JPH0254918A - Electrolytic solution for electrolytic capacitor - Google Patents

Electrolytic solution for electrolytic capacitor

Info

Publication number
JPH0254918A
JPH0254918A JP20461088A JP20461088A JPH0254918A JP H0254918 A JPH0254918 A JP H0254918A JP 20461088 A JP20461088 A JP 20461088A JP 20461088 A JP20461088 A JP 20461088A JP H0254918 A JPH0254918 A JP H0254918A
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolytic
electrolytic capacitor
compound
capacitor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20461088A
Other languages
Japanese (ja)
Inventor
Makoto Shimizu
誠 清水
Yutaka Yokoyama
豊 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP20461088A priority Critical patent/JPH0254918A/en
Publication of JPH0254918A publication Critical patent/JPH0254918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To obtain a capacitor with low loss which can be used for a long time under high temperatures by using an electrolytic solution which is made by mixing as an electrolyte specific monospiro ammonium compound salt or dispiro ammonium compound salt into a solvent consisting of a specific solvent. CONSTITUTION:Monospiro ammonium compound salt or dispiro ammonium compound salt of an alicyclic monocarboxylic oxide or dicarboxylic oxide expressed by a formula I is mixed as an electrolyte into a solvent consisting of a non-protic solvent to make a nonaqueous high-conductivity electrolytic solution consisting of a non-protic solvent. By using this electrolytic solution, such an electrolytic capacitor that has high electric characteristics and has stable ones even when used for a long time at high temperatures. (In the formula, (n) is an integer from 4 to 8, (m) is integer from 3 to 6, R is an alicyclic group containing 3 to 10 carbon atoms and X is a hydrogen atom or a carboxylic group or a base of the carboxylic group and the same group as a spiro ammonium group in the formula.).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、非プロトン溶媒を主体とする溶媒中に脂環式
モノ又はジカルボン酸化合物のモノ又はジ−スピロアン
モニウム化合物の塩を電解質として含有する電解コンデ
ンサ用電解液に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to an electrolyte containing a salt of a mono- or di-spiroammonium compound of an alicyclic mono- or dicarboxylic acid compound in a solvent mainly consisting of an aprotic solvent. This invention relates to an electrolytic solution for electrolytic capacitors.

(従来の技術) 電解コンデンサは、アルミニウム又はタンタルなどの表
面に絶縁性の酸化皮膜が形成された弁金属を陽極電極に
使用し、前記酸化皮膜層を誘電体とし、この酸化皮膜層
の表面に電解質層となる電解液を接触させ、更に通常陰
極と称する集電用の電極を配置して構成されている。
(Prior art) An electrolytic capacitor uses a valve metal such as aluminum or tantalum on the surface of which an insulating oxide film is formed as an anode electrode, the oxide film layer is used as a dielectric, and the surface of the oxide film layer is It is constructed by bringing an electrolytic solution, which forms an electrolyte layer, into contact with it, and further arranging a current collecting electrode, usually called a cathode.

電解コンデンサ用電解液は、上述したように誘電体層に
直接接触し、真の陰極としてさようする。即ち、電解液
は電解コンデンサの誘電体層と集電陰極との間に介在し
て、電解液の抵抗分が電解コンデンサに直列に挿入され
ていることになる。故に、その特性が電解フンデンサ特
性を左右する大きな要因となる。例えば、電解液の電導
塵が低いと、電解コンデンサの内部の等価直列抵抗分を
増大させ、高周波特性や損失特性が悪くなる欠点がある
。このような背景から電導塵の高い電解質がちとめられ
ており、従来から知られた電導塵の高い電解質として、
アジピン酸などの有機酸 又はその塩をエチレングリコ
ールなどのグリコール類やアルコール類に溶解したもの
が通常の用途に対し主流をなして使用されている。
The electrolyte for an electrolytic capacitor comes into direct contact with the dielectric layer, as described above, and acts as a true cathode. That is, the electrolytic solution is interposed between the dielectric layer and the current collecting cathode of the electrolytic capacitor, and the resistance of the electrolytic solution is inserted in series with the electrolytic capacitor. Therefore, its characteristics become a major factor that influences the characteristics of the electrolytic capacitor. For example, if the electrolytic solution has a low amount of conductive dust, it increases the equivalent series resistance inside the electrolytic capacitor, resulting in poor high frequency characteristics and loss characteristics. From this background, electrolytes with high conductive dust have been selected, and as electrolytes with high conductive dust,
Organic acids such as adipic acid or their salts dissolved in glycols such as ethylene glycol or alcohols are mainly used for ordinary purposes.

