JPH0255208B2 - - Google Patents

Info

Publication number
JPH0255208B2
JPH0255208B2 JP55050996A JP5099680A JPH0255208B2 JP H0255208 B2 JPH0255208 B2 JP H0255208B2 JP 55050996 A JP55050996 A JP 55050996A JP 5099680 A JP5099680 A JP 5099680A JP H0255208 B2 JPH0255208 B2 JP H0255208B2
Authority
JP
Japan
Prior art keywords
inorganic reinforcing
reinforcing fibers
foamed resin
mold
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55050996A
Other languages
Japanese (ja)
Other versions
JPS56144935A (en
Inventor
Ikuo Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5099680A priority Critical patent/JPS56144935A/en
Publication of JPS56144935A publication Critical patent/JPS56144935A/en
Publication of JPH0255208B2 publication Critical patent/JPH0255208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は無機質強化繊維入り建築用断熱材の製
造方法の改良に関し、その特定発明の要旨は、フ
レーク状に毛羽立たせた無機質強化繊維1に接着
剤を散布して無機質強化繊維1を毛羽立たせた状
態で固定し、次いで無機質強化繊維1を成形型3
内に配設したのち接着剤の溶融温度より高温で反
応する発泡樹脂2を成形型3内に注入して発泡硬
化させることを特徴とする無機質強化繊維入り建
築用断熱材の製造方法にあり、その併合発明の要
旨は、フレーク状に毛羽立たせた無機質強化繊維
1内にパーライト粒4を均一に分散し、次いで無
機質強化繊維1に接着剤を散布してパーライト粒
4と共に無機質強化繊維1を毛羽立たせた状態で
固定し、次いで無機質強化繊維1を成形型3内に
配設したのち接着剤の溶融温度より高温で発泡す
る発泡樹脂2を成形型3内に注入して発泡硬化さ
せることを特徴とする無機質強化繊維入り建築用
断熱材の製造方法にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a thermal insulation material for construction containing inorganic reinforcing fibers. The reinforcing fiber 1 is fixed in a fluffed state, and then the inorganic reinforcing fiber 1 is placed in a mold 3.
A method for manufacturing a thermal insulation material for construction containing inorganic reinforcing fibers, characterized in that a foamed resin 2 that reacts at a temperature higher than the melting temperature of the adhesive is injected into a mold 3 and cured by foaming. The gist of the combined invention is that perlite particles 4 are uniformly dispersed in the inorganic reinforcing fibers 1 fluffed into flakes, and then an adhesive is sprinkled on the inorganic reinforcing fibers 1 to fluff the inorganic reinforcing fibers 1 together with the perlite particles 4. After the inorganic reinforcing fibers 1 are placed in a mold 3, the foamed resin 2, which foams at a higher temperature than the melting temperature of the adhesive, is injected into the mold 3 and cured by foaming. A method for manufacturing a building insulation material containing inorganic reinforcing fibers.

従来、例えば断熱ボードとか化粧パネルのよう
な建築用断熱材をウレタン発泡樹脂のような発泡
樹脂単独で形成した場合、建築用断熱材成形後の
1次収縮により寸法が不安定となるという欠点や
この建築用断熱材を実際に使用した時気温差によ
つて伸縮を生じ、冬期においては建築用断熱材の
接合部に隙間が生じたり、夏期には建築用断熱材
が伸長して接合部が盛り上るという欠点があつ
た。そこでこの寸法変化改善のために無機質強化
繊維を建築用断熱材に混入させることが試みられ
たが、この無機質強化繊維を建築用断熱材中に均
一に分散させることは極めて困難であつた。
Conventionally, when building insulation materials such as insulation boards and decorative panels are made of foamed resin such as urethane foam resin alone, there are drawbacks such as dimensional instability due to primary shrinkage after molding of the construction insulation material. When this architectural insulation material is actually used, it expands and contracts due to temperature differences, and in the winter, gaps may appear at the joints of the construction insulation material, and in the summer, the construction insulation material expands and the joints become tight. It had the drawback of being exciting. Therefore, attempts have been made to mix inorganic reinforcing fibers into architectural insulation materials in order to improve this dimensional change, but it has been extremely difficult to uniformly disperse these inorganic reinforcing fibers into architectural insulation materials.

