JPH02551B2 - - Google Patents

Info

Publication number
JPH02551B2
JPH02551B2 JP55030057A JP3005780A JPH02551B2 JP H02551 B2 JPH02551 B2 JP H02551B2 JP 55030057 A JP55030057 A JP 55030057A JP 3005780 A JP3005780 A JP 3005780A JP H02551 B2 JPH02551 B2 JP H02551B2
Authority
JP
Japan
Prior art keywords
air
intake
intake passage
valve
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55030057A
Other languages
Japanese (ja)
Other versions
JPS56126664A (en
Inventor
Ryuichi Yamashita
Hiromitsu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP3005780A priority Critical patent/JPS56126664A/en
Publication of JPS56126664A publication Critical patent/JPS56126664A/en
Publication of JPH02551B2 publication Critical patent/JPH02551B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は自動車用のエンジンとして好適な燃
料噴射式多気筒エンジンに関するもので、特に燃
焼室近傍の吸気通路壁に燃焼室内を指向する小断
面積の副吸気通路を開口させ、そこから噴出する
副吸気流によつて燃焼室内に吸気の高速渦流を生
じさせて、引続く燃焼行程における燃焼を高速且
つ安定化するエンジンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection multi-cylinder engine suitable as an automobile engine, and particularly relates to a fuel injection multi-cylinder engine suitable for use as an automobile engine. This invention relates to an engine that generates a high-speed vortex of intake air in a combustion chamber by a sub-intake air flow ejected from the sub-intake air flow, thereby stabilizing combustion at high speed in the subsequent combustion stroke.

従来公知の電子制御式燃料噴射装置、いわゆる
FEIは吸気通路に流量計とその信号によつて制御
される電磁作動式の燃料噴射弁とを有しており、
更に、アイドリング運転域の空燃比を微調整する
ために流量計を側路する小吸気路を設け、そこに
流量調節用の空気弁を設けることが行われてい
る。
Conventionally known electronically controlled fuel injection device, so-called
The FEI has a flowmeter in the intake passage and an electromagnetically actuated fuel injection valve that is controlled by the flowmeter's signal.
Furthermore, in order to finely adjust the air-fuel ratio in the idling operating range, a small intake passage bypassing the flow meter is provided, and an air valve for adjusting the flow rate is provided in the small intake passage.

この発明は上記小吸気路を流れる空気流を利用
して前記副吸気通路から供給される副吸気の流速
を増し、燃焼室内における吸気渦流の速度を増速
しようとするものである。以下、図示の実施例に
よつて本発明を説明する。図中1は4行程4気筒
の自動車用エンジンであり、燃焼室2はシリンダ
3、シリンダヘツド4、およびシリンダ3内を往
復動するピストン(図示してない)によつて形成
される。5は吸気弁6を介して燃焼室2内に通じ
る吸気通路、7は排気弁8を介して燃焼室2内に
通じる排気通路、9は点火栓である。
This invention attempts to increase the flow velocity of the auxiliary intake air supplied from the auxiliary intake passage by using the airflow flowing through the small intake passage, thereby increasing the velocity of the intake air vortex in the combustion chamber. The present invention will be explained below with reference to illustrated embodiments. In the figure, reference numeral 1 denotes a four-stroke, four-cylinder automobile engine, and a combustion chamber 2 is formed by a cylinder 3, a cylinder head 4, and a piston (not shown) that reciprocates within the cylinder 3. Reference numeral 5 designates an intake passage leading into the combustion chamber 2 via an intake valve 6, 7 an exhaust passage leading into the combustion chamber 2 through an exhaust valve 8, and 9 an ignition plug.

吸気通路5はシリンダヘツド4に接続されたス
ペーサ11、マニホールド12およびこれにゴム
管13を介して接続される流量計14によつて形
成されるもので、それぞれの燃焼室2に連らなる
分枝路5Aと、各分枝路5Aが集合された上流側
の集合路5Bとからなつている。15はアクセル
ペダルその他の操作子(図示してない)によつて
人為的に操作される絞り弁、16はその下流側に
設けられた燃料噴射弁である。流量計14は従来
公知のもので、吸気胴14Aとそれに軸支された
回動翼14Bとを有しており、吸気胴14Aを通
過する吸気量が増加すると、その風圧によつて回
動翼14Bが図中反時計方向へ回動するようにな
つており、吸気流量に応じて回動角が増減する。
回動翼14Bの回動角の大小に応じて発せられる
信号はコンピユータCへ入力し、演算された後そ
こから出力信号として取出される。その出力信号
は燃料噴射弁を吸気流量に対応した時間だけ開弁
して燃料を噴出させるもので以上の構成は従来公
知のEFIと特に異るところはない。
The intake passage 5 is formed by a spacer 11 connected to the cylinder head 4, a manifold 12, and a flow meter 14 connected to this via a rubber tube 13. It consists of a branch road 5A and an upstream gathering road 5B where the branch roads 5A are gathered. 15 is a throttle valve that is manually operated by an accelerator pedal or other operator (not shown), and 16 is a fuel injection valve provided downstream thereof. The flow meter 14 is a conventionally known one, and includes an intake cylinder 14A and a rotary blade 14B pivotally supported by the intake cylinder 14A. When the amount of intake air passing through the intake cylinder 14A increases, the wind pressure causes the rotor blade to rotate. 14B is designed to rotate counterclockwise in the figure, and the rotation angle increases or decreases depending on the intake air flow rate.
A signal emitted according to the magnitude of the rotation angle of the rotating blade 14B is input to the computer C, and after being calculated, is taken out from there as an output signal. The output signal causes the fuel injection valve to open for a time corresponding to the intake flow rate to inject fuel, and the above configuration is not particularly different from the conventional EFI.

