JP5500446B2 - Insulating material manufacturing method and insulating material construction method - Google Patents
Insulating material manufacturing method and insulating material construction method Download PDFInfo
- Publication number
- JP5500446B2 JP5500446B2 JP2010162354A JP2010162354A JP5500446B2 JP 5500446 B2 JP5500446 B2 JP 5500446B2 JP 2010162354 A JP2010162354 A JP 2010162354A JP 2010162354 A JP2010162354 A JP 2010162354A JP 5500446 B2 JP5500446 B2 JP 5500446B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating material
- heat insulating
- liquid
- urethane foam
- asphalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Building Environments (AREA)
- Laminated Bodies (AREA)
Description
本発明は、断熱材の製造方法および断熱材施工方法に関する。 The present invention relates to a heat insulating material manufacturing method and a heat insulating material construction method.
ウレタンフォーム材の両面に面材を設けた断熱パネル(以下、予め定形に裁断されたパネルに限らず大寸法の断熱材を現場施工時に裁断して用いるものも含めてこれらを断熱材と総称することがある。)は、住宅等の建築物の壁、床あるいは天井等、さらには屋上、地下構造物、橋梁の床板、水槽、タンク類等の断熱材として広く用いられている。
この場合、ウレタンフォーム材への湿気の浸入を防止するために、面材として例えば樹脂コート紙やアルミニウム材等が用いられる。また、建築物の屋上、地下構造物、橋梁の床板、水槽、タンク類等に施工する場合は、面材にさらに防水層としてアスファルトを塗布することも行われている。
Insulation panels with face materials on both sides of urethane foam (hereinafter referred to as insulation materials, including not only panels that have been cut in advance, but also large-size insulation materials that are cut at the site construction) Is widely used as a heat insulating material for walls, floors or ceilings of buildings such as houses, rooftops, underground structures, bridge floors, water tanks, tanks and the like.
In this case, in order to prevent moisture from entering the urethane foam material, for example, a resin-coated paper or an aluminum material is used as the face material. In addition, asphalt is also applied to the face material as a waterproof layer when it is constructed on the rooftop of buildings, underground structures, bridge floors, water tanks, tanks, and the like.
このような断熱材の課題として、面全体の反りの問題がある。 As a problem of such a heat insulating material, there is a problem of warping of the entire surface.
例えば、裏面側鋼板−ウレタンフォーム−面材からなる断熱パネルを面材側で水系接着剤により表面側鋼板と接着させると、面材の吸水によって断熱パネルに反りが生じ、表面側鋼板と十分に接着できないという問題がある。
この問題を解決するために、面材を、最表面側からウレタンフォームへの順序で、表面吸水層/防水層/裏面層の積層構造とすることが提案されている。そして、これにより、積層構造の面材が吸水しても、防止層の存在により裏面層の吸水を抑制でき、パネル全体の反りが低減されるとされている(特許文献1参照)。
For example, if a heat insulating panel made of a back surface steel plate-urethane foam-face material is bonded to the surface side steel plate with a water-based adhesive on the face material side, the heat insulation panel warps due to water absorption of the face material, and is sufficiently with the surface side steel plate. There is a problem that it cannot be bonded.
In order to solve this problem, it has been proposed that the face material has a laminated structure of surface water-absorbing layer / waterproof layer / back surface layer in the order from the outermost surface side to the urethane foam. And even if the surface material of a laminated structure absorbs water by this, the water absorption of a back surface layer can be suppressed by presence of a prevention layer, and it is supposed that the curvature of the whole panel will be reduced (refer patent document 1).
なお、上記のような断熱パネルを用いる方式ではなく、現場施工時に面材にウレタンフォーム原料を吹き付ける方式の場合についてのものであるが、この場合、ウレタンフォームの発泡圧によりフォームが収縮現象を起こし、大きなデコボコを生じるという問題がある。
この問題を解決するために、面材として機械的強度の小さい材料を用い、ウレタンフォームとして独立気泡率が10%以下でありかつ密度が10〜25kg/m3の低密度連続気泡構造硬質ウレタンフォームを用いることが提案されている。そして、これにより、温度差によるウレタンフォームの収縮が小さいためにデコボコが小さくなるとされている(特許文献2参照)。
Note that this is not a method using a heat insulation panel as described above, but a method in which urethane foam raw material is sprayed onto the face material during on-site construction. In this case, the foam causes shrinkage due to the foaming pressure of the urethane foam. , There is a problem of producing a large unevenness.
In order to solve this problem, a low-density open-cell structure rigid urethane foam having a low mechanical strength as a face material, a closed cell ratio of 10% or less and a density of 10 to 25 kg / m 3 as a urethane foam It has been proposed to use As a result, the shrinkage of the urethane foam due to the temperature difference is small, so that the unevenness is reduced (see Patent Document 2).