本発明はかかる従来例の欠点に鑑みてなされた
もので、その目的とするところは、無機質強化繊
維を均一に分散できて寸法変化がない無機質強化
繊維入り建築用断熱材の製造方法を提供するにあ
る。
The present invention was made in view of the drawbacks of the conventional examples, and its purpose is to provide a method for manufacturing a thermal insulation material for construction containing inorganic reinforcing fibers in which inorganic reinforcing fibers can be uniformly dispersed and there is no dimensional change. It is in.

以下、まず本特定発明を図示実施例に従つて詳
述する。無機質強化繊維1とは例えばガラス繊維
のようなもので、フレーク状に毛羽立たせてあ
る。発泡樹脂2としては例えばウレタン発泡樹脂
のようなものが使用され、80〜100℃の発熱反応
を行うものが最適である。接着剤としては例えば
ホツトメルト系接着剤が使用され、その溶融温度
は50〜80℃のものが最適である。成形型3として
は例えば連続成形の場合はダブルコンベア5のキ
ヤタピラ6に配設された移動金型3aが使用さ
れ、バツチ式成形では固定の金型を使用する。こ
の実施例ではダブルコンベア5を使用する場合を
例にとつて説明する。ダブルコンベア5は上キヤ
タピラ6aと下キヤタピラ6bとで構成されてお
り、両キヤタピラ6a,6bの外周面に可動金型
3aが連続的に配設してある。また、ダブルコン
ベア5の入口側(第1図中右側)には上下に2基
の離形紙供給リール7を配設してあり、ダブルコ
ンベア5の出口側(第1図中左側)には上下に2
基の離形紙巻取リール8を配設してあり、離形紙
供給リール7から供給された離形紙9は上下キヤ
タピラ6a,6bの可動金型3aを通つて離形紙
巻取リール8に巻取られるようになつている。フ
レーク状に毛羽立たせた無機質強化繊維1は第1
図のようにダブルコンベア5に入口側から供給さ
れる。この無機質強化繊維1はダブルコンベア5
に送給される以前にすでに接着剤を散布されてい
てフレーク状の毛羽立ちが固定されている。無機
質強化繊維1がダブルコンベア5に供給されて来
ると下キヤタピラ6bの上入側上方に配置された
発泡樹脂供給装置10にて発泡樹脂2が供給さ
れ、上下キヤタピラ6a,6bの可動金型3a間
で発泡する。この時80〜100℃位の発熱反応を生
ずるため、無機質強化繊維1の毛羽立ちを固定し
ている接着剤が緩み、無機質強化繊維1が発泡樹
脂2内に均一に分散することになる。またこの時
発泡樹脂2は上下から離形紙9にてサンドイツチ
されているため、表面が可動金型3aに付着して
荒れることがない。発泡樹脂2の発泡反応が終了
し、硬化するとダブルコンベア5の出口側から引
き出され、然る後一定寸法に裁断されて建築用断
熱材となる。バツチ式成形の場合は図示していな
いが、接着剤にて毛羽立ちを固定された無機質強
化繊維1を固定金型内に張設したのち発泡樹脂2
を固定金型内に充填して発泡させ、発泡反応完了
後(通常は5分以上経過後)固定金型内より建築
用断熱材を取り出す。
Hereinafter, the present invention will first be described in detail with reference to illustrated embodiments. The inorganic reinforcing fiber 1 is, for example, something like glass fiber, and is fluffed into flakes. As the foamed resin 2, for example, a urethane foamed resin is used, and one that undergoes an exothermic reaction at 80 to 100°C is optimal. As the adhesive, for example, a hot melt adhesive is used, and its melting temperature is optimally 50 to 80°C. As the mold 3, for example, in the case of continuous molding, a movable mold 3a disposed on the caterpillar 6 of the double conveyor 5 is used, and in the case of batch molding, a fixed mold is used. In this embodiment, a case where a double conveyor 5 is used will be explained. The double conveyor 5 is composed of an upper caterpillar 6a and a lower caterpillar 6b, and a movable mold 3a is continuously disposed on the outer peripheral surface of both caterpillars 6a, 6b. Furthermore, two release paper supply reels 7 are arranged above and below on the entrance side of the double conveyor 5 (on the right side in Figure 1), and on the exit side of the double conveyor 5 (on the left side in Figure 1). 2 up and down
A release paper take-up reel 8 is provided, and the release paper 9 supplied from the release paper supply reel 7 passes through the movable molds 3a of the upper and lower caterpillars 6a and 6b to the release paper take-up reel 8. It is designed to be rolled up. The inorganic reinforcing fiber 1 fluffed into flakes is the first
As shown in the figure, it is supplied to the double conveyor 5 from the entrance side. This inorganic reinforcing fiber 1 is a double conveyor 5
Before being sent to the machine, adhesive has already been applied to fix the flaky fuzz. When the inorganic reinforcing fibers 1 are supplied to the double conveyor 5, the foamed resin supply device 10 disposed above the inlet side of the lower caterpillar 6b supplies the foamed resin 2, and the movable molds 3a of the upper and lower caterpillars 6a and 6b are supplied. It foams in between. At this time, an exothermic reaction of about 80 to 100° C. occurs, so that the adhesive fixing the fluff of the inorganic reinforcing fibers 1 is loosened, and the inorganic reinforcing fibers 1 are uniformly dispersed within the foamed resin 2. Moreover, since the foamed resin 2 is sandwiched from above and below with release paper 9 at this time, the surface will not adhere to the movable mold 3a and become rough. When the foaming reaction of the foamed resin 2 is completed and it hardens, it is pulled out from the exit side of the double conveyor 5, and then cut into a certain size to become a heat insulating material for construction. In the case of batch molding, although not shown, the inorganic reinforcing fibers 1 with fluff fixed with adhesive are stretched in a fixed mold, and then the foamed resin 2
is filled into a fixed mold and foamed, and after the foaming reaction is completed (usually after 5 minutes or more) the architectural insulation material is taken out from the fixed mold.

