JP2764669B2 - Manufacturing method of sintered aluminum porous material - Google Patents
Manufacturing method of sintered aluminum porous materialInfo
- Publication number
- JP2764669B2 JP2764669B2 JP21973492A JP21973492A JP2764669B2 JP 2764669 B2 JP2764669 B2 JP 2764669B2 JP 21973492 A JP21973492 A JP 21973492A JP 21973492 A JP21973492 A JP 21973492A JP 2764669 B2 JP2764669 B2 JP 2764669B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- porous material
- sintered
- container
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はアルミニウム焼結多孔質
材の製造法に係り、詳しくは、原料アルミニウム粉末等
をカーボン容器に充填し、焼結する際に、カーボン容器
中に含まれる酸化成分を予め放出させた容器を用いて焼
結体の表面酸化の防止と品質にバラツキの少ないものが
得られるアルミニウム焼結多孔質材の製造法に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered aluminum porous material, and more particularly to an oxidizing component contained in a carbon container when a raw material aluminum powder or the like is filled in a carbon container and sintered. The present invention relates to a method for producing a sintered aluminum porous material that can prevent surface oxidation of a sintered body and obtain a sintered body having a small variation in quality by using a container in which sintering is previously released.
【0002】[0002]
【従来の技術】アルミニウム焼結多孔質材は例えば吸音
材などの用途に有用であるとされている。これはアルミ
ニウム焼結多孔質材が連通孔からなる通路を有すること
から音波等の波動エネルギが通路を通過するときも、そ
の間に波動エネルギが吸収されるものと推定され多孔質
材には吸音材としての優れた特性がある。2. Description of the Related Art Sintered porous aluminum materials are said to be useful for applications such as sound absorbing materials. This is because it is presumed that even when wave energy such as sound waves passes through the passage because the aluminum sintered porous material has a passage formed of a communication hole, the wave energy is absorbed during the passage, and the porous material has a sound absorbing material. There are excellent characteristics as.
【0003】しかし、アルミニウム粉末は表面が酸化し
やすく、焼結させることは非常に難しく、雰囲気の状況
によっては焼結が不可能であったり、焼結が可能であっ
ても品質に変動があることが知られている。このような
アルミニウム粉末を用いて焼結多孔質材を製造する方法
としては例えば、特公昭60−47322号公報にはC
u、Mg、Siあるいはこれら金属を1種若しくは2種
以上を含む合金のうちから選んだ若しくは2種以上の粉
末にアルミニウム若しくはその合金の粉末を混合し、そ
の後無加圧で所要形状に成型し、次いで、アルミニウム
若しくはその合金の融点付近で非酸化性雰囲気中で焼結
する方法がある。[0003] However, the surface of aluminum powder is easily oxidized and sintering is very difficult, and sintering is not possible or the quality varies even if sintering is possible depending on the atmospheric conditions. It is known. As a method for producing a sintered porous material using such aluminum powder, for example, Japanese Patent Publication No. 60-47322 discloses C
u, Mg, Si, or an alloy containing one or more of these metals, or a powder of aluminum or an alloy thereof mixed with two or more powders, and then molded into a required shape without pressure. Then, there is a method of sintering in a non-oxidizing atmosphere near the melting point of aluminum or its alloy.
【0004】また、このアルミニウム焼結多孔質材を製
造する際に、アルミニウム粉末を充填する容器として黒
鉛等のカーボン材の表面にセラミックのオーバーコート
を行なう方法がある。[0004] Further, when producing this sintered aluminum porous material, there is a method in which a ceramic material is overcoated on the surface of a carbon material such as graphite as a container for filling the aluminum powder.
【0005】これらの方法はいずれもカーボンがアルミ
ニウムや鋼と焼結工程で炭素化合物をつくらないため、
焼結多孔質材を製造するには最適な容器である。また、
黒鉛等のカーボン材は熱伝導性に優れ、加工性もよく比
重も小さくしかも脆弱でないため最適な材料とされて来
た。しかし、アルミニウム粉末から焼結多孔質材を製造
する際に、その粉末の充填容器である黒鉛等のカーボン
材が大気中の酸素や水分を度々吸蔵し、これがために、
多孔質材の表面が酸化され、酸化アルミニウムを主成分
とする黒褐色の変色を起こしたり、また多孔質材が形成
されず、良好な品質の多孔質材が製造できないという問
題があった。[0005] In any of these methods, carbon does not form a carbon compound in the sintering process with aluminum or steel.