解決しようとする問題点は、何らかの事情で断熱材が瞬時高温環境に晒されたときに、これに起因して断熱材に反りを生じる点である。 The problem to be solved is that when the heat insulating material is exposed to an instantaneous high temperature environment for some reason, the heat insulating material is warped due to this.
本発明に係る断熱材の製造方法は、硬質ウレタンフォーム材の両面に液体透過性面材を接着して設ける断熱材の製造方法において、
得られる断熱材の両面の液体透過性面材に、水、液体有機化合物または有機化合物水溶液を含ませることを特徴とする。
The method for manufacturing a heat insulating material according to the present invention is a method for manufacturing a heat insulating material provided by adhering a liquid-permeable surface material to both surfaces of a rigid urethane foam material.
Water, a liquid organic compound, or an organic compound aqueous solution is included in the liquid-permeable face material on both sides of the obtained heat insulating material.
また、本発明に係る断熱材の製造方法は、好ましくは、前記液体透過性面材に含ませる液量が片面当たり9g/m2以上であることを特徴とする。 Moreover, the method for manufacturing a heat insulating material according to the present invention is preferably characterized in that the amount of liquid contained in the liquid-permeable face material is 9 g / m 2 or more per side.
また、本発明に係る断熱材の製造方法は、好ましくは、前記液体透過性面材の少なくともいずれか一方の表面にさらにアスファルトが塗布されることを特徴とする。 Moreover, the method for manufacturing a heat insulating material according to the present invention is preferably characterized in that asphalt is further applied to at least one surface of the liquid-permeable face material.
また、本発明に係る断熱材施工方法は、上記の製造方法により得られる断熱材の片面にアスファルトを塗布し、建築物の屋上、地下構造物、橋梁の床板、水槽、またはタンク類にアスファルトが塗布された面を向けて該断熱材を貼り付けることを特徴とする。 Further, the heat insulating material construction method according to the present invention applies asphalt to one side of the heat insulating material obtained by the above manufacturing method, and the asphalt is applied to the rooftop of a building, an underground structure, a bridge floor board, a water tank, or tanks. The heat insulating material is stuck with the coated surface facing.
本発明に係る断熱材の製造方法は、硬質ウレタンフォーム材の両面に液体透過性面材を接着して設ける断熱材の製造方法において、得られる断熱材の両面の液体透過性面材に、水、液体有機化合物または有機化合物水溶液を含ませるため、得られる断熱材は瞬時高温環境に晒されても生じうる反りが軽減される。
また、本発明に係る断熱材施工方法は、上記の断熱材の製造方法で得られる断熱材の片面にアスファルトを塗布し、建築物の屋上、地下構造物、橋梁の床板、水槽、またはタンク類にアスファルトが塗布された面を向けて該断熱材を貼り付けるため、アスファルトにより瞬時高温環境に晒されても生じうる断熱材の反りが軽減される。これにより、断熱材が屋上等から剥離するおそれが小さい。
The method for manufacturing a heat insulating material according to the present invention is a method for manufacturing a heat insulating material provided by adhering a liquid permeable surface material to both surfaces of a rigid urethane foam material. In addition, since the liquid organic compound or the organic compound aqueous solution is contained, the warp that may occur even when the obtained heat insulating material is exposed to an instantaneously high temperature environment is reduced.
In addition, the heat insulating material construction method according to the present invention applies asphalt to one surface of the heat insulating material obtained by the above-described heat insulating material manufacturing method, and the rooftop of a building, an underground structure, a bridge floor board, a water tank, or tanks. Since the heat-insulating material is applied with the surface coated with asphalt, the warping of the heat-insulating material that may occur even when exposed to an instantaneously high temperature environment is reduced. Thereby, there is little possibility that a heat insulating material will peel from a rooftop.
本発明の実施の形態(以下、本実施の形態例という。)について、以下に説明する。 An embodiment of the present invention (hereinafter referred to as this embodiment) will be described below.
本実施の形態例に係る断熱材(断熱ボード)の製造方法は、硬質ウレタンフォーム材の両面に液体透過性面材を接着して設ける断熱材の製造方法についてものである。
本実施の形態例に係る断熱材の製造方法において、得られる断熱材の両面の液体透過性面材に水、液体有機化合物または有機化合物水溶液を含ませる。水等の液体は液体透過性面材を透過して硬質ウレタンフォームに浸透する。
The method for manufacturing a heat insulating material (heat insulating board) according to the present embodiment relates to a method for manufacturing a heat insulating material provided by adhering a liquid-permeable surface material to both surfaces of a hard urethane foam material.
In the method for manufacturing a heat insulating material according to this embodiment, water, a liquid organic compound, or an organic compound aqueous solution is included in the liquid-permeable surface material on both surfaces of the heat insulating material to be obtained. Liquid such as water permeates the rigid urethane foam through the liquid-permeable face material.
