JPH0255058B2 - - Google Patents

Info

Publication number
JPH0255058B2
JPH0255058B2 JP58068854A JP6885483A JPH0255058B2 JP H0255058 B2 JPH0255058 B2 JP H0255058B2 JP 58068854 A JP58068854 A JP 58068854A JP 6885483 A JP6885483 A JP 6885483A JP H0255058 B2 JPH0255058 B2 JP H0255058B2
Authority
JP
Japan
Prior art keywords
racket
frame
wooden
resin
racket frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58068854A
Other languages
Japanese (ja)
Other versions
JPS59214464A (en
Inventor
Mamoru Kameda
Nobuhiko Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP58068854A priority Critical patent/JPS59214464A/en
Publication of JPS59214464A publication Critical patent/JPS59214464A/en
Publication of JPH0255058B2 publication Critical patent/JPH0255058B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 近年宇宙開発、航空機の発達により軽量で強度
の大きい高性能複合材料の開発が進められ、炭素
繊維(以下、CFと略す)、アラミド繊維等で強化
したプラスチツクが実用化され始めている。
[Detailed Description of the Invention] In recent years, with the development of space exploration and aircraft, the development of lightweight, strong, and high-performance composite materials has progressed, and plastics reinforced with carbon fiber (hereinafter abbreviated as CF), aramid fiber, etc. have been put into practical use. It's starting to happen.

最近その中で釣竿、ゴルフシヤフト、テニスラ
ケツト等のレジヤー用品に軽量で大きい強度を利
用して使用され始め、ブームを呼ぶに至つてい
る。
Recently, it has begun to be used in leisure equipment such as fishing rods, golf shafts, and tennis rackets due to its light weight and great strength, and it has become popular.

しかし、その優れた性能にも拘わらず、特に
CFで強化したプラスチツク(以下、CFRPと略
す)をテニスラケツトに使う場合、使用中にラケ
ツトが折れるという問題が生じている。これは
CFの低い伸長率の為、プレー中にボールを打つ
た瞬間、ラケツトフレーム表面に応力の集中が起
り亀裂が生じ、それが原因でラケツトの折れるこ
とが判つている。そしてこの性質は、木製ラケツ
トの表面をCFRPで強化した際に特に折れ易いこ
とが判つた。
However, despite its excellent performance, especially
When using CF-reinforced plastic (hereinafter abbreviated as CFRP) in tennis rackets, a problem has arisen in which the rackets break during use. this is
Due to the low elongation rate of CF, stress is concentrated on the surface of the racket frame the moment the ball is hit during play, causing cracks, which are known to cause the racket to break. It was found that this property makes wooden rackets particularly susceptible to breakage when the surface is reinforced with CFRP.

従来柔らかいラケツトとしては木が使われ、硬
いラケツトとしてはアルミニユームや合金フレー
ムが使われていた。しかしアルミニユームや合金
フレームの場合、ボールを打つた瞬間にフレーム
に生じた振動を吸収せずプレイヤーに伝える為、
プレイヤーのテニスエルボー(肘痛)の原因とな
つていた。木製フレームの場合、振動吸収は優れ
ているが、フレーム自体を硬くすることが難し
く、その為強打者や上級者には不満を持たれてい
た。
Traditionally, soft rackets have been made of wood, while hard rackets have been made of aluminum or alloy frames. However, in the case of aluminum or alloy frames, the vibrations generated in the frame at the moment the ball is hit are transmitted to the player without being absorbed.
It was a cause of tennis elbow pain for players. Wooden frames have excellent vibration absorption, but it is difficult to make the frame itself rigid, which is why heavy hitters and advanced players are dissatisfied.

本発明者らはこれらの状況に鑑み、木製ラケツ
トフレームをCFRPで強化することにより、硬く
しかも振動吸収性も優れたテニスラケツトを開発
し、その際に問題となつた前記プレー中にフレー
ムの折れるという問題を解決するため鋭意研究を
行つた。
In view of these circumstances, the present inventors developed a tennis racket that is both hard and has excellent vibration absorption properties by reinforcing the wooden racket frame with CFRP. We conducted intensive research to solve this problem.