It is the most suitable vessel for producing sintered porous material. Also,
Carbon materials such as graphite have been considered to be the most suitable materials because of their excellent thermal conductivity, good workability, low specific gravity, and low brittleness. However, when producing a sintered porous material from aluminum powder, a carbon material such as graphite, which is a container filled with the powder, frequently occludes oxygen and moisture in the atmosphere.
There has been a problem that the surface of the porous material is oxidized to cause discoloration of black-brown containing aluminum oxide as a main component, and that the porous material is not formed, so that a porous material of good quality cannot be produced.
【0006】[0006]
【発明が解決しようとする課題】すなわち、本発明は上
記問題の解決を目的とし、具体的には、アルミニウムの
焼結多孔質材を製造する際に、カ−ボン容器の酸化を防
止し、焼結時の結合状態を良好とし、効率よくアルミニ
ウム焼結多孔質材の製造法を提供することを目的とす
る。That is, an object of the present invention is to solve the above-mentioned problems. More specifically, the present invention prevents the oxidation of a carbon container when producing a sintered porous material of aluminum. An object of the present invention is to provide a method for efficiently producing a sintered aluminum porous material by improving the bonding state during sintering.
【0007】[0007]
【課題を解決するための手段】 本発明はアルミニウム
若しくはアルミニウムと合金との混合物の粉末をカーボ
ン容器に充填し、非酸化性雰囲気下焼結し、多孔質材を
製造する際に、カーボン容器に吸蔵する酸素、水分等の
酸化成分を予め加熱処理及び/又は真空処理により放出
させたものを用いることを特徴とする。Means for Solving the Problems The present invention fills a carbon container with powder of aluminum or a mixture of aluminum and an alloy and sinters it in a non-oxidizing atmosphere to produce a porous material. It is characterized in that an oxidized component such as oxygen or moisture to be occluded is released in advance by a heat treatment and / or a vacuum treatment.
【0008】以下、本発明の手段たる構成ならびに作用
について説明すると、次の通りである。Hereinafter, the configuration and operation as the means of the present invention will be described as follows.
【0009】本発明者等はアルミニウム焼結多孔質材を
製造する際に、アルミニウム粉末等を充填し焼結する容
器について検討を行なったところ、容器の材料が金属系
のものはアルミニウムと合金を作り易く、そのため焼結
後容器から焼結多孔質材を取り出すことは出来ないこ
と、また、金属系の下地の上にホ−ロ等の非金属セラミ
ックを被覆する方法もあるが、取扱い時に剥離したり、
高温になった時点でセラミックの剥離が起ったりして実
用的にはアルミニウム焼結多孔質材の製造用としては不
適である。The present inventors have studied a container in which aluminum powder or the like is filled and sintered when producing a sintered aluminum porous material. When the material of the container is metallic, aluminum and an alloy are used. It is easy to make, so it is not possible to take out the sintered porous material from the container after sintering. Also, there is a method of coating nonmetallic ceramics such as hollow on a metal base, Or
At a high temperature, the ceramic is peeled off, which is not practically suitable for producing a sintered aluminum porous material.
【0010】 また、黒鉛等のカーボンは熱伝導性が良
好でアルミニウムとカーボンとが合金を作らないすぐれ
た材料であるが、これを容器として用いる場合、空気や
水分等を吸蔵し易く、数時間空気中に放置するだけでア
ルミニウム粉末焼結多孔質材の製造には不適となる。[0010] In addition, carbon such as graphite is an excellent material having good thermal conductivity and not forming an alloy of aluminum and carbon. However, when this is used as a container, it is easy to occlude air or moisture, and it takes several hours. Simply leaving it in the air makes it unsuitable for producing a sintered aluminum powder porous material.
【0011】例えば、雰囲気は水分の存在によってその
酸化状態を把握することができるが、露点を測定して環
元性雰囲気を−20℃程度までもって行っても良好なア
ルミニウム粉末焼結多孔質材の製造が出来ない。For example, although the oxidized state of the atmosphere can be grasped by the presence of moisture, it is possible to measure the dew point and obtain a good sintered aluminum powder porous material even if the reducing atmosphere is maintained at about −20 ° C. Cannot be manufactured.
【0012】そこで、雰囲気中の酸化度合の測定に用い
られる露点では−40〜−60℃近くに雰囲気の状態を
保たなくては良好なアルミニウム焼結体が得られないこ
とがわかった。この露点の低下は炉の構造にも大きく起
因するが本発明は黒鉛等のカ−ボン容器に起因して露点
が低下する点に着目し本発明が成立したものである。Thus, it has been found that a good aluminum sintered body cannot be obtained unless the state of the atmosphere is maintained at a dew point used for measuring the degree of oxidation in the atmosphere at around -40 to -60 ° C. Although the decrease in the dew point largely depends on the structure of the furnace, the present invention has been achieved by focusing on the fact that the dew point is reduced by a carbon container such as graphite.
