen partial pressure.

〔作 用〕[For production]

酸素雰囲気HIP処理で銀製カプセルに装填した材料を
処理する場合、カプセル内外で酸素ガス分圧に圧力差が
生じ、(カプセル内が低圧、カプセル外が高圧)外側の
高圧側で銀製カプセルに溶解した酸素ガスが、低圧の内
側で気化するためあたかも酸素ガスがカプセル材料を通
り抜けるように挙動する。
When processing materials loaded in a silver capsule using HIP processing in an oxygen atmosphere, a pressure difference occurs in the partial pressure of oxygen gas inside and outside the capsule (low pressure inside the capsule, high pressure outside the capsule), and the material dissolves into the silver capsule on the high pressure side outside. Oxygen gas evaporates inside under low pressure, so it behaves as if it were passing through the encapsulant.

〔実施例〕〔Example〕

銀製カプセルを用い酸素雰囲気HIP処理を実施しだと
ころ、銀の融点以下の温度で、銀製カプセルが溶融する
現象が起こることがわかり、第1図に示す銀製カプセル
の適用可能範囲を実験的にもとめた。第1図は横軸に酸
素雰囲気HIP処理時の酸素分圧(kgf/cmりをと
り、縦軸に銀製カプセルの溶融温度をプロットしたもの
で、大気圧下では約960℃の融点であるのに対し、酸
素ガス分圧100に9f42’11’は約770℃,2
(XJkgf/cm、2 テハ約700℃,300kg
f/z f ハ約620°G 、 400kgf/cm
2−t’ ハ約540’Cト、酸素ガス分圧の上昇に伴
ない、融点が低下する現象が認められることを確認した
。次に実際に銀製カプセルを使い酸素雰囲気HIP処理
により酸化物系(Ba−Y−Cu・0系)の超伝導材料
粉末の処理を実施した。
When a silver capsule was subjected to HIP treatment in an oxygen atmosphere, it was found that the silver capsule melted at a temperature below the melting point of silver, and the range of applicability of the silver capsule shown in Figure 1 was experimentally determined. Ta. In Figure 1, the horizontal axis plots the oxygen partial pressure (kgf/cm) during HIP treatment in an oxygen atmosphere, and the vertical axis plots the melting temperature of the silver capsule, which is approximately 960°C under atmospheric pressure. On the other hand, when the oxygen gas partial pressure is 100, 9f42'11' is about 770℃, 2
(XJkgf/cm, 2 Teha approx. 700℃, 300kg
f/z f about 620°G, 400kgf/cm
At about 540'C, it was confirmed that the melting point decreased as the oxygen gas partial pressure increased. Next, an oxide-based (Ba-Y-Cu/0-based) superconducting material powder was actually processed by HIP treatment in an oxygen atmosphere using a silver capsule.

カプセルlを第2図、その断面を第3図に示す。The capsule I is shown in FIG. 2, and its cross section is shown in FIG.

カプセル1は銀製の薄板2(0,5fl板厚)にポンチ
、ダイスを用い円形状のくぼみをつけ、このくぼみに試
料の圧粉体を装填した後、四周を溶接(シール溶接部3
)し、製作した。この段階では圧粉体10は多孔質で密
度が低い。また圧粉体10とカプセルの薄板2との間に
はスキマ4がある。
Capsule 1 is made by making a circular indentation in a thin silver plate 2 (0.5fl plate thickness) using a punch and die, and after loading the compacted powder of the sample into this indentation, welding the four circumferences (seal welding part 3
) and produced it. At this stage, the green compact 10 is porous and has a low density. Further, there is a gap 4 between the powder compact 10 and the thin plate 2 of the capsule.