又、従来からテニスラケツトフレームとして
CFRPが使われ、その硬さ、強さが充分に発揮さ
れてきた。しかしフレームをCFRPとして充分に
その強度を得る為には、高価なCFをラケツト重
量の1/3も使う必要があり、しかも大型の金型を
作り大きな投資を必要とした。更にテニスラケツ
トはその流行品的性格から短期間でデザインを変
更することが多く、CFRPラケツトフレームを作
る為に大型投資をするには大きな危険が伴つた。
Also, it has traditionally been used as a tennis racket frame.
CFRP has been used to fully demonstrate its hardness and strength. However, in order to obtain sufficient strength by using CFRP for the frame, it was necessary to use 1/3 of the racket's weight in expensive CF, and it also required a large investment in the creation of a large mold. Furthermore, due to the trendy nature of tennis rackets, the design often changes in a short period of time, and making a large investment to make a CFRP racket frame was accompanied by great risk.

本発明者らはこの点を考え、木製フレーム表面
をCFRPで強化して充分硬く、しかも折れの問題
のないラケツトフレームを目的として種々試作し
た。
With this in mind, the inventors of the present invention reinforced the surface of the wooden frame with CFRP and produced various prototypes with the aim of creating a racket frame that is sufficiently hard and does not have the problem of breaking.

しかしながら、前記した如き欠点がこの方式の
ラケツトフレームも又プレー中に応力集中が表面
に起り易い欠点を有していた。そこでCFの小さ
い伸長率を補う為に、CFの短繊維を使つてみた
が、それでは硬さの付与率が小さく、その為多量
のCF短繊維でフレームを強化する必要が生じる。
しかも多量のCF使用によりフレームの先端に重
心が移動し、振る際に大きい力を必要とし腕疲れ
を起し易くなる。又デザイン的にもフレーム表面
が黒くなり好ましくない。
However, as mentioned above, this type of racket frame also has the disadvantage that stress concentration tends to occur on the surface during play. In order to compensate for the low elongation rate of CF, we tried using CF short fibers, but this gave only a small amount of hardness, and as a result, it was necessary to strengthen the frame with a large amount of CF short fibers.
Furthermore, using a large amount of CF shifts the center of gravity to the tip of the frame, requiring greater force when swinging and causing arm fatigue. Also, from a design point of view, the surface of the frame becomes black, which is not desirable.

本発明者はこれらの問題を更に種々検討した結
果、CFブレードを用いて木製フレームを強化す
る方法を見出した。そして打球時の応力集中をお
さえる為、破断伸張率5〜60%を有するマトリツ
クス樹脂として例えばエポキシ樹脂、不飽和ポリ
エステル樹脂、ビニルエステル樹脂、ウレタン樹
脂の1種以上を使うことによりラケツトの折れる
問題が解決されることを見出した。そして更にマ
トリツクス樹脂として透明樹脂を使うことにより
ブレードの織り目模様を表面に出すことができ、
デザイン上非常に好ましい効果を出すことを見出
した。
As a result of further various studies on these problems, the present inventors discovered a method of strengthening wooden frames using CF blades. In order to suppress stress concentration when hitting a ball, the problem of the racket breaking can be avoided by using one or more of epoxy resin, unsaturated polyester resin, vinyl ester resin, or urethane resin as a matrix resin with a breaking elongation rate of 5 to 60%. I found a solution. Furthermore, by using transparent resin as the matrix resin, the weave pattern of the blade can be brought to the surface.
We have found that this produces very favorable effects in terms of design.

すなわち本発明は、CFブレードと破断伸張率
5〜60%を有するマトリツクス樹脂と、木製ラケ
ツトの表面に積層してなるCFブレードの織り目
模様がある木製フレームの炭素繊維強化ラケツト
を提供するものである。
That is, the present invention provides a carbon fiber-reinforced racket with a wooden frame and a textured pattern of CF blades, matrix resin having a breaking elongation rate of 5 to 60%, and CF blades laminated on the surface of the wooden racket. .