【0013】以下、図面により本発明を詳しく説明す
る。Hereinafter, the present invention will be described in detail with reference to the drawings.
【0014】図1は本発明を実施する際に用いられる装
置の一例を示す説明図であり、図2は図1の装置に用い
られる黒鉛容器の斜視図である。符号1は黒鉛容器、2
は段積した黒鉛容器、3は焼結炉、4はドア、5はロ−
ラ、6は凹状のへこみを示す。FIG. 1 is an explanatory view showing an example of an apparatus used in carrying out the present invention, and FIG. 2 is a perspective view of a graphite container used in the apparatus shown in FIG. 1 is a graphite container, 2
Is a stacked graphite container, 3 is a sintering furnace, 4 is a door, 5 is a low
La and 6 show concave dents.
【0015】 まず、図2に示す黒鉛容器1は容器内に
凹状のへこみ6を有し、この凹状のへこみ6の中にアル
ミニウム粉等を無加圧充填する。次いで、図1に示す段
積した黒鉛容器2を焼結炉3の入口、ドア4内に挿入
し、焼結炉3のドア4から炉内のローラ5上を移動する
間に、焼結されて焼結炉3のドア4より系外に排出され
る。焼結炉3の各ドア4は段積した黒鉛容器2の挿入に
よって上部方向にスライド出来るように構成され、雰囲
気の酸化を防止する。黒鉛容器2は一旦長時間(期間)
大気中に曝されていると、そのままの状態で使用したの
では連続的に段積した黒鉛容器2が炉中に移動するた
め、黒鉛容器に吸蔵している酸素、水分が環元性雰囲気
の状態を酸化性雰囲気となり、アルミニウム粉末の焼結
反応を妨害してしまう。First, the graphite container 1 shown in FIG. 2 has a concave dent 6 in the container, and the concave dent 6 is filled with aluminum powder or the like without pressure. Next, the stacked graphite containers 2 shown in FIG. 1 are inserted into the entrance 4 of the sintering furnace 3 and into the door 4, and the sintering is performed while moving from the door 4 of the sintering furnace 3 onto the rollers 5 in the furnace. Then, it is discharged out of the system from the door 4 of the sintering furnace 3. Each door 4 of the sintering furnace 3 is configured to be slidable upward by inserting the stacked graphite containers 2 to prevent oxidation of the atmosphere. Graphite container 2 once long (period)
If the graphite container 2 is used as it is when exposed to the atmosphere, the continuously stacked graphite containers 2 move into the furnace, so that the oxygen and moisture occluded in the graphite containers are reduced to the reducing atmosphere. The state becomes an oxidizing atmosphere, which hinders the sintering reaction of the aluminum powder.
【0016】 そこで、黒鉛容器1を使用する前に予め
加熱及び/又は真空処理を行なうことによって、黒鉛容
器中に吸蔵されている酸素や水分を除去するようにすれ
ばこのような問題は防止できる。Therefore, such a problem can be prevented by performing heating and / or vacuum treatment before using the graphite container 1 to remove oxygen and moisture occluded in the graphite container. .
【0017】本発明の好ましい例は600℃で2時間非
酸化性雰囲気下或いは100℃で30時間程度加熱する
か、真空炉に入れ10-2Torr程度で600℃で2時
間、100℃で10時間、真空炉中に保持することによ
り、酸素や水分等の酸化成分を黒鉛容器2から抜くこと
ができ、この前処理した黒鉛容器を用い、焼結炉3によ
り連続的にアルミニウム粉末を処理して焼結したとこ
ろ、褐色等の変色のないアルミニウムそのものの色調を
したアルミニウム焼結多孔質材を得ることができる。本
発明によれば焼結炉中の露点を−40〜−60℃に維持
することができるので焼結性の高いアルミニウム焼結多
孔質材を得ることができる。A preferred example of the present invention is to heat at 600 ° C. for 2 hours in a non-oxidizing atmosphere or at 100 ° C. for about 30 hours, or place in a vacuum furnace at about 10 −2 Torr at 600 ° C. for 2 hours and at 100 ° C. for 10 hours. Oxidation components such as oxygen and moisture can be extracted from the graphite container 2 by holding the same in a vacuum furnace for a time, and the aluminum powder is continuously processed by the sintering furnace 3 using the pretreated graphite container. After sintering, an aluminum sintered porous material having a color tone of aluminum itself without discoloration such as brown can be obtained. According to the present invention, since the dew point in the sintering furnace can be maintained at -40 to -60 ° C, an aluminum sintered porous material having high sinterability can be obtained.