本併合発明の場合にあつては、第3図のように
毛羽立つた無機質強化繊維1にパーライト粒4を
均一に散布し、その上から接着剤を散布してパー
ライト粒4と共に無機質強化繊維1の毛羽立ちを
固定し、これをダブルコンベア5に供給するよう
にしてある。このようにすると発泡樹脂2の発熱
反応時に多量のパーライト粒4が無機質強化繊維
1と共に発泡樹脂2内に均一に分散することにな
り、軽量で強度に優れた難燃性の建築用断熱材と
なる。さらに発泡樹脂2の両面に紙、プラスチツ
クシート、アルミ箔、合板、金属板を張付けて強
度の飛躍的向上をはかつてもよい。このようにし
て形成された建築用断熱材は家屋の床とか天井と
か壁内に配設して使用されるものである。
In the case of the present combined invention, as shown in FIG. 3, pearlite grains 4 are uniformly sprinkled on fluffed inorganic reinforcing fibers 1, and an adhesive is sprinkled on top of the fluffed inorganic reinforcing fibers 1 to form the inorganic reinforcing fibers 1 together with the pearlite grains 4. The fluff is fixed and fed to a double conveyor 5. In this way, during the exothermic reaction of the foamed resin 2, a large amount of pearlite particles 4 will be uniformly dispersed in the foamed resin 2 together with the inorganic reinforcing fibers 1, resulting in a lightweight, strong, flame-retardant architectural insulation material. Become. Furthermore, the strength can be dramatically improved by pasting paper, plastic sheets, aluminum foil, plywood, or metal plates on both sides of the foamed resin 2. Architectural heat insulating materials formed in this manner are used by being placed on the floors, ceilings, and walls of houses.