本発明に使用するCFブレードは1000〜12000の
CFフイラメントを集めたCFトウを編んだもので
円筒状中空になつており、内部に被強化物を挿入
し、その外部をCFRPで覆うことができる様にし
たものである。
The CF blade used in this invention has a diameter of 1000 to 12000.
It is made by knitting CF tow, which is a collection of CF filaments, and has a hollow cylindrical shape, so that the object to be reinforced can be inserted inside and the outside covered with CFRP.

本発明ではこのブレードを内部に被強化物を挿
入することなく平に折り、即ち円筒をつぶして板
状で用いるが、その為CF織物層が2層構造とな
る。これはラケツトの表面に張り付けた後CF層
が厚いので、仕上げの為の切削、みがきを行つた
際にCF層を突き抜けた切削になりにくく、美観
を損なわないという有利さを持つている。
In the present invention, this blade is folded flat without inserting an object to be reinforced, that is, the cylinder is crushed and used in the form of a plate, so that the CF fabric layer has a two-layer structure. This has the advantage that the CF layer is thick after it is pasted on the surface of the racket, so when cutting or polishing it for finishing, it is difficult to cut through the CF layer, and it does not spoil the aesthetics.

本発明に用いるCFブレードは、その目付、織
り角度、織り本数等を特に限定するものではない
が、好ましくは目付3〜40g/m、織り角度10〜
40度、織り本数20〜100本で最少のブレード使用
量で最良の効果を与える為には取り付け後のフレ
ーム軸との角度が45゜であることが望ましい。
The CF braid used in the present invention is not particularly limited in its fabric weight, weaving angle, number of weaves, etc., but preferably has a fabric weight of 3 to 40 g/m and a weaving angle of 10 to 40 g/m.
In order to obtain the best effect with the least amount of blades when weaving 20 to 100 strands, it is desirable that the angle with the frame axis after installation is 45 degrees.

しかし製品の弾性率を上げ、硬くする為には角
度を45゜より小さくする方が効果がある。
However, in order to increase the elastic modulus of the product and make it harder, it is more effective to make the angle smaller than 45°.

又、ブレードの種類としてCFブレードを中心
に説明しているが、アラミド繊維のブレードや、
CF、アラミド繊維、硝子繊維の混合した織物で
も良く、特に限定されない。
In addition, although the explanation mainly focuses on CF blades as types of blades, there are also aramid fiber blades,
It may be a woven fabric that is a mixture of CF, aramid fiber, and glass fiber, and is not particularly limited.

本発明ではCFブレードは硬化した合成樹脂で
硬められた状態で木製ラケツトフレームの両側に
張り付けられた形となる。このCFブレードは予
めマトリツクス樹脂により厚さ0.5〜5mm程度の
ラケツトフレームの形状の薄板に硬化成形し、そ
れを木製ラケツトフレームの両面に接着しても良
く、又ブレードを直接木製ラケツトフレーム表面
に置き、上からマトリツクス樹脂を注ぎホツトプ
レスし、硬化させると同時に木製ラケツトフレー
ムに張り付けても良い。
In the present invention, the CF blade is hardened with hardened synthetic resin and attached to both sides of the wooden racket frame. This CF blade may be hardened and molded in advance into a thin plate in the shape of a racket frame with a thickness of about 0.5 to 5 mm using matrix resin, and then glued to both sides of the wooden racket frame, or the blade may be directly attached to the wooden racket frame. You can place it on a surface, pour matrix resin over it, hot press it, let it harden, and attach it to a wooden racket frame at the same time.

本発明の特徴を成す破断伸張率5〜60%
(JISK−7113によつて測定された値である)のあ
るマトリツクス樹脂としては例えばエポキシ樹
脂、不飽和ポリエステル樹脂、ビニルエステル樹
脂、ポリウレタン樹脂等の加熱硬化型の樹脂が望
ましい。更にこれらの中でも特に短時間で硬化
し、しかもCFに親和性のあるビニルエステル樹
脂が適している。
Breaking elongation rate of 5 to 60%, which is a feature of the present invention
As the matrix resin (values measured according to JISK-7113), thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, and polyurethane resins are desirable. Furthermore, among these, vinyl ester resins are particularly suitable because they cure in a short time and have an affinity for CF.