【0018】 実施例1. 図2に示すカーボン容器を
焼結工程に先だち予め非酸化雰囲気下温度600℃で2
時間加熱し、カーボン容器中に吸蔵されている酸素、水
分等の酸化成分を放出させた。次いで、この容器にアル
ミニウム粉末を充填し、図1に示すように段積し、露点
を−40〜−60℃に維持した焼結炉内を移動させ焼結
性の高いアルミニウム焼結多孔質材を得た。Embodiment 1 Prior to the sintering step, the carbon container shown in FIG.
Heating was performed for an hour to release oxidized components such as oxygen and moisture stored in the carbon container. Next, this container is filled with aluminum powder, stacked as shown in FIG. 1, and moved in a sintering furnace in which the dew point is maintained at −40 to −60 ° C., and a sintered aluminum porous material having high sinterability is obtained. I got
【0019】実施例2.予めカ−ボン容器を温度100
℃で30時間保持して処理した以外は実施例1と同様に
行なったところ、実施例1と同様の結果を得た。Embodiment 2 FIG. Preheat the carbon container to a temperature of 100
The same operation as in Example 1 was carried out except that the treatment was carried out at 30 ° C. for 30 hours, and the same results as in Example 1 were obtained.
【0020】実施例3.予めカ−ボン容器を真空炉で真
空度10-2Torr程度で600℃で2時間真空炉中に
保持して処理した以外は実施例1と同様に行なったとこ
ろ、実施例1と同様の結果を得た。Embodiment 3 FIG. The same results as in Example 1 were obtained, except that the carbon container was previously treated in a vacuum furnace at 600 ° C. for 2 hours at 600 ° C. in a vacuum furnace at a degree of vacuum of about 10 −2 Torr. I got
【0021】実施例4.真空炉の操業条件を10-2To
rr、100℃で10時間程度保持して処理した以外は
実施例3と同様に行なったところ、実施例3と同様の結
果を得た。Embodiment 4 FIG. Operating conditions of the vacuum furnace were 10 -2 To
The same operation as in Example 3 was carried out except that the treatment was carried out at rr and 100 ° C. for about 10 hours, and the same results as in Example 3 were obtained.
【0022】[0022]
【発明の効果】 以上詳しく説明したように、本発明は
アルミニウム若しくはアルミニウムと合金との混合物の
粉末をカーボン容器に充填し、非酸化性雰囲気下焼結
し、多孔質材を製造する際に、カーボン容器に吸蔵する
酸素、水分等の酸化成分を予め加熱処理及び/又は真空
処理により放出させたものを用いることを特徴とする。As described above in detail, the present invention provides a method of filling a powder of aluminum or a mixture of aluminum and an alloy in a carbon container and sintering the same in a non-oxidizing atmosphere to produce a porous material. It is characterized in that an oxidizing component such as oxygen and moisture stored in a carbon container is released in advance by heat treatment and / or vacuum treatment.
【0023】本発明によれば、アルミニウム粉末焼結多
孔質材を製造する際に、酸素、水素等の酸化成分を除去
した黒鉛容器にアルミニウム粉末等を充填し非酸化性雰
囲気下、焼結するようにしたため、褐色等の変色がな
く、アルミニウム自体の色調を有する多孔質材が得られ
る。According to the present invention, when producing a sintered aluminum powder porous material, a graphite container from which oxidizing components such as oxygen and hydrogen have been removed is filled with aluminum powder and the like and sintered in a non-oxidizing atmosphere. As a result, a porous material having the color tone of aluminum itself without discoloration such as brown can be obtained.
【0024】また、焼結炉中の露点を−40〜−60℃
に維持することが出来るので焼結性の高いアルミニウム
多孔質材が得られる。The dew point in the sintering furnace is set at -40 to -60 ° C.
, So that an aluminum porous material having high sinterability can be obtained.
【図1】本発明を実施する際に用いられる装置の一例を
示す説明図である。FIG. 1 is an explanatory diagram showing an example of an apparatus used when carrying out the present invention.
【図2】図1の装置に用いられる黒鉛容器の斜視図であ
る。FIG. 2 is a perspective view of a graphite container used in the apparatus of FIG.