硬質ウレタンフォーム材は、触媒および発泡剤の存在下、ポリオールとポリイソシアネートを反応させることにより得られる。
硬質ウレタンフォーム材の両面に液体透過性面材を接着して設ける方法は適宜の方法を選択することができる。例えば、金型成形等により硬質ウレタンフォーム材を得て、得られる硬質ウレタンフォーム材の両面にプレス法により液体透過性面材を接着してもよい。ただし、生産性等を考慮すると、一般的に行われているいわゆるロールツーロール方式あるいはロールツーロール類似の方式を用いることが好適である。
この方式は、下部巻回ロールおよび上部巻回ロールから供給される下部液体透過性面材および上部液体透過性面材の間に硬質ウレタンフォーム材の原料液を供給し、発泡成形するものである。成形は、下部液体透過性面材の下に下部ベルトコンベアを、上部液体透過性面材の上に上部ベルトコンベアを、それぞれ配置することで行う方法を好適に用いることができる。
得られる断熱材は、巻取り可能な場合はロールツーロール方式のように巻取りロールで一端巻き取ってもよく、あるいはまた、得られる断熱材を成形直後に適宜の寸法に裁断してパネル化してもよい。
The rigid urethane foam material is obtained by reacting a polyol and a polyisocyanate in the presence of a catalyst and a foaming agent.
An appropriate method can be selected as a method of adhering and providing a liquid-permeable face material on both surfaces of the rigid urethane foam material. For example, a hard urethane foam material may be obtained by molding or the like, and a liquid permeable face material may be bonded to both surfaces of the obtained hard urethane foam material by a press method. However, in consideration of productivity and the like, it is preferable to use a so-called roll-to-roll system or a roll-to-roll-like system that is generally performed.
In this method, a raw liquid of a hard urethane foam material is supplied between a lower liquid permeable face material and an upper liquid permeable face material supplied from a lower winding roll and an upper winding roll, and foam molding is performed. . The molding can be suitably performed by placing the lower belt conveyor under the lower liquid permeable face material and the upper belt conveyor above the upper liquid permeable face material.
If the obtained heat insulating material can be wound, it may be wound up with a winding roll like a roll-to-roll method, or the obtained heat insulating material is cut into an appropriate size immediately after molding to form a panel. May be.
断熱材に含ませる液体有機化合物または有機化合物水溶液は、本発明の効果を奏する限り、特に限定するものではない。MEK(メチルエチルケトン)、エタノールまたはこれらの水溶液を用いることは好適な実施の形態である。
得られる断熱材の両面の液体透過性面材に水、液体有機化合物または有機化合物水溶液を含ませる方法は適宜の方法を選択することができる。例えば、霧吹きにより、断熱材の上下面(両面の液体透過性面材)に液体を噴霧することができる。また、例えば、湿熱乾燥機(例えば70℃、95%RH)内に断熱材を一定時間入れて湿熱養生してもよい。また、例えば、液体を含浸したローラーにより断熱材の上下面に液体を塗布してもよい。
なお、上記の各方法で断熱材の高温に晒される側の片面のみでなく両面に液体を含ませるのは、後で説明するように、片面のみに液体を含ませることに起因する断熱材の反りの発生を防止するためである。また、これにより、断熱材の両面のいずれの側が高温に晒されてもよい。断熱材の両面の液体透過性面材には均一に液体を塗布等することが好ましいが、本発明の効果が得られる限度で、すなわち反りが実質的に問題とならない範囲で液体の塗布等が両面で不均一であってもよい。
液体透過性面材に含ませる液量は特に限定するものではないが、2枚の液体透過性面材の片面当たり9g/m2以上であるとより好適である。
液量が片面当たり9g/m2未満の場合、本発明の効果が十分に得られないおそれがある。液量の上限は特にないが、例えば片面当たり35g/m2程度あれば十分である。
得られる断熱材に水、液体有機化合物または有機化合物水溶液を含ませる時機は、断熱材成形後であればいつでもよく、例えば成形した直後でもよく、また、成形した断熱材を用いて断熱材施工工事を行う直前であってもよい。
The liquid organic compound or the organic compound aqueous solution contained in the heat insulating material is not particularly limited as long as the effects of the present invention are exhibited. The use of MEK (methyl ethyl ketone), ethanol or an aqueous solution thereof is a preferred embodiment.
An appropriate method can be selected as a method of adding water, a liquid organic compound, or an organic compound aqueous solution to the liquid-permeable face materials on both sides of the obtained heat insulating material. For example, the liquid can be sprayed onto the upper and lower surfaces of the heat insulating material (both liquid permeable surface materials) by spraying. Further, for example, a heat insulating material may be put in a wet heat dryer (for example, 70 ° C., 95% RH) for a certain period of time to perform wet heat curing. Further, for example, the liquid may be applied to the upper and lower surfaces of the heat insulating material by a roller impregnated with the liquid.