第4図に処理温度550°G、酸素ガス分圧200 k
g身−2゜処理圧力2000kgf/cm2で酸素雰囲
気HIP処理したカプセル5の断面を示す。圧粉体10
は加熱及び加圧により密度が上昇し高密度な焼結体加に
なり、処理前にあったカプセルと圧粉体10の間のスキ
マ4はなくなり、カプセル皮膜6は焼結体加に固着した
状態になった。カプセル皮膜6を化学的な処理で除去し
た後、焼結体銀の、ttを測定したところ、酸素の添加
によるものと見られる3〜5rn9の重量増加(試料型
1t700〜soo my )が生じていることが認め
られ、酸素雰囲気下で処理がなされたことが確認された
。又Ay −Cu 、 At)−Ca OやAy−W等
の銀合金についても同様な効果が確認された。
Figure 4 shows a treatment temperature of 550°G and an oxygen gas partial pressure of 200k.
A cross section of a capsule 5 subjected to HIP treatment in an oxygen atmosphere at a processing pressure of 2000 kgf/cm2 at 2° body is shown. Green compact 10
The density increased by heating and pressurization, resulting in a high-density sintered body, the gap 4 between the capsule and the compact 10 that existed before the treatment disappeared, and the capsule film 6 was fixed to the sintered body. It became a state. After removing the capsule film 6 by chemical treatment, the tt of the sintered silver was measured, and a weight increase of 3 to 5rn9 (sample type 1t700 to soo my) occurred, which was probably due to the addition of oxygen. It was confirmed that the treatment was carried out under an oxygen atmosphere. Similar effects were also confirmed for silver alloys such as Ay-Cu, At)-CaO, and Ay-W.

〔発明の効果〕〔Effect of the invention〕

銀製又は鋏の合金製カプセルに多孔質焼結体或は圧粉成
形体を装填し、酸素雰囲気HIP処理を行なう処理方法
において、酸素分圧1 kgVm2でカプセル材料の融
点、100 k銭金2で770°G 、 200に八4
2で700″C1300C13O0で620°G 、 
400kli’f、台2で540℃の温度を越えない処
理温度で処理を実施することによυ、多孔質材料の緻密
化(密度向上)処理、あるいは圧粉体の焼結を行なうこ
とができる。
In a treatment method in which a porous sintered body or compacted powder body is loaded into a silver or scissor alloy capsule and subjected to oxygen atmosphere HIP treatment, the melting point of the capsule material at an oxygen partial pressure of 1 kgVm2, and 100 kgVm2. 770°G, 200 to 84
2 at 700″C1300C13O0 at 620°G,
By carrying out the treatment at a temperature not exceeding 400kli'f and 540℃ on table 2, it is possible to densify porous materials (density improvement) or sinter compacted powder bodies. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸素雰囲気HIP処理における銀製カプセルの
適用範囲を示す線図、第2図は銀製カプセル(処理前)
の斜視図、第3図は銀製カプセル(処理前)の断面図、
第4図は酸素雰囲気HIP処理後の銀製カプセルの断面
図、第5図は従来のカプセル(処理前)の構造を説明す
る図、第6図は従来のカプセル(処理後)の構造を説明
する図である。 l・・銀又は銀合金製カプセル 10・・圧粉体
Figure 1 is a diagram showing the applicable range of silver capsules in oxygen atmosphere HIP treatment, Figure 2 is a silver capsule (before treatment)
Figure 3 is a cross-sectional view of the silver capsule (before treatment);
Figure 4 is a cross-sectional view of a silver capsule after HIP treatment in an oxygen atmosphere, Figure 5 is a diagram explaining the structure of a conventional capsule (before treatment), and Figure 6 is a diagram explaining the structure of a conventional capsule (after treatment). It is a diagram. l...Silver or silver alloy capsule 10...Powder compact

Claims (2)