ビニルエステル樹脂とは、反応性ビニルエステ
ル基を分子中に有する合成樹脂オリゴマーをい
い、例えばエポキシ基を有するエポキシ樹脂とア
クリル酸を反応させ、アクリルエステル基を分子
中に保有するオリゴマーがその代表例である。
Vinyl ester resin refers to a synthetic resin oligomer that has a reactive vinyl ester group in its molecule.A typical example is an oligomer that has an acrylic ester group in its molecule by reacting an epoxy resin with an epoxy group and acrylic acid. It is.

このビニルエステル樹脂としては例えば大日本
インキ化学工業(株)製の「デイツクライト」の商標
で販売されている全ての樹脂が挙げられる。
Examples of the vinyl ester resin include all resins sold under the trademark "Deitzcrite" manufactured by Dainippon Ink and Chemicals.

本発明の特徴を成す折れに強いマトリツクス樹
脂としては、これらの樹脂の中で破壊時の破断伸
張率が5〜60%の樹脂が適し、とりわけ10〜30%
の破断伸張率を有する樹脂が適している。破断伸
張率が60%をこえるとCFブレードを用いた効果
が充分に出ないし、5%より小さいとフレームに
応力集中しやすく、折れやすいので好ましくな
い。
Among these resins, resins with a breaking elongation rate of 5 to 60% are suitable as the matrix resin that is resistant to bending, which is a feature of the present invention, and in particular, resins with a breaking elongation rate of 10 to 30%.
A resin having an elongation at break of . If the elongation at break exceeds 60%, the effect of using the CF blade will not be sufficiently achieved, and if it is less than 5%, stress will easily concentrate on the frame, making it easy to break, which is undesirable.

この伸張率を有する樹脂の具体例としては、例
えば大日本インキ化学工業(株)製「デイツクライト
UE−1150」の商品名で市販されているビニルエ
ステル樹脂が挙げられ、その破断伸張率が24〜25
%であり、本発明の条件を満足する。しかし本樹
脂の例示が本発明の効力に何ら制限を加えるもの
ではない。
As a specific example of a resin having this elongation rate, for example, "Deitskrite" manufactured by Dainippon Ink and Chemicals Co., Ltd.
Vinyl ester resin is commercially available under the trade name UE-1150, and its elongation at break is 24 to 25.
%, which satisfies the conditions of the present invention. However, the examples of this resin do not limit the effectiveness of the present invention.

以下、実施例を挙げ説明する。実施例中「部」
及び「%」は重量基準とする。
Examples will be described below. “Part” in Examples
and "%" are based on weight.

実施例 1 CFブレード グラフイル3−15−20(目付10
g/m)をラケツトフレームに合せて設置してお
き、それに予め作つておいたデイツクライトUF
−1150(大日本インキ化学工業(株)製)100部とベン
ゾイルパーオキサイド(ジブチルフタレート、50
%ペースト)3部を混合したものを充分に含浸さ
せ、ホツトプレスにより厚さ1m/mのラケツト
フレームの形をした表面張り付け用成形品を2個
作つた。このものは1枚当り40gであり、CF含
有量は約50%であつた。
Example 1 CF blade Grafyle 3-15-20 (Weight 10
g/m) to the racket frame, and a datecrite UF that was made in advance.
-1150 (manufactured by Dainippon Ink & Chemicals Co., Ltd.) 100 parts and benzoyl peroxide (dibutyl phthalate, 50 parts)
% paste) was thoroughly impregnated and two molded products in the shape of a racket frame with a thickness of 1 m/m were made by hot pressing. Each sheet weighed 40 g, and the CF content was approximately 50%.

この2枚の成形品を予め作つておいた木製ラケ
ツトフレームの両面にエポキシ接着剤「アラルダ
イト」(チバガイギー社製)で張り付けた後、表
面磨きを行い、透明塗料を塗布しラケツトに仕上
げた。
These two molded products were attached to both sides of a pre-made wooden racket frame using epoxy adhesive Araldite (manufactured by Ciba Geigy), the surface was polished, and a transparent paint was applied to complete the racket.