In addition, as described later, the liquid is contained not only on one side exposed to the high temperature of the heat insulating material in each of the above methods, but also on the heat insulating material caused by including the liquid only on one side. This is to prevent warping. Moreover, either side of both surfaces of a heat insulating material may be exposed to high temperature by this. It is preferable to uniformly apply a liquid to the liquid-permeable face material on both sides of the heat insulating material, but it is possible to apply a liquid as long as the effect of the present invention is obtained, that is, in a range in which warpage does not substantially become a problem. It may be non-uniform on both sides.
The amount of liquid contained in the liquid-permeable face material is not particularly limited, but is more preferably 9 g / m 2 or more per one surface of the two liquid-permeable face materials.
When the amount of liquid is less than 9 g / m 2 per side, the effects of the present invention may not be sufficiently obtained. There is no particular upper limit on the amount of liquid, but for example, about 35 g / m 2 per side is sufficient.
The timing of adding water, liquid organic compound or organic compound aqueous solution to the obtained heat insulating material may be any time after the heat insulating material is formed, for example, immediately after forming, or using the formed heat insulating material. It may be immediately before performing.
硬質ウレタンフォーム材は、例えば、密度が30〜40kg/m3程度であり、平均気泡径が0.2〜0.4mm程度である。
硬質ウレタンフォーム材の厚みは、特に限定するものではなく、用途等に応じて適宜決定することができるが、例えば、25〜50mm程度である。
硬質ウレタンフォーム材をパネル化するときの平面寸法も、特に限定するものではなく、用途等に応じて適宜決定することができるが、例えば、一辺の寸法が500〜2,000mm程度の正方形または長方形である。
For example, the rigid urethane foam material has a density of about 30 to 40 kg / m 3 and an average cell diameter of about 0.2 to 0.4 mm.
The thickness of the rigid urethane foam material is not particularly limited, and can be appropriately determined depending on the application and the like, and is, for example, about 25 to 50 mm.
There are no particular limitations on the plane dimensions when the rigid urethane foam material is made into a panel, and it can be determined as appropriate according to the application. For example, a square or rectangle having a side dimension of about 500 to 2,000 mm. It is.
液体透過性面材は、液体透過性を有する限り、適宜のものを用いることができる。例えばクラフト紙、更紙、中芯紙等の吸水性と液体透過性を有する適宜の紙材を用いることができる。また、例えばガラス繊維等の無機質繊維やポリエステル、ビニロン等の樹脂繊維の不織布、あるいはこれらと紙材のラミネート材等を用いることができる。
液体透過性面材の厚みは、特に限定するものではなく、用途等に応じて適宜決定することができるが、例えば、0.1〜1.0mm程度である。
Any liquid permeable face material can be used as long as it has liquid permeability. For example, an appropriate paper material having water absorption and liquid permeability, such as kraft paper, re-paper, and core paper, can be used. Further, for example, inorganic fibers such as glass fibers, non-woven fabrics of resin fibers such as polyester and vinylon, or a laminate material of these and paper materials can be used.
The thickness of the liquid-permeable face material is not particularly limited, and can be appropriately determined according to the use and the like, and is, for example, about 0.1 to 1.0 mm.
以上説明した本実施の形態例に係る断熱材の製造方法により得られる断熱材は、何らかの事情で高温環境に瞬時晒されても、生じうる断熱材の反りが軽減される。
このメカニズムは定かではないが、以下のように考えられる。
通常の断熱材は、高温環境に晒された側の硬質ウレタンフォーム材の表層が収縮し、高温環境に晒された側が凹状に反る。この原因は主に硬質ウレタンフォーム材の収縮応力に起因する残留ひずみの開放によるものと考えられる。
すなわち、ウレタンフォームは例えばコンベア上で発熱反応を伴い高温状態で成形され、ラインアウト後、冷却される過程で収縮しようとする。しかし、上下面に伸縮性がない面材が存在するため、実際には収縮することができない。そして、この収縮応力がウレタンフォームの内部に残留するため、面材とウレタンフォームの界面でウレタンフォームの収縮に起因する残留ひずみが生じる。この残留ひずみは、時間経過による応力緩和によって少しずつ減少していくが、長期間に渡ってウレタンフォームの内部に残存する。この状態でアスファルトを塗布すると、アスファルトの熱により、面材および樹脂の強度が低下する、あるいは面材のテンションがなくなる等の理由で塗布した面の強度が低下し、面材によって抑えられていたフォームの収縮応力が開放されて収縮力が働くために反りが発生するものと考えられる。
これに対して、本実施の形態例に係る断熱材は、予め硬質ウレタンフォーム材の表層に吸水等させることで、吸水等によって軟化したフォームセルがより圧力のかからない方向に配向するため、ウレタンフォームの収縮応力に起因する残留ひずみを低減することができ、これにより、残留ひずみの低減されたウレタンフォームにアスファルトを塗布したときの反りが軽減されるものと考えられる。
このとき、ウレタンフォームの上面と下面の両面に水等を均一に含ませることで、上下面のひずみを同じだけ、同時に緩和することができる。これに対して、ウレタンフォームの片面のみに水等を含ませた場合や、上面と下面の吸水量等に極端に差がある場合は、上面と下面のひずみの減少量が異なるためにアスファルトを塗布したときにひずみの減少量の小さい方の面側に反りを生じることになる。
Even if the heat insulating material obtained by the method for manufacturing a heat insulating material according to this embodiment described above is instantaneously exposed to a high temperature environment for some reason, the warpage of the heat insulating material that may occur is reduced.