(発明が解決しようとする課題) 近年の電子機器の利用範囲の増大から電解コンデンサ性
能の向上改善の要求が高まり、現状の電解液の電導塵で
は充分とはいえない。特に現状の電解液の場合、所望の
電導塵が得られない場合や、溶解度が低い電解質を用い
た時などは、意図的に水を添加して電導塵の向上を図る
ことが行われている。
(Problems to be Solved by the Invention) Due to the recent increase in the scope of use of electronic devices, there has been an increasing demand for improvements in the performance of electrolytic capacitors, and the current conductive dust in electrolytes is not sufficient. Especially in the case of current electrolytes, when the desired conductive dust cannot be obtained or when an electrolyte with low solubility is used, water is intentionally added to improve the conductive dust. .

しかしながら、最近のように従来品を越える高温下で長
時間の使用が求められる電解コンデンサの使用状況にお
いては、電解液中の水分の存在は、誘電体皮膜層の劣化
や、電解コンデンサの内部蒸気圧を高め、封口部の破損
や電角’4液の蒸散による寿命劣化を招来し、長期間に
亙って安定した特性を維持出来ない欠点があった。
However, in recent years, when electrolytic capacitors are used for long periods of time at higher temperatures than conventional products, the presence of moisture in the electrolyte can cause deterioration of the dielectric film layer and internal steam of the electrolytic capacitor. This increases the pressure, leading to damage to the sealing part and evaporation of the electric angle liquid, which shortens its lifespan, and has the disadvantage that stable characteristics cannot be maintained over a long period of time.

それ故、本発明の目的は、非プロトン溶媒を主体とする
実質的に非水系の高電導度の電解液を提供することによ
り、電解コンデンサの電気的特性を同一ヒさせ、かつ安
定した特性を長期間維持することによって電解コンデン
サの信頼性を向上させることにある。
Therefore, an object of the present invention is to provide a substantially non-aqueous high-conductivity electrolytic solution containing an aprotic solvent as a main ingredient, thereby making the electrical characteristics of an electrolytic capacitor the same and stable. The purpose is to improve the reliability of electrolytic capacitors by maintaining them for a long period of time.

(課題を解決するための手段) 本発明者等は、非プロトン溶媒を主体とする実質的に非
水系の電解液でかつ高電導度を与える電解質につき鋭意
研究を重ねた結果、脂環式モノ又はジルカルボン酸化合
物のモノ−又はジスピロアンモニウム化合物との塩が非
プロトン溶媒に溶解性が高く、かつ解離度も高く高電導
度を付与することを見出して本発明に到達したものであ
る。
(Means for Solving the Problems) As a result of extensive research into an electrolyte that is a substantially non-aqueous electrolyte mainly composed of an aprotic solvent and provides high conductivity, the present inventors have discovered that an alicyclic monomer Alternatively, the present invention was achieved by discovering that a salt of a dicarboxylic acid compound with a mono- or dispiroammonium compound has high solubility in an aprotic solvent, has a high degree of dissociation, and imparts high electrical conductivity.

即ち、本発明に係る電解コンデンサ用電解液は、非プロ
トン溶媒を主体とする溶媒中に一般式: (式中、nは4〜8の整数、mは3〜6の整数、Rは炭
素原子数3〜10個の脂環基、Xは水素原子又カルボキ
シル基又はこのカルボキシル基と式中に示されるスピロ
アンモニウム基と同じ基との塩基を表す)の脂環式モノ
又はジカルボン酸化合物のモノ−又はジ−スピロアンモ
ニウム化合物塩を電解質として含有することを特徴とす
る。
That is, the electrolytic solution for an electrolytic capacitor according to the present invention contains a compound having the general formula: (where n is an integer of 4 to 8, m is an integer of 3 to 6, and R is a carbon atom 3 to 10 alicyclic groups, X represents a hydrogen atom or a carboxyl group, or a base of this carboxyl group and the same group as the spiroammonium group shown in the formula) - or di-spiroammonium compound salt as an electrolyte.

非プロトン溶媒を主体とする溶媒は非プロトン溶媒10
0〜50重量部と多価アルコール化合物0〜50重量部
とからなる。
Solvents mainly composed of aprotic solvents are aprotic solvents 10
It consists of 0 to 50 parts by weight and 0 to 50 parts by weight of a polyhydric alcohol compound.