本ラケツトをJIS−S−7009に従い、曲げ試験
を行つた。この際の弾性率は1660Kg/mm2であり、
曲げ破壊強度は105Kgであつた。
This racket was subjected to a bending test in accordance with JIS-S-7009. The elastic modulus at this time is 1660Kg/ mm2 ,
The bending fracture strength was 105 kg.

これは木製ラケツトフレームの弾性率1050Kg/
mm2、曲げ破壊強度70Kgに比べて大巾に強化されて
おり、更に比較例と比べて破壊強度が高くなり、
しかも破壊面はかなり凹凸の激しい形状を示して
おり、応力が切断面全体にかかつたことを示して
いた。
This is the elastic modulus of the wooden racket frame 1050Kg/
mm 2 , the bending strength is significantly strengthened compared to 70Kg, and the fracture strength is also higher than that of the comparative example.
Furthermore, the fractured surface had a highly uneven shape, indicating that stress was applied to the entire cut surface.

しかもラケツト表面には織り目が鮮明に現れ、
デザイン上好ましいものであつた。
Moreover, the texture is clearly visible on the surface of the racket,
It was a good design.

実施例 2 木製ラケツトフレームにCFブレード グラフ
イル3−15−20を設置し、それに予め作つておい
た実施例1と同じ樹脂配合物を含浸させ、ホツト
プレスにより1段で木製ラケツトフレームの両側
にCFRPの強化層を作つた。その後表面を磨き、
塗装してテニスラケツトに仕上げた。
Example 2 A CF blade Graphile 3-15-20 was installed on a wooden racket frame, impregnated with the same resin composition as in Example 1 that had been prepared in advance, and hot pressed on both sides of the wooden racket frame in one step. A reinforced layer of CFRP was created. Then polish the surface,
I painted it and made it into a tennis racket.

本ラケツトは曲げ弾性率1600Kg/mm2、曲げ破壊
強度は103Kgであり、破壊面は実施例1と同様に
凹凸の激しい形状を示し、比較例に比べ折れにく
いことを示した。
This racket had a bending modulus of elasticity of 1600 Kg/mm 2 and a bending breaking strength of 103 Kg, and the broken surface had a highly uneven shape similar to Example 1, indicating that it was less likely to break than the comparative example.

比較例 CFブレード グラフイル3−15−20(目付10
g/m)をラケツトフレームに合せて設置してお
き、それに予め作つておいたデイツクライトUE
−7016(大日本インキ化学工業(株)製)100部とベン
ゾイルパーオキサイド(ジブチルフタレート、50
%ペースト)とを混合したものを充分に含浸させ
た。この樹脂配合は硬化後3〜4%の破断伸張率
を示すものであつた。
Comparative example CF blade Graphile 3-15-20 (Weight 10
g/m) to match the racket frame, and a date light UE made in advance on it.
−7016 (manufactured by Dainippon Ink and Chemicals Co., Ltd.) 100 parts and benzoyl peroxide (dibutyl phthalate, 50 parts)
% paste) was sufficiently impregnated. This resin formulation exhibited a breaking elongation of 3 to 4% after curing.

含浸後、ホツトプレスにより厚さ1m/mのラ
ケツトフレームの形をした表面張り付け用成形品
を2個作つた。1枚当り重量は40gであり、CF
含有量は約50%であつた。
After impregnating, two racket frame-shaped molded products with a thickness of 1 m/m for surface attachment were made by hot pressing. The weight per sheet is 40g, and CF
The content was approximately 50%.

この2枚の成形品を木製ラケツトフレームの両
面にエポキシ接着剤「アラルダイト」で張り付
け、その後表面研磨、表面塗装によりラケツトを
仕上げた。
These two molded products were attached to both sides of a wooden racket frame using epoxy adhesive ``Araldite'', and the racket was then finished by surface polishing and surface painting.