Although this mechanism is not clear, it can be considered as follows.
In a normal heat insulating material, the surface layer of the hard urethane foam material exposed to the high temperature environment contracts, and the side exposed to the high temperature environment warps in a concave shape. The cause is considered to be mainly due to the release of residual strain caused by the shrinkage stress of the rigid urethane foam material.
That is, urethane foam is molded in a high temperature state with an exothermic reaction on a conveyor, for example, and tends to shrink in the process of being cooled after line out. However, since there is a face material that does not have elasticity on the upper and lower surfaces, it cannot actually shrink. And since this shrinkage stress remains inside a urethane foam, the residual distortion resulting from shrinkage | contraction of urethane foam arises in the interface of a face material and a urethane foam. This residual strain gradually decreases due to stress relaxation over time, but remains in the urethane foam over a long period of time. When asphalt was applied in this state, the strength of the surface material and resin decreased due to the heat of the asphalt, or the strength of the applied surface decreased due to the absence of tension on the surface material, and was suppressed by the surface material. It is considered that warpage occurs because the shrinkage stress of the foam is released and the shrinkage force works.
On the other hand, since the heat insulating material according to the present embodiment is preliminarily made to absorb water on the surface layer of the hard urethane foam material, the foam cell softened by water absorption or the like is oriented in a direction where pressure is not applied more, so urethane foam It is considered that the residual strain due to the shrinkage stress can be reduced, and this reduces the warpage when the asphalt is applied to the urethane foam with reduced residual strain.
At this time, by uniformly including water or the like on both the upper surface and the lower surface of the urethane foam, the strain on the upper and lower surfaces can be alleviated at the same time. On the other hand, if water is included only on one side of the urethane foam, or if there is an extreme difference in the amount of water absorption between the upper and lower surfaces, the amount of reduction in strain on the upper and lower surfaces is different. When applied, warping occurs on the side of the surface where the amount of decrease in strain is smaller.
また、本実施の形態例に係る断熱材の製造方法において、液体透過性面材の少なくともいずれか一方の表面にさらにアスファルトが塗布されると、すなわち、ウレタンフォームの上面と下面の両面に設けられる液体透過性面材のうちのいずれか一方の液体透過性面材にアスファルトが塗布され、あるいはまた、さらに他の液体透過性面材にもアスファルトが塗布されると、防水性に優れ、好適である。この場合、例えば270℃程度の高温で溶融されたアスファルトを塗布することにより極端な高温環境に晒されるが、生じうる断熱材の反りが確実に軽減される。 Further, in the heat insulating material manufacturing method according to the present embodiment, when asphalt is further applied to at least one surface of the liquid permeable face material, that is, provided on both the upper surface and the lower surface of the urethane foam. If asphalt is applied to any one of the liquid permeable face materials, or if further asphalt is applied to another liquid permeable face material, it is excellent in waterproofness and is suitable. is there. In this case, for example, by applying asphalt melted at a high temperature of about 270 ° C., it is exposed to an extremely high temperature environment, but the warpage of the heat insulating material that can occur is surely reduced.
つぎに、上記の本実施の形態例に係る断熱材の製造方法により得られる断熱材を用いた本実施の形態例に係る断熱材施工方法について説明する。
本実施の形態例に係る断熱材施工方法は、上記の断熱材の製造方法により得られる断熱材を用い、この断熱材の片面に溶融アスファルトを塗布し、建築物の屋上、地下構造物、橋梁の床板、水槽、またはタンク類にアスファルトが塗布された面を向けて断熱材を貼り付ける。アスファルトの塗布厚みは、特に限定するものではなく、また、必ずしも精密に制御できるものではないが、例えば0.1〜1mm程度とすることができる。
これにより、生じうる断熱材の反りが軽減され、断熱材が建築物の屋上、地下構造物、橋梁の床板、水槽、またはタンク類から剥離することが防止される。
Below, the heat insulating material construction method which concerns on this embodiment using the heat insulating material obtained by the manufacturing method of the heat insulating material which concerns on said embodiment is demonstrated.
The heat insulating material construction method according to the present embodiment uses a heat insulating material obtained by the above heat insulating material manufacturing method, applies molten asphalt to one surface of the heat insulating material, and builds a rooftop, an underground structure, a bridge. Insulate the floorboard, water tank, or tanks with the asphalt-coated surface facing. The asphalt coating thickness is not particularly limited, and is not necessarily precisely controlled, but can be, for example, about 0.1 to 1 mm.