使用される非プロトン溶媒としては、 (+)  アミ ド系 N−メチルホルムアミド、N、N−ジメチルホルムアミ
ド、ト、エチルホルムアミド、N、 N−ジエチルホル
ムアミド、N−メチルアセトアミド、N、N−ツメチル
アセトアミド、N−エチルアセトアミド、N、N−ジエ
チルアセトアミド、ヘキサメチルホスホリックアミド (2)オキシド系 ジメチルホルホキンド (3)  ニトリル系 アセトニトリル (4)環状エステル、アミド系 γ−ブチロラクトン、N−メチル−2−ピロリドン、エ
チレンカーボネート、プロピレン−カーボネート などが代表として挙げられるが、これに限定されるもの
でない。
The aprotic solvents used include (+) amide type N-methylformamide, N,N-dimethylformamide, ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-methyl Acetamide, N-ethylacetamide, N,N-diethylacetamide, hexamethylphosphoric amide (2) Oxide-based dimethylphorfoquine (3) Nitrile-based acetonitrile (4) Cyclic ester, amide-based γ-butyrolactone, N-methyl- Representative examples include, but are not limited to, 2-pyrrolidone, ethylene carbonate, propylene carbonate, and the like.

本発明の対象となる多価アルコール化合物は、2価アル
コール化合物又は2価アルコール化合物のモノアルキル
エーテルが好適で、2価アルコール化合物がエチレング
リコールであり、2価アルコールモノアルキルエーテル
化合物がメチルセルソルブ又はエチルセルソルブである
The polyhydric alcohol compound that is the object of the present invention is preferably a dihydric alcohol compound or a monoalkyl ether of a dihydric alcohol compound, the dihydric alcohol compound is ethylene glycol, and the dihydric alcohol monoalkyl ether compound is methyl cellosolve. Or ethyl cellosolve.

非プロトン溶媒に対する多価アルコール化合物の重1割
合は、(100〜50) : (0〜50)であって、
非プロトン溶媒100%が適切であるが、約50%まで
の多価アルコール化合物は実質的に製品劣化を避は得て
、適宜使用して良い。
The weight ratio of the polyhydric alcohol compound to the aprotic solvent is (100-50): (0-50),
Although 100% aprotic solvent is suitable, up to about 50% polyhydric alcohol compound may be used as appropriate without substantially avoiding product deterioration.

本発明の対象となる脂環式モノ又はジカルボン酸化合物
はシクロプロパンカルボン酸シクロプロパン刊、l−ジ
カルボン酸、シクロブタンカルボン酸、シクロブタン−
1,1−ジカルボン酸、シクロベンクンカルボン酸、シ
クロペンタンジカルボン酸、ヘキサヒドロ安息香酸、ヘ
キサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキ
サヒドロテレフタル酸、3,4,5.6−チトラヒドロ
フタルe、1.2,3.4−テトラヒドロテレフタル酸
、ショウノウ酸、インショウノウ酸、フ5ンチョル酸、
シクロオクタテトラエンカルボン酸、シクロへブタンカ
ルボン酸、シクロへブタンジカルボン酸等である。
The alicyclic mono- or dicarboxylic acid compounds to which the present invention is applied include cyclopropanecarboxylic acid, cyclopropane, l-dicarboxylic acid, cyclobutanecarboxylic acid, cyclobutanecarboxylic acid,
1,1-dicarboxylic acid, cyclobencunecarboxylic acid, cyclopentanedicarboxylic acid, hexahydrobenzoic acid, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, 3,4,5.6-titrahydrophthalic acid, 1.2,3.4-tetrahydroterephthalic acid, camphoric acid, incamphoric acid, 5-huncholic acid,
These include cyclooctatetraenecarboxylic acid, cyclohebutanecarboxylic acid, and cyclohebutanedicarboxylic acid.

スピロアンモニウム酸化合物は、!、1°−スピビロ[
アゼチジン1,1°−ビビペリジニウム]スピロアンモ
ニウム化合物は、J、Y、ブラウン、ベリヒナ。第49
巻、第466頁(1916)に記載の方法により合成出
来、例えば、ピロリジンに1,4ジブロムブタンを作用
させて臭化1.1−スピロビピロリジニウムを得ること
が出来る。
Spiroammonium acid compounds are! , 1°−spibilo[
Azetidine 1,1°-biviperidinium]spiroammonium compound J, Y. Brown, Berichna. 49th
For example, 1,1-spirobipyrrolidinium bromide can be obtained by reacting pyrrolidine with 1,4 dibromobutane.