17は副吸気通路であり、一端が吸気弁6近傍
の吸気通路5壁面から燃焼室2内を直接指向する
方向に開口しており、他端は枝管17A、連通路
17Bとを介して他の気筒の副吸気通路17と互
に連通している。連通路17Bは小吸気路18を
通じて前記回転翼14Bより上流の吸気通路5内
に通じており、図示してないエアクリーナを通じ
て大気中に開放されている。19は小吸気路18
を通じて副吸気通路17内へ流入する空気流量を
調節する空気弁である。
Reference numeral 17 denotes a sub-intake passage, one end of which opens directly into the combustion chamber 2 from the wall surface of the intake passage 5 near the intake valve 6, and the other end opens into the combustion chamber 2 through a branch pipe 17A and a communication passage 17B. The sub-intake passages 17 of the cylinders are in communication with each other. The communication passage 17B communicates with the intake passage 5 upstream of the rotary blade 14B through a small intake passage 18, and is opened to the atmosphere through an air cleaner (not shown). 19 is the small intake passage 18
This is an air valve that adjusts the flow rate of air flowing into the sub-intake passage 17 through the intake passage.

エンジン1が始動すると吸気通路5には絞り弁
15の開度に応じた量の吸気が流れ、流量計14
はその流量を検出してコンピユータCへ送る。コ
ンピユータCは吸気流量に応じ混合気の空燃比
を、所定の値にすべく燃料噴射量と、噴射量に対
応する弁16の開弁時間を算出し、燃料噴射弁1
6に通電し励磁する。斯くて、燃料噴射弁16か
ら噴射した燃料により所要空燃比の混合気が生成
され、それは吸気弁6が開弁する吸気行程中燃焼
室2内へ流入する。吸気通路5内の吸気負圧はこ
れに連らなる副吸気通路17内にも作用するの
で、副吸気通路17内には他の気筒の吸気通路か
ら混合気と小吸気路18から空気とが流入する。
それらの気流は細く高速の副吸気流となつて吸気
弁6の弁口から燃焼室2内へ噴出する。副吸気通
路17は第2図から明らかなように、シリンダ孔
の軸線より外方で、且つ、ピストン上面へ向けて
下向きに開口している。よつて副吸気流によつて
燃焼室2内にある混合気はシリンダ軸線の周りに
高速の渦流を生じる。この渦流は圧縮行程中も残
存し燃焼室2内に微小な無数の乱流を生じるの
で、引続く燃焼行程時に点火栓9による点火と共
に火焔は急速に燃焼室2中に伝播し、高速且つ安
定な燃焼が行われる。空気弁19は混合気の空燃
比を調節するもので、開度を増すと流量計14を
通過する空気量が減少して、燃料噴射弁16から
供給される燃料のみが減少し空燃比が希薄とな
る。逆に開度を減ずれば空燃比が濃厚となるもの
である。このように空気弁19の開度を増すと空
燃比が希薄となるが、小吸気路18の空気流量が
増加するために、副吸気通路17からの流量も多
くなり燃焼室内における過流が一層助長される。
すなわち、希薄な空燃比でも円滑な燃焼が得られ
ることになる。
When the engine 1 starts, an amount of intake air flows into the intake passage 5 according to the opening degree of the throttle valve 15.
detects the flow rate and sends it to computer C. The computer C calculates the fuel injection amount and the opening time of the valve 16 corresponding to the injection amount in order to adjust the air-fuel ratio of the mixture to a predetermined value according to the intake flow rate.
6 and excite it. In this way, the fuel injected from the fuel injection valve 16 generates an air-fuel mixture with a desired air-fuel ratio, which flows into the combustion chamber 2 during the intake stroke when the intake valve 6 opens. The negative intake pressure in the intake passage 5 also acts on the auxiliary intake passage 17, which is connected to it, so that the auxiliary intake passage 17 contains air-fuel mixture from the intake passages of other cylinders and air from the small intake passage 18. Inflow.
These airflows become thin, high-speed sub-intake airflows and are ejected from the valve opening of the intake valve 6 into the combustion chamber 2 . As is clear from FIG. 2, the sub-intake passage 17 opens outward from the axis of the cylinder hole and downward toward the upper surface of the piston. Therefore, the air-fuel mixture in the combustion chamber 2 generates a high-speed vortex around the cylinder axis due to the sub-intake air flow. This vortex remains during the compression stroke and generates numerous minute turbulences within the combustion chamber 2. During the subsequent combustion stroke, the flame is ignited by the spark plug 9 and rapidly propagates into the combustion chamber 2, resulting in a high-speed and stable flame. combustion takes place. The air valve 19 adjusts the air-fuel ratio of the air-fuel mixture. When the opening degree is increased, the amount of air passing through the flow meter 14 decreases, and only the fuel supplied from the fuel injection valve 16 decreases, resulting in a lean air-fuel ratio. becomes. Conversely, if the opening degree is reduced, the air-fuel ratio becomes richer. Increasing the opening degree of the air valve 19 in this way makes the air-fuel ratio leaner, but since the air flow rate in the small intake passage 18 increases, the flow rate from the auxiliary intake passage 17 also increases, making the excess flow in the combustion chamber even more severe. encouraged.
In other words, smooth combustion can be obtained even at a lean air-fuel ratio.