Thereby, the warp of the heat insulating material that can be generated is reduced, and the heat insulating material is prevented from being peeled off from the rooftop of the building, the underground structure, the bridge floor board, the water tank, or the tanks.
本実施の形態に係る断熱材およびその製造方法の実施例を以下に説明する。なお、本発明は以下の実施例に限定されるものではない。 Examples of the heat insulating material and the manufacturing method thereof according to the present embodiment will be described below. In addition, this invention is not limited to a following example.
(断熱材の製造例)
−処方(1)−
上下面材(液体透過性面材)の材料としてガラス繊維不織布(厚み0.2mm 目付け量200g/m2)またはクラフト紙(厚み0.1mm 目付け量200g/m2)を用いた。
硬質ウレタンフォーム材の原料液としてイソシアネート(ジフェミルメタンジイソシアネート MR−200 日本ポリウレタン工業株式会社製)とポリオール(ソルビトールベースポリエーテルポリオール OHV=380mg-KOH/g 、ソルビトールベースポリエーテルポリオール OHV=460mg-KOH/g)のプレミックスを用いた。ポリオールのプレミックスには、発泡剤(水)、触媒(POLYCAT46(エアープロダクツジャパン株式会社製)、N,N,N’,N’,N’’−ペンタメチルジエチレントリアミン(花王株式会社製)、N,N’−ジメチルシクロヘキシルアミン(花王株式会社製)、整泡剤(B−8871(ゴールドシュミット株式会社製))および難燃剤(TCPP(大八化学株式会社製))を含む。ポリオールのプレミックスには、ポリオール100質量部に対して、発泡剤5.05質量部、触媒3.01質量部、整泡剤2.00質量部および難燃剤20.0質量部を、それぞれ用いた。
下面材をセットしたコンベア上に、発泡機のミキシングヘッドから20℃に温度調節したウレタンフォームの原料となるイソシアネートとポリオールのプレミックスをポリオール/イソシアネート質量比=100/190で混合塗布し、上面材がセットされた型温70℃、厚み25mmの大型プレス機に移行させた。
160秒間、大型プレス機内で反応、硬化させた後、断熱ボードを大型プレスから取り出
し、規定のサイズ(900mm×600mm)にカットし断熱ボード(厚み25mm)を得た。
−処方(2)−
上下面材は、処方(1)と同じものを用いた。
硬質ウレタンフォーム材の原料液としてイソシアネート(ジフェミルメタンジイソシアネート MR−200 日本ポリウレタン工業株式会社製)とポリオール(ソルビトールベースポリエーテルポリオール OHV=380mg-KOH/g 、ソルビトールベースポリエーテルポリオール OHV=460mg-KOH/g)のプレミックスを用いた。ポリオールのプレミックスには、発泡剤(水、シクロペンタン(日本ゼオン株式会社製))、触媒(POLYCAT46(エアープロダクツジャパン株式会社製)、N,N,N’,N’,N’’−ペンタメチルジエチレントリアミン(花王株式会社製))、N,N’−ジメチルシクロヘキシルアミン(花王株式会社製)、整泡剤(B−8871(ゴールドシュミット株式会社製))および難燃剤(TCPP(大八化学株式会社製))を含む。ポリオールのプレミックスには、ポリオール100質量部に対して、発泡剤(水1.5質量部、シクロペンタン9.0質量部)、触媒4.63質量部、整泡剤2.00質量部および難燃剤20.0質量部を、それぞれ用いた。
断熱ボードの成形は、イソシアネートとポリオールプレミックスを、ポリオール/イソシアネート質量比=100/130とした以外は処方(1)と同じ方法で行った。
(Insulation material production example)
-Prescription (1)-
A glass fiber nonwoven fabric (thickness 0.2 mm, basis weight 200 g / m 2 ) or kraft paper (thickness 0.1 mm, basis weight 200 g / m 2 ) was used as the material of the upper and lower surfaces (liquid permeable face material).
As a raw material liquid for a rigid urethane foam material, isocyanate (diphemilmethane diisocyanate MR-200 manufactured by Nippon Polyurethane Industry Co., Ltd.) and polyol (sorbitol-based polyether polyol OHV = 380 mg-KOH / g, sorbitol-based polyether polyol OHV = 460 mg- A premix of KOH / g) was used. The polyol premix includes a foaming agent (water), a catalyst (POLYCAT46 (produced by Air Products Japan), N, N, N ′, N ′, N ″ -pentamethyldiethylenetriamine (produced by Kao Corporation), N N'-dimethylcyclohexylamine (Kao Corporation), foam stabilizer (B-8871 (Gold Schmidt Corporation)) and flame retardant (TCPP (Daihachi Chemical Co., Ltd.)). In 100 parts by mass of polyol, 5.05 parts by mass of foaming agent, 3.01 parts by mass of catalyst, 2.00 parts by mass of foam stabilizer and 20.0 parts by mass of flame retardant were used.