本ラケツトをJIS−S−7009により曲げ試験を
行つた。弾性率は1700Kg/mm2であり、曲げ破壊強
度は98Kgを示した。しかも曲げ破壊はその表面に
亀裂を生じ、それをもとに切断が起り、かなり平
面に近い切断面であつた。
This racket was subjected to a bending test according to JIS-S-7009. The elastic modulus was 1700 Kg/mm 2 and the bending fracture strength was 98 Kg. Moreover, the bending fracture caused cracks on the surface, which caused the cut to occur, resulting in a fairly flat cut surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素繊維強化ラケツト断面図、第2図
はその斜視断面図。 1:炭素繊維ブレードを用いた炭素繊維強化プ
ラスチツク、2:木製ラケツトフレーム。
FIG. 1 is a sectional view of a carbon fiber reinforced racket, and FIG. 2 is a perspective sectional view thereof. 1: Carbon fiber reinforced plastic using carbon fiber blade, 2: Wooden racket frame.

Claims (1)

【特許請求の範囲】[Claims] 1 破断伸張率5〜60%のマトリツクス樹脂と炭
素繊維のブレードを木製ラケツトに積層してなる
炭素繊維強化ラケツト。
1. A carbon fiber reinforced racket made by laminating matrix resin and carbon fiber blades with a breaking elongation rate of 5 to 60% on a wooden racket.
JP58068854A 1983-04-19 1983-04-19 Tennis racket Granted JPS59214464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068854A JPS59214464A (en) 1983-04-19 1983-04-19 Tennis racket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068854A JPS59214464A (en) 1983-04-19 1983-04-19 Tennis racket

Publications (2)

Publication Number Publication Date
JPS59214464A JPS59214464A (en) 1984-12-04
JPH0255058B2 true JPH0255058B2 (en) 1990-11-26

Family

ID=13385670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068854A Granted JPS59214464A (en) 1983-04-19 1983-04-19 Tennis racket

Country Status (1)

Country Link
JP (1) JPS59214464A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119630A (en) * 1974-08-09 1976-02-17 Nippon Carbon Co Ltd
JPS55113469A (en) * 1979-02-22 1980-09-02 Hasegawa Kagaku Kogyo Kk Racket frame
JPS57128173A (en) * 1981-01-30 1982-08-09 Hitachi Chemical Co Ltd Racket frame

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030864U (en) * 1973-07-04 1975-04-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119630A (en) * 1974-08-09 1976-02-17 Nippon Carbon Co Ltd
JPS55113469A (en) * 1979-02-22 1980-09-02 Hasegawa Kagaku Kogyo Kk Racket frame
JPS57128173A (en) * 1981-01-30 1982-08-09 Hitachi Chemical Co Ltd Racket frame

Also Published As

Publication number Publication date
JPS59214464A (en) 1984-12-04

Similar Documents

Publication Publication Date Title
US2878020A (en) Racket for batting games
US5303916A (en) Hockey stick shaft
CN100525868C (en) Golf club head
US5050878A (en) Hockey stick made of composite materials and its manufacturing process
US6273830B1 (en) Tapered hollow shaft
US4070020A (en) Composite high strength to weight structure with fray resistance
US4399992A (en) Structural member having a high strength to weight ratio and method of making same
US4212461A (en) Composite high strength to weight structure having shell and weight controlled core
US3690658A (en) Tennis racket
US3129003A (en) Ball bat with reinforced handle
US4124670A (en) Method of producing a composite high strength to weight structure having a shell and weight controlled cellular core
US5419553A (en) Hockey stick shaft
US9656130B2 (en) Sporting goods with graphene material
US20120190473A1 (en) Variable stiffness sports equipment
JPH02116389A (en) Golf club head
JPH0332682A (en) Shaft for golf club and production thereof
JPH02124182A (en) Golf club head
GB2053698A (en) Golf club
US20050064965A1 (en) Shock absorbing baseball bat and method of manufacturing
JPH0255058B2 (en)
WO2023172209A1 (en) Padel racquet with an improved hitting area
JPH0798080B2 (en) Golf club head
JP3363559B2 (en) Nickel / titanium superelastic wire composite prepreg
JPH10230030A (en) Golf club shaft of over-hosel type and golf club
JPH084646B2 (en) Golf club shaft