本発明は、叙上のように、接着剤にて毛羽立ち
を固定した無機質強化繊維を成形型内に供給し、
然るのち接着剤の溶融温度より高温で反応する発
泡樹脂を成形型内に注入して発泡硬化させてある
ので、発泡樹脂の発熱反応時に接着剤が加熱され
て緩み、無機質強化繊維が毛羽立つた状態で発泡
樹脂内に均一に分散することになり、発泡樹脂の
温度差による伸縮が毛羽立つた無機質強化繊維に
て阻止され、温度差による建築用断熱材の寸法変
化がなくなるという利点がある。また、毛羽立た
せた無機質強化繊維にパーライト粒を均一に分散
させると共に接着剤を散布してパーライト粒と毛
羽立ちとを共に固定し、この無機質強化繊維を成
形型内に配設し、前記の接着剤の溶融温度より高
温で発泡する発泡樹脂を成形型内に注入して発泡
硬化させてあるので、発泡樹脂の発泡時に接着剤
が緩み、毛羽立つた無機質強化繊維と共にパーラ
イト粒が発泡樹脂内に均一に分散することにな
り、その結果パーライト粒の混入による建築用断
熱材の折り曲げ強度の低下を無機質強化繊維が補
償し、折り曲げ強度に優れ、且つパーライト粒に
よる難燃性に優れた建築用断熱材とすることがで
きるという利点がある。
As mentioned above, the present invention supplies inorganic reinforcing fibers with fluff fixed with adhesive into a mold,
Then, a foamed resin that reacts at a temperature higher than the melting temperature of the adhesive is injected into the mold and allowed to foam and harden. During the exothermic reaction of the foamed resin, the adhesive is heated and loosened, causing the inorganic reinforcing fibers to fluff. This has the advantage that the fluffy inorganic reinforcing fibers prevent expansion and contraction of the foamed resin due to temperature differences, eliminating dimensional changes in the thermal insulation material for buildings due to temperature differences. In addition, perlite grains are uniformly dispersed in the fluffed inorganic reinforcing fibers, and an adhesive is sprayed to fix the pearlite grains and fluff together, and the inorganic reinforcing fibers are placed in a mold, and the above adhesive is applied to the fluffed inorganic reinforcing fibers. The foamed resin, which foams at a temperature higher than the melting temperature of As a result, the inorganic reinforcing fiber compensates for the decrease in the bending strength of the architectural insulation material due to the inclusion of pearlite particles, creating an architectural insulation material with excellent bending strength and flame retardancy due to the pearlite particles. The advantage is that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図本発明の一実施例の概略正面図、第2図
は同上の縦断面図、第3図は本発明の他の実施例
の概略正面図で、1は無機質強化繊維、2は発泡
樹脂、3は成形型、4はパーライト粒である。
Fig. 1 is a schematic front view of one embodiment of the present invention, Fig. 2 is a longitudinal sectional view of the same as above, and Fig. 3 is a schematic front view of another embodiment of the present invention, 1 is an inorganic reinforcing fiber, 2 is a foamed 3 is a mold, and 4 is pearlite grains.

Claims (1)