得られた臭化1.1゛−スビロピピロリジニウムをイオ
ン交換膜を使用した電気透析を行いアニオン交換を行う
ことにより水酸化1.1−スピロビピロリジニウム水溶
液が合成出来る。
An aqueous solution of 1,1-spirobipyrrolidinium hydroxide can be synthesized by electrodialyzing the obtained 1.1'-subiropipyrrolidinium bromide using an ion exchange membrane to perform anion exchange.

得られた水酸化1.1゛−スピロビピロリジニウム水溶
液に所望の脂環式モノ又はジカルボン酸化合物を添加し
、中和反応させ、減圧乾燥して水を除くことにより脂環
式モノ又はジカルボン酸化合物の1,1°−スピロビピ
ロリジニウム塩を得ることが出来る。
A desired alicyclic mono- or dicarboxylic acid compound is added to the obtained aqueous solution of 1.1'-spirobipyrrolidinium hydroxide, a neutralization reaction is carried out, and water is removed by drying under reduced pressure. A 1,1°-spirobipyrrolidinium salt of a dicarboxylic acid compound can be obtained.

本発明に係る電解コンデンサ用電解液は、−膜内に、非
プロトン溶媒に必要に応じ多価アルコール化合物又はそ
のモノアルキルエーテル化合物を混合した溶媒に所望の
脂環式モノ又はジカルボン酸化合物のスピロアンモニウ
ム化合物塩の当屑又は2当量を添加溶解して得られる。
The electrolytic solution for an electrolytic capacitor according to the present invention includes: - a spirocarbon of a desired alicyclic mono- or dicarboxylic acid compound in a solvent prepared by mixing an aprotic solvent with a polyhydric alcohol compound or its monoalkyl ether compound as required; It is obtained by adding and dissolving one or two equivalents of ammonium compound salt.

(実施例) 以下、本発明に係る電解コンデンサ用電解液の実施例に
つき、各種脂肪族飽和ジカルボン酸化合物のスピロアン
モニウム化合物塩の各種非プロトン溶媒又はこれとエチ
レングリコール又はメチルセルソルブ(エチレングリフ
ールモノメチルエーテル)に対する15.20重量%溶
液の電導度を第1表に示す。なお、比較例として従来の
標準的電解液(エチレングリコール78重量%、水10
%、アジピン酸アンモニウム12%)を示している。
(Example) Hereinafter, various aprotic solvents of spiroammonium compound salts of various aliphatic saturated dicarboxylic acid compounds or combination thereof with ethylene glycol or methyl cellosolve (ethylene glycol The electrical conductivity of the 15.20% by weight solution relative to monomethyl ether) is shown in Table 1. As a comparative example, a conventional standard electrolyte solution (78% by weight of ethylene glycol, 10% by weight of water) was used as a comparative example.
%, ammonium adipate 12%).

以上の結果から分かるように、本発明の電解液は、従来
のものに比べて高い電導度を示している。
As can be seen from the above results, the electrolytic solution of the present invention exhibits higher conductivity than the conventional electrolytic solution.

次に、実施例1〜10及び比較例の電解液を用いて電解
コンデンサを製作し、その特性の比較を行った。
Next, electrolytic capacitors were manufactured using the electrolytes of Examples 1 to 10 and Comparative Example, and their characteristics were compared.

製作゛した電解コンデンサは、アルミニウム箔を陽極並
びに陰極に用い、セパレータ紙を挟んで重ね合わせて巻
回して円筒状のコンデンサ素子としたものに、各々の実
施例及び比較例の電解液を含浸して外装ケースに収納し
て密封したものである。
The produced electrolytic capacitors were made by using aluminum foil as an anode and a cathode, and rolling the foil overlappingly with separator paper in between to form a cylindrical capacitor element, which was impregnated with the electrolyte of each example and comparative example. It is stored in an external case and sealed.

いずれも同一のコンデンサ素子を用いており、定格電圧
16Y定格容量180μFである。
Both use the same capacitor element, and have a rated voltage of 16 and a rated capacity of 180 μF.