【特許請求の範囲】[Claims] (1)酸化性雰囲気下で処理するのが好適な多孔質焼結
体あるいは圧粉成形体を、酸素雰囲気HIP処理により
緻密化あるいは焼結するのに使用するカプセルにおいて
、材質が銀あるいは銀の合金であることを特徴とするH
IP処理用金属製カプセル。
(1) In a capsule used for densifying or sintering a porous sintered body or compacted body, which is preferably treated in an oxidizing atmosphere, by HIP treatment in an oxygen atmosphere, the material is silver or silver. H characterized by being an alloy
Metal capsule for IP processing.
(2)銀製又は銀の合金製カプセルに多孔質焼結体或は
圧粉成形体を装填し酸素雰囲気HIP処理を行なう処理
方法において、酸素分圧1kgf/cm^2でカプセル
材料の融点、100kgf/cm^2で770℃,20
0kgf/cm^2で700℃,300kgf/cm^
2で620℃,400kgf/cm^2で540℃の温
度を越えない処理温度で処理を実施することを特徴とす
る酸素雰囲気HIP処理方法。
(2) In a treatment method in which a porous sintered body or a compacted powder body is loaded into a capsule made of silver or a silver alloy, and HIP treatment is performed in an oxygen atmosphere, the melting point of the capsule material is 100 kgf at an oxygen partial pressure of 1 kgf/cm^2. /cm^2 at 770℃, 20
700℃ at 0kgf/cm^2, 300kgf/cm^
An oxygen atmosphere HIP treatment method characterized in that the treatment is carried out at a treatment temperature not exceeding 620° C. at 2 and 540° C. at 400 kgf/cm^2.
JP63204772A 1988-08-19 1988-08-19 Metallic capsule for hip treatment and hip treatment in oxygen atmosphere using same Pending JPH0255269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63204772A JPH0255269A (en) 1988-08-19 1988-08-19 Metallic capsule for hip treatment and hip treatment in oxygen atmosphere using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63204772A JPH0255269A (en) 1988-08-19 1988-08-19 Metallic capsule for hip treatment and hip treatment in oxygen atmosphere using same

Publications (1)

Publication Number Publication Date
JPH0255269A true JPH0255269A (en) 1990-02-23

Family

ID=16496091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63204772A Pending JPH0255269A (en) 1988-08-19 1988-08-19 Metallic capsule for hip treatment and hip treatment in oxygen atmosphere using same

Country Status (1)

Country Link
JP (1) JPH0255269A (en)

Similar Documents

Publication Publication Date Title
US3562371A (en) High temperature gas isostatic pressing of crystalline bodies having impermeable surfaces
JP5001159B2 (en) Method for controlling the oxygen content of a powder
US4339271A (en) Method of manufacturing a sintered powder body
JPH056780B2 (en)
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US4719078A (en) Method of sintering compacts
JPH04505985A (en) Manufacturing method of CuCr contact piece for vacuum switch and attached contact piece
JPS6245195B2 (en)
US5116589A (en) High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers
US4957901A (en) Method of manufacturing an object from superconductive material
JPH0225961B2 (en)
JPH0255269A (en) Metallic capsule for hip treatment and hip treatment in oxygen atmosphere using same
US4952353A (en) Hot isostatic pressing
JPH02213403A (en) Manufacture of sintered member
JPS6232241B2 (en)
JPH0633166A (en) Manufacture of oxide dispersion-strengthened heat resistant alloy sintered compact
JPS63222075A (en) Manufacture of high density sintered body
JP3600691B2 (en) Hot isostatic pressing method with hot isostatic pressing capsule for ultra-high temperature
JPS5852406A (en) Hot hydrostatic pressing method
US5970307A (en) Sintering method for tungsten-nickel-manganese type heavy alloy
KR102605561B1 (en) Canning free hot isostatic pressure powder metallurgy method
CN110997194B (en) Method for sintering metals, non-oxide ceramics and other easily oxidized materials
JP2764669B2 (en) Manufacturing method of sintered aluminum porous material
JPH0678561B2 (en) Method for manufacturing substrate for sputtering target
JPS581074B2 (en) netsukanseisuiatsuseikeihou