【特許請求の範囲】 1 フレーク状に毛羽立たせた無機質強化繊維に
接着剤を散布して無機質強化繊維を毛羽立たせた
状態で固定し、次いで無機質強化繊維を成形型内
に配設したのち接着剤の溶融温度より高温で反応
する発泡樹脂を成形型内に注入して発泡硬化させ
ることを特徴とする無機質強化繊維入り建築用断
熱材の製造方法。 2 フレーク状に毛羽立たせた無機質強化繊維内
にパーライト粒を均一に分散し、次いで無機質強
化繊維に接着剤を散布してパーライト粒と共に無
機質強化繊維を毛羽立たせた状態で固定し、次い
で無機質強化繊維を成形型内に配設したのち接着
剤の溶融温度より高温で発泡する発泡樹脂を成形
型内に注入して発泡硬化させることを特徴とする
無機質強化繊維入り建築用断熱材の製造方法。
[Claims] 1. An adhesive is sprinkled on inorganic reinforcing fibers fluffed into flakes to fix the inorganic reinforcing fibers in a fluffed state, and then the inorganic reinforcing fibers are placed in a mold and then an adhesive is applied. 1. A method for producing a thermal insulation material for construction containing inorganic reinforcing fibers, which comprises injecting into a mold a foamed resin that reacts at a temperature higher than the melting temperature of the foamed resin, and then foaming and hardening the foamed resin. 2. Perlite grains are uniformly dispersed in the fluffed inorganic reinforcing fibers in the form of flakes, then adhesive is sprinkled on the inorganic reinforcing fibers to fix the fluffed inorganic reinforcing fibers together with the perlite grains, and then the inorganic reinforcing fibers are fluffed. A method for manufacturing a thermal insulation material for construction containing inorganic reinforcing fibers, which comprises placing the resin in a mold, and then injecting into the mold a foamed resin that foams at a temperature higher than the melting temperature of the adhesive, and then foaming and curing the resin.
JP5099680A 1980-04-15 1980-04-15 Manufacture of inorganic fiber-reinforced insulation material for building Granted JPS56144935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5099680A JPS56144935A (en) 1980-04-15 1980-04-15 Manufacture of inorganic fiber-reinforced insulation material for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5099680A JPS56144935A (en) 1980-04-15 1980-04-15 Manufacture of inorganic fiber-reinforced insulation material for building

Publications (2)

Publication Number Publication Date
JPS56144935A JPS56144935A (en) 1981-11-11
JPH0255208B2 true JPH0255208B2 (en) 1990-11-26

Family

ID=12874389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5099680A Granted JPS56144935A (en) 1980-04-15 1980-04-15 Manufacture of inorganic fiber-reinforced insulation material for building

Country Status (1)

Country Link
JP (1) JPS56144935A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159451A (en) * 2013-03-04 2013-06-19 江苏康绿尔节能科技有限公司 Preparation method of fireproof flame retardation warming plate used for exterior wall of building
CN103161227A (en) * 2013-03-04 2013-06-19 江苏康绿尔节能科技有限公司 Fireproof and antiflaming heat-preservation board used for building exterior walls

Also Published As

Publication number Publication date
JPS56144935A (en) 1981-11-11

Similar Documents

Publication Publication Date Title
US3050427A (en) Fibrous glass product and method of manufacture
JP2018535861A (en) Reinforced additive manufacturing process for manufacturing composite materials
JPH0255208B2 (en)
JP2927730B2 (en) Glass wall panel for building structure and method of manufacturing the same
KR100708985B1 (en) Manufacturing method for fabricated insulation panel of 4 face bended
JP2000204267A (en) Composite material, production thereof, and synthetic railroad tie
JP2002004548A (en) Metal siding
JPH0237863B2 (en)
CZ247395A3 (en) Insulating profiled part in the form of a panel and process for producing thereof
JPH047703B2 (en)
JPS5947641B2 (en) How to manufacture composite panels
JPS58145437A (en) Manufacture of heat insulating board for building
JP3364898B2 (en) Insulation panel manufacturing method
JPH0438360A (en) Inorganic panel and manufacture thereof
JPH0134153B2 (en)
JPH0372772B2 (en)
JPH0237295B2 (en)
JPS6015451B2 (en) Manufacturing method of plate-shaped foam material
JP2631931B2 (en) Manufacturing method of heat insulation and moisture proof material
JPH0655474B2 (en) Method for manufacturing light weight gypsum cured product
JP5500446B2 (en) Insulating material manufacturing method and insulating material construction method
JP3040737B2 (en) Manufacturing method of foam plastic plate
JPS5847976B2 (en) Improved string-like material and fire-resistant/insulating synthetic resin foam using the same
JPH0425235B2 (en)
CN114541681A (en) Preparation method and application of glass wool composite heat-insulation and decoration integrated plate