1 黒鉛容器 2 段積した黒鉛容器 3 焼結炉 4 ドア 5 ロ−ラ 6 凹状のへこみ Reference Signs List 1 graphite container 2 stacked graphite containers 3 sintering furnace 4 door 5 roller 6 concave dent
Claims (2)
金との混合物の粉末をカーボン容器に充填し、非酸化性
雰囲気下焼結し、多孔質材を製造する際に、 前記カーボン容器に吸蔵する酸素、水分等の酸化成分を
予め加熱処理及び/又は真空処理により放出させたもの
を用いることを特徴とするアルミニウム焼結多孔質材の
製造法。1. A method in which a powder of aluminum or a mixture of aluminum and an alloy is filled in a carbon container and sintered in a non-oxidizing atmosphere to produce a porous material. A method for producing a sintered aluminum porous material, characterized in that an oxidized component of (i) is released in advance by heat treatment and / or vacuum treatment.
100〜600℃で2〜30時間及び/又は減圧度10
-2Torr温度100〜600℃で2〜10時間である
請求項1記載のアルミニウム焼結多孔質材の製造法。2. The heat treatment and / or the vacuum treatment are performed at a temperature of 100 to 600 ° C. for 2 to 30 hours and / or at a reduced pressure of 10 ° C.
The method for producing an aluminum sintered porous material according to claim 1, wherein the Torr temperature is 100 to 600 ° C for 2 to 10 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21973492A JP2764669B2 (en) | 1992-07-27 | 1992-07-27 | Manufacturing method of sintered aluminum porous material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21973492A JP2764669B2 (en) | 1992-07-27 | 1992-07-27 | Manufacturing method of sintered aluminum porous material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0641615A JPH0641615A (en) | 1994-02-15 |
JP2764669B2 true JP2764669B2 (en) | 1998-06-11 |
Family
ID=16740151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21973492A Expired - Lifetime JP2764669B2 (en) | 1992-07-27 | 1992-07-27 | Manufacturing method of sintered aluminum porous material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2764669B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013027299A1 (en) | 2011-08-25 | 2013-02-28 | 三菱マテリアルテクノ株式会社 | Vacuum storage method and device for crystalline material |
CN110640140B (en) * | 2019-10-31 | 2021-06-04 | 中北大学 | Preparation method of graphene reinforced porous aluminum-based composite material |
-
1992
- 1992-07-27 JP JP21973492A patent/JP2764669B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0641615A (en) | 1994-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5001159B2 (en) | Method for controlling the oxygen content of a powder | |
US4339271A (en) | Method of manufacturing a sintered powder body | |
US4578364A (en) | High thermal conductivity ceramic body of aluminum nitride | |
JPH075376B2 (en) | Manufacturing method of ceramics with high thermal conductivity | |
JP2764669B2 (en) | Manufacturing method of sintered aluminum porous material | |
US4985400A (en) | Process for producing superconductive ceramics by atomization of alloy precurser under reactive atmospheres or post annealing under oxygen | |
Dudas et al. | Improved sintering procedures for aluminum P/M parts | |
Mencer Jr et al. | The oxidation and oxide overlayer stability of Ag Mn alloys | |
GB2085032A (en) | Isostatic Pressing of Chromium Sputtering Targets | |
US4011076A (en) | Method for fabricating beryllium structures | |
US4122220A (en) | Method for reducing the gas permeability of a sintered porous silicon nitride body | |
JPS63222075A (en) | Manufacture of high density sintered body | |
JPS62234891A (en) | Manufacture of covered graphite mold which is electrically conductive and has stability against oxidation | |
US4227926A (en) | Method for producing high density and high conductivity metal pressings | |
JPS59217675A (en) | Silicon nitride reaction sintered body composite material and manufacture | |
JPS61264103A (en) | Production of high melting point metallic sintered body | |
EP0026506A1 (en) | A process for the preparation of shaped, electrically conductive articles from silicon powder, as well as shaped articles obtained by using this process | |
JPH02176389A (en) | Sintering of inorganic substance and crucible for sintering | |
JPS596303A (en) | Surface treatment of silicon nitride sintered body | |
JPH01317672A (en) | Stoke for low pressure casting | |
JPH0699728B2 (en) | Method for manufacturing rolled metal chrome | |
JP3471858B2 (en) | Manufacturing method of metal sintered member | |
JPS5939769A (en) | Method of sintering silicon nitride | |
JPH07207305A (en) | Setter for sintering rare earth magnet | |
JPH03193860A (en) | Production of ti-al intermetallic compound member |