第2表は、これら電解コンデンサの初期値並びに85℃
で定格電圧を印加して1000時間経過後の静電容量値
(μF)、損失角の正接(tanδ)漏れ電流(μ^)
(2分値)を表している。
Table 2 shows the initial values of these electrolytic capacitors and 85℃
Capacitance value (μF), tangent of loss angle (tan δ), and leakage current (μ^) after 1000 hours have passed after applying the rated voltage at
(dichotomous value).

また、本質的に水を含まないので高温負荷状態に置いて
も、内圧上昇による外観異常や静電容量の減少がなく、
初期値と1000時間後の特性値の比較におしても、本
発明のものは極めて変化が少ない。
In addition, since it essentially does not contain water, there is no appearance abnormality or decrease in capacitance due to increased internal pressure even when placed under high temperature loads.
Even when comparing the initial values and the characteristic values after 1000 hours, there is very little change in the properties of the present invention.

(発明の効果) 本発明に係る電解液を用いた電解コンデンサは、低い損
失値と、高温で長時間使用しても安定した特性が維持出
来るので、高い周波数で使用され、かつ高効率が求めら
れるスイッチングレギュレータなどの電源装置や、高温
度で長期間使用される各種電気機器等に用いることが出
来る。
(Effects of the Invention) The electrolytic capacitor using the electrolyte according to the present invention has a low loss value and can maintain stable characteristics even when used at high temperatures for long periods of time, so it can be used at high frequencies and requires high efficiency. It can be used in power supply devices such as switching regulators, which are used for a long period of time, and various electrical devices that are used at high temperatures for long periods of time.

特許出願人   日本ケミコン株式会社この試験の結果
から明らかなように、本発明の電解液の電導度が高いこ
とから、従来のものに比べ損失、即ちtanδの値が低
くなる。
Patent Applicant: Nippon Chemi-Con Co., Ltd. As is clear from the results of this test, the electrolytic solution of the present invention has a high conductivity, so the loss, that is, the value of tan δ, is lower than that of the conventional electrolyte.

Claims (7)