この発明は以上説明したように、噴射式多気筒
エンジンの各燃焼室近傍の吸気通路壁面に燃焼室
内を指向する小断面積の副吸気通路の一端を開口
させ、各副吸気通路の他端を互いに連通させると
共に空気弁を介して大気中に開放したから、他の
気筒の吸気通路から混合気を燃焼室へ流入させ、
空気弁から空燃比補正用の空気を燃焼室へ流入さ
せることができる。
As explained above, this invention opens one end of the sub-intake passage with a small cross-sectional area pointing into the combustion chamber on the intake passage wall near each combustion chamber of an injection-type multi-cylinder engine, and opens the other end of each sub-intake passage. Since they are communicated with each other and opened to the atmosphere via an air valve, the air-fuel mixture is allowed to flow into the combustion chamber from the intake passage of the other cylinder.
Air for air-fuel ratio correction can flow into the combustion chamber from the air valve.

したがつて、前記空気弁から流入する空気によ
つて、副吸気流量を増大させると共に他の気筒の
副吸気通路から混合気を吸い出すことができる。
その結果、燃焼室内の吸気渦流を一層助長し、し
かも混合気量を増やすことができるから、安定し
た燃焼が得られる。また、その構成も配管を変更
するのみで足り、特別の装置を必要としないから
コストの増加も少ない。さらに、小吸気路の上流
端を空気弁を介して流量計の上流側に接続し大気
に開放したものであるから、空気弁によつて希薄
化された混合気でも過流が助長され円滑な燃焼が
得られる。
Therefore, the air flowing in from the air valve can increase the sub-intake flow rate and suck out the air-fuel mixture from the sub-intake passages of other cylinders.
As a result, the intake air vortex within the combustion chamber can be further promoted and the amount of air-fuel mixture can be increased, resulting in stable combustion. Furthermore, since the configuration requires only a change in piping and no special equipment is required, there is little increase in cost. Furthermore, since the upstream end of the small intake passage is connected to the upstream side of the flow meter via an air valve and is open to the atmosphere, even the air-fuel mixture diluted by the air valve promotes excessive flow and smooth flow. Combustion is obtained.