On the conveyor on which the bottom material is set, the isocyanate / polyol premix, which is the raw material of urethane foam whose temperature is adjusted to 20 ° C. from the mixing head of the foaming machine, is mixed and applied at a polyol / isocyanate mass ratio = 100/190, and the top material Was transferred to a large press with a mold temperature of 70 ° C and a thickness of 25mm.
After reacting and curing in a large press for 160 seconds, the heat insulation board was taken out from the large press and cut into a prescribed size (900 mm × 600 mm) to obtain a heat insulation board (thickness 25 mm).
-Formula (2)-
The same material as prescription (1) was used for the upper and lower surfaces.
As a raw material liquid for a rigid urethane foam material, isocyanate (diphemilmethane diisocyanate MR-200 manufactured by Nippon Polyurethane Industry Co., Ltd.) and polyol (sorbitol-based polyether polyol OHV = 380 mg-KOH / g, sorbitol-based polyether polyol OHV = 460 mg- A premix of KOH / g) was used. The polyol premix includes foaming agent (water, cyclopentane (manufactured by ZEON CORPORATION)), catalyst (POLYCAT46 (manufactured by Air Products Japan), N, N, N ', N', N "-penta. Methyldiethylenetriamine (manufactured by Kao Corporation)), N, N′-dimethylcyclohexylamine (manufactured by Kao Corporation), foam stabilizer (B-8871 (manufactured by Goldschmidt Corporation)) and flame retardant (TCPP (Daihachi Chemical Co., Ltd.) Including company)). In the polyol premix, the foaming agent (1.5 parts by mass of water, 9.0 parts by mass of cyclopentane), 4.63 parts by mass of the catalyst, 2.00 parts by mass of the foam stabilizer and 100 parts by mass of the polyol and 20.0 parts by mass of a flame retardant was used.
The heat insulation board was molded by the same method as in the formulation (1) except that the isocyanate and polyol premix were made polyol / isocyanate mass ratio = 100/130.
(断熱材への液体含浸例)
液体として水、MEK(メチルエチルケトン 純度99質量%以上)およびエタノール(純度99質量%以上)のいずれかを用いた。
断熱ボード成形直後に含浸処理を行った。
含浸処理は、噴霧器による断熱ボード両面への液体噴霧と、湿熱乾燥機内での所定時間の保持と、ローラーによる断熱ボード両面への液体塗布のうちのいずれかにより行った。
なお、噴霧器による液体噴霧は、1回当たり液体を0.5g噴霧できる噴霧器を用い、噴霧を繰り返すことで狙いの噴霧量(片面当たり)の液体を均一に噴霧した。また、ローラーによる液体塗布は、ローラーに液体を含ませて、狙いの塗布量(片面当たり)が20gとなるまで30分間重ね塗りをした。
(Example of liquid impregnation into insulation)
One of water, MEK (methyl ethyl ketone purity 99% by mass or more) and ethanol (purity 99% by mass or more) was used as the liquid.
Impregnation treatment was performed immediately after the heat insulation board was formed.
The impregnation treatment was performed by any one of liquid spraying on both sides of the heat insulation board with a sprayer, holding for a predetermined time in a wet heat dryer, and liquid application on both sides of the heat insulation board with a roller.
In addition, the liquid spray by a sprayer used the sprayer which can spray 0.5g of liquid per time, and sprayed the liquid of the target spray amount (per one side) uniformly by repeating spraying. Moreover, the liquid application with a roller was carried out for 30 minutes until the liquid was contained in the roller and the target application amount (per one side) was 20 g.
(断熱材へのアスファルト塗布および反り評価例)
液体含浸処理を行った後一日または二週間経過した時点で断熱ボード(900mm×600mm×25mm)の片面に、約270℃に加熱した溶融アスファルトを柄杓で均一に塗布した後、反った断熱ボードの凸側の面(溶融アスファルトを塗布していない方の面)を向けて断熱ボードを30分間水平な台の上に静置し、ボードの4隅について台からの距離を測定し、4隅の距離の平均値を反り量とした。
(Asphalt application to thermal insulation and warpage evaluation example)
One day or two weeks after the liquid impregnation treatment, one side of the heat insulation board (900mm x 600mm x 25mm) is uniformly coated with molten asphalt heated to about 270 ° C with a handle and then warped. Place the heat insulation board on a horizontal table for 30 minutes with the convex side (the surface not coated with molten asphalt) facing, and measure the four corners of the board from the table. The average value of the distance was taken as the amount of warpage.