【特許請求の範囲】[Claims] (1) 非プロトン溶媒を主体とする溶媒中に一般式: ▲数式、化学式、表等があります▼ (式中、nは4〜8の整数、mは3〜6の整数、Rは炭
素原子数3〜10個の脂環基、Xは水素原子又カルボキ
シル基又はこのカルボキシル基と式中に示されるスピロ
アンモニウム基と同じ基との塩基を表す)の脂環式モノ
又はジカルボン酸化合物のモノ−又はジ−スピロアンモ
ニウム化合物塩を電解質として含有する電解コンデンサ
用電解液。
(1) General formulas in solvents that are mainly aprotic solvents: ▲Mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, n is an integer from 4 to 8, m is an integer from 3 to 6, and R is a carbon atom. 3 to 10 alicyclic groups, X represents a hydrogen atom or a carboxyl group, or a base of this carboxyl group and the same group as the spiroammonium group shown in the formula) An electrolytic solution for an electrolytic capacitor containing - or di-spiroammonium compound salt as an electrolyte.
(2) 非プロトン溶媒を主体とする溶媒は非プロトン
溶媒100〜50重量部と多価アルコール化合物0〜5
0重量部とからなる請求項1記載の電解コンデンサ用電
解液。
(2) The solvent mainly composed of an aprotic solvent contains 100 to 50 parts by weight of an aprotic solvent and 0 to 5 parts by weight of a polyhydric alcohol compound.
The electrolytic solution for an electrolytic capacitor according to claim 1, comprising 0 parts by weight.
(3) 非プロトン溶媒はN−メチルホルムアミド、N
,N−ジメチルホルムアミド、N−エチルホルムアミド
、N,N−ジエチルホルムアミド、N−メチルアセトア
ミド、N,N−ジメチルアセトアミド、N−エチルアセ
トアミド、N,N−ジエチルアセトアミド、γ−ブチロ
ラクトン、N−メチル−2−ピロリドン、エチレンカー
ボネート、プロピレン−カーボネート、ジメチルスルホ
オキシド、アセトニトリル又はこれらの混合物の群より
選択される請求項1又は請求項2に記載の電解コンデン
サ用電解液。
(3) The aprotic solvent is N-methylformamide, N
, N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, N,N-diethylacetamide, γ-butyrolactone, N-methyl- The electrolytic solution for an electrolytic capacitor according to claim 1 or 2, which is selected from the group of 2-pyrrolidone, ethylene carbonate, propylene carbonate, dimethyl sulfoxide, acetonitrile, or a mixture thereof.
(4) 多価アルコール化合物は2価アルコール化合物
又は2価アルコール化合物のモノアルキルエーテルであ
る請求項2記載の電解コンデンサ用電解液。
(4) The electrolytic solution for an electrolytic capacitor according to claim 2, wherein the polyhydric alcohol compound is a dihydric alcohol compound or a monoalkyl ether of a dihydric alcohol compound.
(5) 2価アルコール化合物がエチレングリコールで
あり、2価アルコールモノアルキルエーテル化合物がメ
チルセルソルブ又はエチルセルソルブである請求項2記
載の電解コンデンサ用電解液。
(5) The electrolytic solution for an electrolytic capacitor according to claim 2, wherein the dihydric alcohol compound is ethylene glycol and the dihydric alcohol monoalkyl ether compound is methyl cellosolve or ethyl cellosolve.
(6) 脂環式モノ又はジカルボン酸化合物はシクロプ
ロパン−1,1−ジカルボン酸、シクロブタン−1,1
−ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロ
安息香酸である請求項1記載の電解コンデンサ用電解液
(6) Alicyclic mono- or dicarboxylic acid compounds include cyclopropane-1,1-dicarboxylic acid, cyclobutane-1,1
2. The electrolytic solution for an electrolytic capacitor according to claim 1, which is a -dicarboxylic acid, hexahydrophthalic acid, or hexahydrobenzoic acid.
(7) スピロアンモニウム化合物は1,1’−スピロ
ビピロリジニウム、スピロ[ピペリジン−1,1’−ピ
ロリジニウム]、1,1’−スピロビピペリジニウム又
は1,1’−スピロビピロリジニウムである請求項1記
載の電解コンデンサ用電解液。
(7) The spiroammonium compound is 1,1'-spirobipyrrolidinium, spiro[piperidine-1,1'-pyrrolidinium], 1,1'-spirobipiperidinium or 1,1'-spirobipyrrolidinium. 2. The electrolytic solution for an electrolytic capacitor according to claim 1, wherein the electrolytic solution is Ni.
JP20461088A 1988-08-19 1988-08-19 Electrolytic solution for electrolytic capacitor Pending JPH0254918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20461088A JPH0254918A (en) 1988-08-19 1988-08-19 Electrolytic solution for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20461088A JPH0254918A (en) 1988-08-19 1988-08-19 Electrolytic solution for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0254918A true JPH0254918A (en) 1990-02-23

Family

ID=16493321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20461088A Pending JPH0254918A (en) 1988-08-19 1988-08-19 Electrolytic solution for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0254918A (en)

Similar Documents

Publication Publication Date Title
JPH036646B2 (en)
JPH0269916A (en) Electrolyte for electrolytic capacitor
JP2701874B2 (en) Electrolyte for electrolytic capacitors
JPH0254918A (en) Electrolytic solution for electrolytic capacitor
JP2701876B2 (en) Electrolyte for electrolytic capacitors
JP2701875B2 (en) Electrolyte for electrolytic capacitors
JP2692880B2 (en) Electrolyte for electrolytic capacitors
JPH0269918A (en) Electrolyte for electrolytic capacitor
JP2701886B2 (en) Electrolyte for electrolytic capacitors
JP2732404B2 (en) Electrolyte for electrolytic capacitors
JP2741609B2 (en) Electrolyte for electrolytic capacitors
JPH0269919A (en) Electrolyte for electrolytic capacitor
JP2732407B2 (en) Electrolyte for electrolytic capacitors
JP2774525B2 (en) Electrolyte for electrolytic capacitors
JP2732406B2 (en) Electrolyte for electrolytic capacitors
JPH0269913A (en) Electrolyte for electrolytic capacitor
JP2815875B2 (en) Electrolyte for electrolytic capacitors
JPH0254512A (en) Electrolytic solution for electrolytic capacitor
JPH0291911A (en) Electrolyte for electrolytic capacitor
JPH02181411A (en) Electrolyte for electrolytic capacitor
JPH0254515A (en) Electrolyte solution for electrolytic capacitor
JPH0291910A (en) Electrolyte for electrolytic capacitor
JPS63219116A (en) Electrolytic capacitor electrolyte
JPH0269914A (en) Electrolyte for electrolytic capacitor
JPH02163920A (en) Electrolytic solution for electrolytic capacitor use