なお、エンジンのアイドリング運転中絞り弁1
5を略全閉とし、アイドリング運転における吸気
量の実質的な部分を副吸気通路を介して供給する
ようにしてもよく、その場合吸排気弁のオーバー
ラツプ中燃焼室から吸気通路内へ吹き返す既燃ガ
スを減少させることができ、絞り弁近傍へ堆積し
やすい炭化物を減少させることができる。
In addition, when the engine is idling, the throttle valve 1
5 may be substantially fully closed, and a substantial portion of the intake air amount during idling operation may be supplied through the auxiliary intake passage. Gas can be reduced, and carbides that tend to accumulate near the throttle valve can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明実施の一例を示すもので、第1図
は4行程4気筒エンジンの断面した側面図、第2
図はその−断面図である。 14……流量計、17……副吸気通路、18…
…小吸気路、19……空気弁。
The drawings show an example of the implementation of the present invention, and FIG. 1 is a cross-sectional side view of a four-stroke, four-cylinder engine, and FIG.
The figure is a sectional view thereof. 14...Flowmeter, 17...Sub-intake passage, 18...
...Small intake passage, 19...Air valve.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の燃焼室2に導かれそれぞれ吸入空気
量を制御する絞り弁15を備えた分枝路5aとこ
れらを絞り弁15より上流側で集合して形成した
集合路5Bとで吸気通路5を形成し、前記各分岐
路5Aに燃料噴射弁16を設けるとともに集合路
5Bに流量計14を設け、この流量計14からの
信号により前記燃料噴射弁16の燃料供給量を制
御するようにした燃料噴射式多気筒エンジンにお
いて、小断面積の各副吸気通路17の一端を各燃
焼室近傍の吸気通路壁面に燃焼室内を指向するよ
うに開口させ、他端を互いに連通させるとともに
空気流量を調節するための空気弁19を介して前
記流量計14の上流側に接続し大気に開放してな
る燃料噴射式多気筒エンジンの吸気装置。
1. An intake passage 5 is formed by a branch passage 5a that is guided to a plurality of combustion chambers 2 and each has a throttle valve 15 that controls the amount of intake air, and a collection passage 5B that is formed by gathering these branches on the upstream side of the throttle valve 15. A fuel injection valve 16 is provided in each branch path 5A, and a flow meter 14 is provided in the convergence path 5B, and the fuel supply amount of the fuel injection valve 16 is controlled by a signal from the flow meter 14. In a fuel injection multi-cylinder engine, one end of each sub-intake passage 17 with a small cross-sectional area is opened on the wall surface of the intake passage near each combustion chamber so as to be directed into the combustion chamber, and the other ends are communicated with each other and the air flow rate is adjusted. An intake device for a fuel injection multi-cylinder engine which is connected to the upstream side of the flow meter 14 through an air valve 19 to open it to the atmosphere.
JP3005780A 1980-03-09 1980-03-09 Air suction device for fuel injection type multicylinder engine Granted JPS56126664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005780A JPS56126664A (en) 1980-03-09 1980-03-09 Air suction device for fuel injection type multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005780A JPS56126664A (en) 1980-03-09 1980-03-09 Air suction device for fuel injection type multicylinder engine

Publications (2)

Publication Number Publication Date
JPS56126664A JPS56126664A (en) 1981-10-03
JPH02551B2 true JPH02551B2 (en) 1990-01-08

Family

ID=12293189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005780A Granted JPS56126664A (en) 1980-03-09 1980-03-09 Air suction device for fuel injection type multicylinder engine

Country Status (1)

Country Link
JP (1) JPS56126664A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690888B2 (en) * 1984-02-29 1997-12-17 株式会社日立製作所 Mixture supply device for internal combustion engine
JPS60190662A (en) * 1984-03-08 1985-09-28 Mazda Motor Corp Fuel injection device of engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940884A (en) * 1972-08-25 1974-04-17
JPS5359110A (en) * 1976-11-06 1978-05-27 Nissan Motor Co Ltd Suction device of internal combustion engine
JPS5514937A (en) * 1978-07-17 1980-02-01 Yamaha Motor Co Ltd Fuel injection system internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940884A (en) * 1972-08-25 1974-04-17
JPS5359110A (en) * 1976-11-06 1978-05-27 Nissan Motor Co Ltd Suction device of internal combustion engine
JPS5514937A (en) * 1978-07-17 1980-02-01 Yamaha Motor Co Ltd Fuel injection system internal combustion engine

Also Published As

Publication number Publication date
JPS56126664A (en) 1981-10-03

Similar Documents

Publication Publication Date Title
US4308830A (en) Vane in the inlet passage of an internal combustion engine
US4232640A (en) Induction system for an internal combustion engine
KR940001931B1 (en) Improvements relating to controlling emissions from two stroke engines
JPS6053783B2 (en) fuel injected internal combustion engine
JP2777817B2 (en) Multi-cylinder engine intake system
US4323041A (en) Multi-cylinder internal combustion engine of fuel injection type
JPS641656B2 (en)
US3282261A (en) Gasoline engines
JPS5840647B2 (en) Internal combustion engine intake system
JPH02551B2 (en)
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPS5840007B2 (en) Internal combustion engine intake system
JPS63201336A (en) Multiple throttle type internal combustion engine
JPS6118655B2 (en)
JPS6113109B2 (en)
JPH0114736Y2 (en)
US4479469A (en) Internal combustion engine
JPS588896Y2 (en) engine intake system
JPH05280407A (en) Control device for two cycle engine
JPS597566Y2 (en) Dual intake internal combustion engine
JPS645077Y2 (en)
JPH0612062B2 (en) Intake system for multi-intake valve engine
JPS6034763Y2 (en) vaporizer main nozzle
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS6113718Y2 (en)