処方(1)で成形した断熱ボードを対象として、水を噴霧して含浸する方法を用い、また面材としてガラス繊維不織布またはクラフト紙を用いて、ボード成形直後に含浸し、含浸一日後または含浸二週間後にアスファルト塗布を行った結果を表1にまとめて示す。なお、含浸一日後および含浸二週間後にアスファルト塗布を行ったボードは、水噴霧同一ロットではなく、別々に水噴霧を行ったものである。また、処方(2)で成形した断熱ボードを対象として同様の処理を行った結果を表2にまとめて示す。
さらに、処方(1)で成形した断熱ボードを対象として、含浸処理条件を変えて行った結果を表3にまとめて示す。
なお、各表において、面材の吸水量等のデータはアスファルト塗布を行った側の面材についてのものであり、アスファルト塗布を行っていない反対側の面材についてはこれらのデータは表示を省いた。
各断熱ボードについて、接着強度を測定したが、有意な差は見られなかった。
Using the method of impregnation by spraying water on the insulation board molded by the formulation (1), and using glass fiber nonwoven fabric or kraft paper as the face material, impregnation immediately after board formation, one day after impregnation or impregnation Table 1 summarizes the results of asphalt coating after two weeks. In addition, the board which applied asphalt one day after the impregnation and two weeks after the impregnation is not the same lot of water spray, but was sprayed separately. Moreover, the result of having performed the same process targeting the heat insulation board shape | molded by prescription (2) is put together in Table 2, and is shown.
Furthermore, Table 3 summarizes the results obtained by changing the impregnation treatment conditions for the heat insulating board formed by the prescription (1).
In each table, data such as the amount of water absorption of the face material is for the face material on which asphalt is applied, and these data are omitted for the face material on the opposite side where asphalt is not applied. It was.
The adhesive strength was measured for each heat insulating board, but no significant difference was found.
Claims (4)
得られる断熱材の両面の液体透過性面材に、水、液体有機化合物または有機化合物水溶液を含ませることを特徴とする断熱材の製造方法。 In the manufacturing method of the heat insulating material provided by adhering the liquid permeable surface material to both surfaces of the rigid urethane foam material,
A method for producing a heat insulating material, characterized in that water, a liquid organic compound, or an organic compound aqueous solution is contained in a liquid-permeable surface material on both surfaces of the obtained heat insulating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010162354A JP5500446B2 (en) | 2010-07-18 | 2010-07-18 | Insulating material manufacturing method and insulating material construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010162354A JP5500446B2 (en) | 2010-07-18 | 2010-07-18 | Insulating material manufacturing method and insulating material construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012021381A JP2012021381A (en) | 2012-02-02 |
JP5500446B2 true JP5500446B2 (en) | 2014-05-21 |
Family
ID=45775854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010162354A Active JP5500446B2 (en) | 2010-07-18 | 2010-07-18 | Insulating material manufacturing method and insulating material construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5500446B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5021295Y1 (en) * | 1967-01-09 | 1975-06-27 | ||
JP3183553B2 (en) * | 1992-04-06 | 2001-07-09 | アキレス株式会社 | Roof insulation and waterproofing |
-
2010
- 2010-07-18 JP JP2010162354A patent/JP5500446B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012021381A (en) | 2012-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6539676B2 (en) | Method for encapsulating brittle insulation in polyisocyanurate | |
KR100926834B1 (en) | A complex heat insulator made of rigid polyurethane foam and manufacturing method thereof | |
US20150004864A1 (en) | Method for continuously producing a sandwich composite elements | |
ES2715657T3 (en) | Panel with fire barrier | |
JPS6227669B2 (en) | ||
US20060027948A1 (en) | Mold resistant construction boards and methods for their manufacture | |
CN105317190B (en) | A kind of polyurethane-modified rock wool heat-preservation decorative panel and its continuous production device, continuous production method | |
JP7366898B2 (en) | Polyurethane-based insulation board | |
JP2013500886A5 (en) | ||
KR100943228B1 (en) | Flame-proof and insulating panel | |
JP2014531336A (en) | Composite material and manufacturing method thereof | |
KR101328679B1 (en) | Structure for complex heat insulator waterproof using rubber asphalt sheet and complex textile fabrics and method for manufacturing the same | |
US11486135B2 (en) | Glass fiber-reinforced polyurethane/polyisocyanurate foam insulation board | |
JP2001247647A (en) | Raw liquid composition for rigid polyurethane foam, and process for preparation of thermal insulation panel for extremely low temperature | |
JP5500446B2 (en) | Insulating material manufacturing method and insulating material construction method | |
CN106930493B (en) | Fireproof heat-insulation decorative plate and manufacturing method thereof | |
KR101019513B1 (en) | Compact insulated board | |
JP6120682B2 (en) | Urethane board for filling | |
KR101155503B1 (en) | Compact insulated board and preparation method of the same | |
CN112300567A (en) | Hard polyurethane foam thermal insulation material, composite rock wool thermal insulation board and preparation method thereof | |
JP6117972B1 (en) | Manufacturing method for non-combustible panels | |
US20190308389A1 (en) | Panel | |
KR100725554B1 (en) | A cryogenic insulation panel, manufacturing thereof, and a rigid polyurethane foam raw material composition | |
JP2001150558A (en) | Method for manufacturing glass fiber-reinforced rigid polyurethane foam | |
JPH0255208B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130703 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5500446 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |