JPH0254883B2 - - Google Patents

Info

Publication number
JPH0254883B2
JPH0254883B2 JP59008934A JP893484A JPH0254883B2 JP H0254883 B2 JPH0254883 B2 JP H0254883B2 JP 59008934 A JP59008934 A JP 59008934A JP 893484 A JP893484 A JP 893484A JP H0254883 B2 JPH0254883 B2 JP H0254883B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic scale
components
signal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59008934A
Other languages
Japanese (ja)
Other versions
JPS6035215A (en
Inventor
Akyoshi Narimatsu
Hiroyuki Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Magnescale Inc
Original Assignee
Sony Magnescale Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Magnescale Inc filed Critical Sony Magnescale Inc
Priority to JP893484A priority Critical patent/JPS6035215A/en
Publication of JPS6035215A publication Critical patent/JPS6035215A/en
Publication of JPH0254883B2 publication Critical patent/JPH0254883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Description

【発明の詳細な説明】 本発明は強磁性金属磁気抵抗薄膜で形成される
磁気スケール信号検出装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in magnetic scale signal detection devices formed from ferromagnetic metal magnetoresistive thin films.

従来の磁気スケール信号検出装置には、例えば
特開昭50−81117号公報及び米国特許第3949345号
公報等で公知の如く、強磁性金属磁気抵抗薄膜の
分割型磁電変換素子から成るものがある。これは
素子の各構成要素を磁気スケールの各磁気目盛
(磁気格子)に対応するように配設することを基
本とするものであるが、実用化の見地からみて下
記の問題点がある。
Some conventional magnetic scale signal detection devices are made of a segmented magnetoelectric transducer made of a ferromagnetic metal magnetoresistive thin film, as is known, for example, from Japanese Patent Application Laid-Open No. 50-81117 and US Pat. No. 3,949,345. This is based on arranging each component of the element so as to correspond to each magnetic graduation (magnetic grating) of a magnetic scale, but from the standpoint of practical use, there are the following problems.

(イ) 磁気目盛の大きさが磁電変換素子の寸法に制
約されるため短波長の磁気スケールを作ること
ができず、波長λ>1mmに限定される。磁気ス
ケールの分解能(読取り単位)を細かくするに
は内挿度を高めなければならないので、位相変
調検出方式の採用を必要とし、安価な検出回路
を実現し難い。
(a) Since the size of the magnetic scale is limited by the dimensions of the magnetoelectric conversion element, it is not possible to create a magnetic scale with a short wavelength, and the wavelength is limited to λ > 1 mm. In order to make the resolution (reading unit) of the magnetic scale finer, the degree of interpolation must be increased, which necessitates the adoption of a phase modulation detection method, making it difficult to realize an inexpensive detection circuit.

(ロ) 磁電変換素子の構成寸法Lは例えばλ=2
mm、構成要素数N=10として、L≧40mmと大き
くなるので高価になる。
(b) The structural dimension L of the magnetoelectric conversion element is, for example, λ=2
mm, and the number of components N=10, L≧40 mm, which makes it large and expensive.

またこのような多要素構成のものに対して、第
1図に示す如き公知の単要素構成1のものもある
が、上述したものと同様に、実用化に際してスケ
ール2の磁気目盛ピツチが大きくなるので、内挿
度を高めなければならず、位相変調検出方式を採
用することになつて、検出回路が高価となるのは
避け難い。
Furthermore, in contrast to such a multi-element structure, there is also a known single-element structure 1 as shown in FIG. Therefore, it is necessary to increase the degree of interpolation, and if a phase modulation detection method is adopted, it is inevitable that the detection circuit will become expensive.

更に本発明の先願である特願昭52−114699号は
第2図に示すように磁気ヘツド3の各素片をスケ
ールの各磁気格子4のピツチλに対応して配置す
ることを提案している。
Furthermore, Japanese Patent Application No. 52-114699, which is the earlier application of the present invention, proposed that each element of the magnetic head 3 be arranged in correspondence with the pitch λ of each magnetic grating 4 of the scale, as shown in FIG. ing.

磁気格子4は非磁性材から成る基板41上に形
成された磁性薄膜42に所定ピツチλで記録され
ている。磁気ヘツド3は強磁性金属薄膜から成る
磁気抵抗素子で、一定のクリアランスΔを以つて
磁気格子4上に移動可能に保持される。強磁性金
属薄膜から成る磁気抵抗素子から成る従来の磁気
ヘツドが短波長(短い磁気格子ピツチ)の磁気ス
ケール信号磁界を検出できなかつた理由は上記素
子の構成要素を単位として磁気格子の位相に対応
させ、その面内磁場の方向変化に直接的に感応さ
せるようにした点にある。
The magnetic grating 4 is recorded at a predetermined pitch λ on a magnetic thin film 4 2 formed on a substrate 4 1 made of a non-magnetic material. The magnetic head 3 is a magnetoresistive element made of a ferromagnetic metal thin film, and is movably held on the magnetic grid 4 with a certain clearance Δ. The reason why conventional magnetic heads consisting of magnetoresistive elements made of thin ferromagnetic metal films could not detect magnetic scale signal magnetic fields of short wavelengths (short magnetic lattice pitches) is because the constituent elements of the above elements correspond to the phase of the magnetic lattice as units. The point is that it is made to directly respond to changes in the direction of the in-plane magnetic field.

そこで第2図の例では磁気スケール信号の検出
感度を高めて磁気格子4のピツチを小さくし、検
出信号の内挿を少なくし得るようにするために、
図示の如く前記磁気抵抗素子3の各構成要素を形
成する磁気抵抗路31が磁気格子4の各位相に対
応してじぐざぐに配置されるように構成する。た
だし磁気格子4のピツチが小さくなると、該磁気
格子からの漏洩磁界の広がりも激減し、磁気抵抗
素子3の構成要素を飽和し得なくなり、そのまま
では磁気ヒステリシスの生起が問題となる。そこ
で各磁気抵抗路31に対して図示のように高透磁
性薄膜から成る磁路部材32を配設し、各磁気格
子との間で閉磁路を形成するようにしてある。こ
のように構成すると磁路部材32が磁気格子4か
らの漏洩磁束を誘導することにより磁気抵抗素子
3を充分な飽和磁界に置くことができる。
Therefore, in the example shown in FIG. 2, in order to increase the detection sensitivity of the magnetic scale signal, reduce the pitch of the magnetic grating 4, and reduce the interpolation of the detection signal,
As shown in the figure, the magnetoresistive paths 31 forming each component of the magnetoresistive element 3 are arranged in a zigzag pattern corresponding to each phase of the magnetic grating 4. However, as the pitch of the magnetic grating 4 becomes smaller, the spread of the leakage magnetic field from the magnetic grating is also drastically reduced, making it impossible to saturate the components of the magnetoresistive element 3, and if left as is, the occurrence of magnetic hysteresis becomes a problem. Therefore, as shown in the figure, a magnetic path member 3 2 made of a highly permeable thin film is provided for each magnetoresistive path 3 1 to form a closed magnetic path with each magnetic lattice. With this configuration, the magnetic path member 3 2 induces leakage magnetic flux from the magnetic grating 4, so that the magnetoresistive element 3 can be placed in a sufficient saturation magnetic field.

これに対し実用性の点で更に改善した本発明の
先願である特願昭52−119468号は第3図に示すよ
うに磁気ヘツド5の各素片を磁気格子6のピツチ
λに対応させて配列することを提案している。
In contrast, in Japanese Patent Application No. 52-119468, which is the earlier application of the present invention, which has further improved practicality, each element of the magnetic head 5 is made to correspond to the pitch λ of the magnetic grating 6, as shown in FIG. It is proposed to arrange the

磁気ヘツド5は同図に示すように磁気抵抗素子
で形成された磁気抵抗路51,52が前記磁気格子
の位相に対応してぢぐざぐにかつ適当な角度θ′を
以つて斜めに配設されている。そして磁気抵抗路
の各構成要素は磁気格子の波長λに対し、互いに
λ/2の位相差を有するように設けられており、
各磁気抵抗路の一端は電流端子a,cに、また他
端は中点出力端子bに接続された3端子分割型構
成をとつている。
As shown in the figure, the magnetic head 5 has magnetoresistive paths 5 1 and 5 2 formed by magnetoresistive elements arranged diagonally and diagonally at an appropriate angle θ' in correspondence with the phase of the magnetic grating. It is set up. Each component of the magnetoresistive path is provided so as to have a phase difference of λ/2 with respect to the wavelength λ of the magnetic grating,
One end of each magnetic resistance path is connected to current terminals a and c, and the other end is connected to a midpoint output terminal b, forming a three-terminal split type configuration.

この磁気ヘツド5には信号磁界HSと略直交方
向にバイアス磁界HBが印加される。
A bias magnetic field H B is applied to the magnetic head 5 in a direction substantially perpendicular to the signal magnetic field H S .

而して磁気ヘツド5の面磁場H〓は信号磁場H〓S
とバイアス磁場H〓Bで決まる合成磁場となり、H〓S
とH〓Bの大きさによつてその強さHと方向θが決
定される。従つて前記磁気抵抗路の斜角θはθ′≒
90゜−θと設計されることが望ましい。
Therefore, the plane magnetic field H〓 of the magnetic head 5 is the signal magnetic field H〓 S
The resultant magnetic field is determined by the bias magnetic field H〓 B , and H〓 S
and H〓 The strength H and direction θ are determined by the magnitude of B. Therefore, the oblique angle θ of the magnetoresistive path is θ′≒
It is desirable to design the angle to be 90°-θ.

一般の強磁性金属ではこれに流れる電流方向と
これに作用する磁場方向とが平行になつた時、抵
抗値最大であり、直交した時、抵抗値最小とな
る。従つて前記磁気抵抗路は図示の配置において
端子a,b間では抵抗値最大、逆に端子c,b間
では抵抗値最小となる。更に図示の磁気格子に対
して磁気ヘツドの位置をλ/2変位させると、前
記端子間抵抗は上述とは逆の関係になる。
In general ferromagnetic metals, the resistance is at its maximum when the direction of the current flowing through it and the direction of the magnetic field acting on it are parallel, and the resistance is at its minimum when they are perpendicular to each other. Therefore, in the illustrated arrangement, the magnetic resistance path has a maximum resistance value between terminals a and b, and a minimum resistance value between terminals c and b. Furthermore, if the position of the magnetic head is displaced by λ/2 with respect to the illustrated magnetic grid, the resistance between the terminals will have a relationship opposite to that described above.

かくして端子a,c間に駆動電圧を印加する
と、磁気ヘツド5は磁気格子6との相対的変位X
に応じた出力を発生する。
Thus, when a driving voltage is applied between terminals a and c, the magnetic head 5 undergoes a relative displacement X with respect to the magnetic grating 6.
Generates output according to.

而して上述の場合、磁気ヘツドの各素片は磁気
格子に対して所定角度で傾斜させる構成をとつて
いる。しかしこの構成によると、各素片が磁気格
子のλ/2の位相に亘つて分布するため磁気抵抗
効果がかなり相殺されるものと考えられ、検出信
号出力の効率の点で問題がある。
In the above case, each piece of the magnetic head is configured to be inclined at a predetermined angle with respect to the magnetic grid. However, according to this configuration, since each element is distributed over the phase of λ/2 of the magnetic grating, the magnetoresistive effect is considered to be canceled out considerably, and there is a problem in terms of the efficiency of outputting the detection signal.

本発明は上述した従来技術の問題点を改良すべ
くなされたもので、短波長の磁気スケールを形成
でき、かつ簡易な検出回路の適用を可能ならしめ
て、安価なデイジタルスケールの実現に寄与する
ため磁気スケール信号検出装置を提供することを
目的とする。
The present invention has been made in order to improve the above-mentioned problems of the prior art, and to contribute to the realization of an inexpensive digital scale by making it possible to form a magnetic scale with a short wavelength and by making it possible to apply a simple detection circuit. An object of the present invention is to provide a magnetic scale signal detection device.

このように比較的短い波長の磁気スケール信号
を検出するために、本発明装置は下記のような構
成の磁気スケール信号検出素子を使用する。
In order to detect magnetic scale signals having relatively short wavelengths, the apparatus of the present invention uses a magnetic scale signal detection element having the following configuration.

(イ) 磁気格子の固有波長に対応して、磁気抵抗の
異方性効果を有する強磁性体から成る検出素子
の各素片を並列的に配設する。
(a) Each element of the detection element made of a ferromagnetic material having an anisotropic effect of magnetoresistance is arranged in parallel in accordance with the characteristic wavelength of the magnetic grating.

(ロ) 上記素片を連結する電流路を設ける。一般
に、この電流路は素片と同一の磁性薄膜で形成
するが、その磁気抵抗効果の影響を軽減するた
めに、素片に対応して幅広く設計することによ
り磁気抵抗値を下げるのが効果的である。
(b) Provide a current path that connects the above-mentioned pieces. Generally, this current path is formed of the same magnetic thin film as the elemental piece, but in order to reduce the influence of the magnetoresistive effect, it is effective to lower the magnetic resistance value by designing a wide range that corresponds to the elemental piece. It is.

(ハ) 上記素片群から成る2個の構成要素を所定の
間隔{素子構成の必要に応じてnλ/2,(n/2+ 1/2)λ,(n/2+1/4)λのいずれかを選定す る。nは整数}を離して配列し、電流路で直列
的に接続し、その接続点に出力端子を形成す
る。
(c) Two components consisting of the above elemental piece group are spaced at a predetermined distance {nλ/2, (n/2+1/2)λ, or (n/2+1/4)λ depending on the necessity of the element configuration. Select one. n is an integer} and are arranged with a distance between them, connected in series through a current path, and an output terminal is formed at the connection point.

(ニ) 方向弁別及び内挿を目的とした2相出力を得
るために、上記検出素子を2個所定の間隔(例
えば(m/2+1/8)λ,(m/2+1/4)λなど
、但 しmは整数}をもつて配設する。
(d) In order to obtain a two-phase output for the purpose of direction discrimination and interpolation, the two detection elements are arranged at a predetermined interval (for example, (m/2+1/8)λ, (m/2+1/4)λ, etc.). However, m is an integer}.

(ホ) 素片方向もしくは素片と所定の角度(実用上
主として45゜)を成す方向にバイアス磁場HB
印加する。このバイアス磁場は前記検出素子の
ヒステリシス電圧が無視できる程度の強さ、例
えば150Oe以上に設定する。
(E) A bias magnetic field H B is applied in the direction of the elemental piece or in a direction forming a predetermined angle (mainly 45° in practice) with the elemental piece. This bias magnetic field is set to such a strength that the hysteresis voltage of the detection element can be ignored, for example, 150 O e or more.

これにより素片の磁化ヒステリシスの影響が
回避され、出力振幅のばらつきを低減できる。
This avoids the influence of magnetization hysteresis of the elemental pieces, and reduces variations in output amplitude.

(ヘ) 前記検出素子は信号磁場が強い所で動作させ
る必要上から磁気格子面と面対向させる。
(F) The detection element is arranged to face the magnetic lattice plane in view of the need to operate in a place where the signal magnetic field is strong.

(ト) 基板上に磁気抵抗の異方性効果を有する強磁
性体薄膜により前記検出素子を形成する場合、
所定厚さの保護膜(又は保護板)を被覆し、磁
気格子面と面対向させる。一般に磁気スケール
と検出素子間のクリアランスは50μ以下程度な
ので、このような構成は有効である。
(g) When the detection element is formed of a ferromagnetic thin film having an anisotropic effect of magnetoresistance on the substrate,
A protective film (or protective plate) of a predetermined thickness is coated to face the magnetic lattice surface. Generally, the clearance between the magnetic scale and the detection element is about 50μ or less, so such a configuration is effective.

(チ) このような磁気抵抗薄膜素子と磁気格子とを
面対向させる構成は磁気格子を高密度化するの
に極めて有効であり、その具体化に当つては磁
気抵抗薄膜素子と磁気格子面との面間隔を狭め
るため、磁気抵抗薄膜素子のリード線取付部は
磁気格子の外側に配設すると好適である。
(H) This configuration in which the magnetoresistive thin film element and the magnetic lattice face each other is extremely effective for increasing the density of the magnetic lattice. In order to reduce the interplanar spacing, it is preferable that the lead wire attachment portion of the magnetoresistive thin film element be disposed outside the magnetic grid.

また前記(ハ)及び(ホ)の項に関し、更に詳述する
と、例えば、第20図に示す如く平行な2個の
素片A1,A2をλ/4隔てて配置し、素片に平行
なバイアス磁界HBをかけ各々の磁気抵抗をR1
R2とすれば、 R1=ρ⊥sin2θ(x)+ρcos2θ(x) (1) R2=ρ⊥sin2θ(x+λ/4) +ρcos2θ(x+λ/4) (2) 素片A1,A2の両端子a,cに一定電圧V0を印
加する時、その共通端子bにおける電圧変動V
(x)とすれば、 V(x)=V0(R1−R2)/(R2+R1)で、これがヘツド
からの出 力であるから、上記R1,R2として上記(1)及び(2)
式を代入すれば下式が得られる。
Regarding the above items (c) and (e), to explain in more detail, for example, as shown in FIG. 20, two parallel pieces A 1 and A 2 are arranged λ/4 apart, and A parallel bias magnetic field H B is applied to reduce each magnetic resistance to R 1 ,
If R 2 , then R 1 = ρ⊥sin 2 θ(x) + ρcos 2 θ(x) (1) R 2 = ρ⊥sin 2 θ(x+λ/4) +ρcos 2 θ(x+λ/4) (2) When a constant voltage V 0 is applied to both terminals a and c of elemental pieces A 1 and A 2 , the voltage fluctuation V at the common terminal b
(x), then V(x) = V 0 (R 1 - R 2 )/(R 2 + R 1 ), and this is the output from the head, so as R 1 and R 2 above, (1) and (2)
By substituting the formula, the following formula can be obtained.

V(x)=−△ρr2V0/2(ρ+ρ0r2)cos4π/λ
x ×{1+ρ⊥r4/4(ρ+ρ0r2)sin24π/λx}
-1(3) 但し2ρ0=ρ+ρ⊥,△ρ=ρ−ρ⊥,r=
s/Bで、ρ,ρ⊥は素片の固有磁気抵抗、Bは
バイアス磁界HBの絶対値、sは磁気スケールに
関する定数である。
V(x)=-△ρr 2 V 0 /2 (ρ+ρ 0 r 2 )cos4π/λ
x × {1+ρ⊥r 4 /4 (ρ+ρ 0 r 2 ) sin 2 4π/λx}
-1 (3) However, 2ρ 0 = ρ + ρ⊥, △ρ = ρ−ρ⊥, r =
In s/B, ρ and ρ⊥ are the intrinsic magnetic resistance of the elemental piece, B is the absolute value of the bias magnetic field H B , and s is a constant related to the magnetic scale.

次に第20図に示す如く素片A1,A2の間隔
がλ/2で、素片に対し45゜の方向にバイアス磁
界HBをかけた場合、A1,A2の磁気抵抗R1,R2は R1=ρ⊥sin2θ(x)+ρcos2θ(x) (4) R2=ρ⊥sin2θ(x+λ/2) +ρcos2θ(x+λ/2) (5) で、電圧変動V(x)は V(x)=V0R1−R2/R1+R2のR1,R2として上記(4)及
び (5)式を代入すれば下記のようになる。
Next, as shown in Fig. 20, when the spacing between the pieces A 1 and A 2 is λ/2 and a bias magnetic field H B is applied to the pieces in a 45° direction, the magnetic resistance R of A 1 and A 2 1 , R 2 is R 1 = ρ⊥sin 2 θ(x) + ρcos 2 θ(x) (4) R 2 = ρ⊥sin 2 θ(x+λ/2) + ρcos 2 θ(x+λ/2) (5) , the voltage fluctuation V(x) becomes as follows by substituting the above equations (4) and ( 5 ) as R 1 and R 2 of V(x) = V 0 R 1 − R 2 / R 1 + R 2 .

V(x)=△ρV0/2ρ0sin2π/λx×(1
+△ρr2/4ρ0sin22π/λx+ρ⊥r2/4ρ0sin42π/
λx)-1(6) 上記(3)及び(6)式から明らかな如く、前記(ハ)及び
(ホ)の方式による素片A1,A2から得られる出力V
(x)は夫々波長λ/2,λの周期関数であり、
特に(3)式は同一波長のスケールを用いながら、周
期としては半波長と等価の出力が得られることを
示しており、実用上極めて有効であるのが分か
る。
V(x)=△ρV 0 /2ρ 0 sin2π/λx×(1
+△ρr 2 /4ρ 0 sin 2 2π/λx+ρ⊥r 2 /4ρ 0 sin 4 2π/
λx) -1 (6) As is clear from the above equations (3) and (6), the above (c) and
Output V obtained from elemental pieces A 1 and A 2 by method (e)
(x) are periodic functions of wavelength λ/2 and λ, respectively,
In particular, equation (3) shows that an output equivalent to a half wavelength can be obtained while using the same wavelength scale, and is found to be extremely effective in practice.

以下上述した構成に従つた図面に示す本発明装
置の各実施例を説明する。
Embodiments of the apparatus of the present invention shown in the drawings according to the above-described configuration will be described below.

第4図は素片7,7′の間隔をλ/2に形成した検 出素子8,8′から成る本発明装置の実施例で、
これら検出素子8,8′は磁気スケールの磁気格
子面9と面対向せしめられ、素片方向にバイアス
磁場HBを与えてある。なおa,a′,c,c′は電流
端子、b,b′は出力端子、10,10′は電流路
である。
FIG. 4 shows an embodiment of the device of the present invention comprising detection elements 8, 8' in which the spacing between the pieces 7, 7' is λ/2.
These detection elements 8, 8' are placed face to face with the magnetic lattice surface 9 of the magnetic scale, and a bias magnetic field H B is applied in the direction of the element. Note that a, a', c, c' are current terminals, b, b' are output terminals, and 10, 10' are current paths.

また上記各素片を電流路10,10′で直接に
接続した2つの構成要素は図示の如く(n/2+ 1/4)λの間隔を離して配列されている。
Further, the two components in which the above-mentioned pieces are directly connected by current paths 10 and 10' are arranged at an interval of (n/2+1/4)λ as shown in the figure.

このような素子構成では磁気スケールの波長λ
に対して倍周波出力が得られるので、相差90゜の
2相出力を得るには図示の如く2つの検出素子
8,8′を(m/2+1/8)λの間隔で配置すればよ い。
In such an element configuration, the wavelength λ of the magnetic scale
Therefore, in order to obtain a two-phase output with a phase difference of 90°, two detection elements 8 and 8' may be arranged at an interval of (m/2+1/8)λ as shown in the figure.

本装置は前記(3)式から明らかな如く、バイアス
磁場HBの絶対値Bの2乗分の1に関連している
ので、バイアス磁場HBに対比して磁気スケール
の信号磁場が充分に大きい場合に有効である。
As is clear from equation (3) above, this device is related to the bias magnetic field H B divided by the square of the absolute value B, so the signal magnetic field of the magnetic scale is sufficiently large compared to the bias magnetic field H B. This is effective when the value is large.

第5図の実施例は素片間隔をλとして配列し、
素片7,7′に対して略45゜の方向にバイアス磁場
HBを与えている。そして検出素子8,8′の2個
の構成要素11と11′及び12と12′は90゜(=
λ/4)の位相差を成す配置で、そしてこれら要素 11と12及び11′と12′は180゜(=λ/2)の
位 相差を成す配置で出力端子b,b′に接続すること
により(6)式から明らかなようにλの周期の検出信
号出力が得られる。また、本実施例のように素片
に対し45゜方向にバイアス磁場HBを印加すると、
磁気スケールよりの磁気信号が無い場合、上記信
号出力は、例えば第15図aに示す零電位状態に
ある。即ち、この零電位はバイアス磁場により決
定され、磁気スケールよりの磁気信号には影響さ
れない。従つて零電位の安定性がよく、高精度な
検出が可能となる。
In the embodiment shown in FIG. 5, the elemental pieces are arranged with the interval λ,
A bias magnetic field is applied in a direction approximately 45° to the elements 7 and 7'.
It gives H B. The two components 11 and 11' and 12 and 12' of the detection elements 8 and 8' are at an angle of 90° (=
These elements 11 and 12 and 11' and 12' should be connected to output terminals b and b' in an arrangement that has a phase difference of 180° (=λ/2). As is clear from equation (6), a detection signal output with a period of λ can be obtained. In addition, if a bias magnetic field H B is applied to the elemental piece in the 45° direction as in this example,
In the absence of a magnetic signal from the magnetic scale, the signal output is in a zero potential state, for example as shown in FIG. 15a. That is, this zero potential is determined by the bias magnetic field and is not affected by the magnetic signal from the magnetic scale. Therefore, the stability of the zero potential is good, and highly accurate detection is possible.

このような素子構成では磁気スケールの波長周
波と同じ周波数出力が得られるので、相差90゜の
2相出力を得るには2つの検出素子8,8′を
(m/2+1/4)λの間隔(図示の場合はm=0)で 配置すればよい。
With such an element configuration, the same frequency output as the wavelength frequency of the magnetic scale can be obtained, so in order to obtain a two-phase output with a phase difference of 90°, the two detection elements 8 and 8' should be spaced at a distance of (m/2+1/4)λ. (In the illustrated case, m=0).

本装置においては、特に磁気スケールの信号磁
場が零の位置で、検出素子の各要素抵抗が略等し
くなるように形成しておくと、後述する零交差検
出位置が安定的に決定しうる。
In this device, if the resistance of each element of the detection element is formed to be approximately equal especially at the position where the signal magnetic field of the magnetic scale is zero, the zero crossing detection position described later can be stably determined.

第6図の実施例は第5図の変形例で、検出素子
8,8′の各構成要素11,11′,12,12′
に与える45゜方向のバイアス磁場を互いに逆向き
(HB−HB)にして、磁気スケールの位相に対し
てλ/2の位相差を設けたことを等価になるように している。
The embodiment shown in FIG. 6 is a modification of the one shown in FIG.
The bias magnetic fields applied in the 45° direction are set in opposite directions (H B −H B ), so that it is equivalent to providing a phase difference of λ/2 with respect to the phase of the magnetic scale.

第7図の実施例は磁気スケールを2トラツク構
成13,13′とし、2相出力を得るのにこれら
トラツク間に所定の相差{(m/2+1/4)λ又はバ イアス磁場HBとなす角θ=45゜では(m/2+1/2) λ}を設けたもので、2つの検出素子8,8′は
同相に配列されている。
In the embodiment shown in FIG. 7, the magnetic scale has a two-track configuration 13, 13', and in order to obtain a two-phase output, a predetermined phase difference between these tracks {(m/2+1/4)λ or the angle formed with the bias magnetic field H B is applied. When θ=45°, (m/2+1/2) λ} is provided, and the two detection elements 8 and 8' are arranged in the same phase.

なお本実施例の動作は第5図と同様である。 Note that the operation of this embodiment is similar to that shown in FIG.

第8図の実施例は素子構成上で次の2点におい
て独自な着想が施されている。
The embodiment shown in FIG. 8 has unique ideas in the following two points regarding the element configuration.

その1つは磁気格子14を角度傾斜させて磁
気スケールを形成している点で、磁気スケールの
幅寸法に対比して磁気格子14のトラツク幅を大
きくできる特徴がある。従つて検出素子8,8′
を構成する各素片も角度を以つて配列させる。
One of the features is that the magnetic scale is formed by tilting the magnetic grating 14, and the track width of the magnetic grating 14 can be made larger than the width of the magnetic scale. Therefore, the detection elements 8, 8'
Each elemental piece constituting the is also arranged at an angle.

他の1つは2相出力を得るため、素片7と7′
とは(m/2+1/4)λの間隔を以つて交互に配設さ れ、素片7の素片間及び素片7′の素片間は磁気
格子ピツチの整数倍の間隔で配列させて構成する
ことを特徴としている。勿論、上述の2つの特徴
点の何れか一方に従つて検出素子を構成してもよ
い。
The other one has elements 7 and 7' to obtain two-phase output.
The elements are arranged alternately at intervals of (m/2+1/4)λ, and the elements of element 7 and the elements of element 7' are arranged at intervals that are an integral multiple of the magnetic lattice pitch. It is characterized by configuring. Of course, the detection element may be configured according to either of the two feature points described above.

第8図の実施例で、θ=0とすれば第4図の実
施例、またθ==45゜とすれば第5図の実施例
と夫々同様な検出機能を示す。
The embodiment shown in FIG. 8 exhibits the same detection function as the embodiment shown in FIG. 4 if θ=0, and the same detection function as the embodiment shown in FIG. 5 if θ=45°.

また第6図〜第8図の実施例では磁気抵抗薄膜
素子のリード線取付部a〜c′が磁気格子の両外側
に配設されており、前記(チ)の構成が具体化されて
いる。
Furthermore, in the embodiments shown in FIGS. 6 to 8, the lead wire attachment parts a to c' of the magnetoresistive thin film element are arranged on both sides of the magnetic grating, and the above-mentioned configuration (H) is embodied. .

第9図の実施例は検出素子8,8′を構成する
素片7,7′をジグザグ状に配列している。但し
短波長の磁気スケール信号を読み取ることを目的
とする検出素子では、通常図示の如く2〜4本位
のジグザグ数が適当である。
In the embodiment shown in FIG. 9, the pieces 7 and 7' forming the detection elements 8 and 8' are arranged in a zigzag pattern. However, for a detection element whose purpose is to read short-wavelength magnetic scale signals, a zigzag number of 2 to 4 as shown in the figure is usually appropriate.

なお上述の各実施例は検出装置と磁気スケール
間の相対的運動の方向弁別と検出信号の内挿とを
目的として2相出力を得る場合についての素子構
成を例示した。内挿度を高めるために更に多相の
出力を得ようとする場合にも本発明装置の検出素
子構成を適用できることは言うまでもない。
In each of the embodiments described above, the element configuration is exemplified for the case where two-phase output is obtained for the purpose of determining the direction of relative motion between the detection device and the magnetic scale and interpolating the detection signal. It goes without saying that the detection element configuration of the apparatus of the present invention can also be applied to the case where a multiphase output is to be obtained in order to increase the degree of interpolation.

例えば60゜の相差で3相出力を得ると、1/12内
挿が容易にできることは特公昭48−2258号公報に
開示されているように公知である。このような出
力を得るには第10図に示すように3個の検出素
子8,8′及び8″を相差(m/2+1/6)λで配置
す ればよい。但し同図の実施例ではm=0である。
For example, it is known that when three-phase outputs are obtained with a phase difference of 60 degrees, 1/12 interpolation can be easily performed, as disclosed in Japanese Patent Publication No. 48-2258. To obtain such an output, three detection elements 8, 8' and 8'' may be arranged with a phase difference of (m/2+1/6)λ as shown in FIG. 10. However, in the embodiment shown in the figure, m=0.

次に第4図乃至第10図に示した各実施例では
磁気スケールとして横磁界(長手方向)記録の磁
気格子から成るものを使用するとした。
Next, in each of the embodiments shown in FIGS. 4 to 10, a magnetic scale composed of a magnetic grating for transverse magnetic field (longitudinal direction) recording is used.

しかし第11図に示すように縦磁界記録の磁気
格子15から成る磁気スケールを使用しても、そ
の面磁界は検出素子を駆動するのに有効な信号磁
界成分HSが含まれているので、本発明の検出素
子を適用することができる。第11図の実施例で
は後述する磁気スケール信号検出法との関連で1/
16内挿法に好適な4素子構成8〜8″をとつてい
る。
However, as shown in FIG. 11, even if a magnetic scale consisting of a magnetic grating 15 for longitudinal magnetic field recording is used, the planar magnetic field includes a signal magnetic field component H S that is effective for driving the detection element. The detection element of the present invention can be applied. In the embodiment shown in Fig. 11, 1/
A four-element configuration of 8 to 8'' suitable for the 16 interpolation method is adopted.

また本発明の素子構成は回転型磁気スケールに
対しても適用することができる。例えば第12図
に略示するように回転型磁気スケール16の回転
中心に対して等角度に配置される磁気格子17の
位相に対応させて、前述した本発明の構成による
検出素子8,8′を配設し、所定角度θのバイア
ス磁界HBを与えることにより、回転角に応じた
磁気スケール信号を検出することができる。
Furthermore, the element configuration of the present invention can also be applied to a rotating magnetic scale. For example, as schematically shown in FIG. 12, the detection elements 8, 8' according to the configuration of the present invention described above are arranged in accordance with the phase of the magnetic grating 17 arranged equiangularly with respect to the rotation center of the rotary magnetic scale 16. By providing a bias magnetic field H B at a predetermined angle θ, it is possible to detect a magnetic scale signal according to the rotation angle.

更に第11図及び第12図の実施例においても
磁気抵抗薄膜素子のリード線取付部a〜c′は磁気
格子の外側に配設されている。
Further, in the embodiments shown in FIGS. 11 and 12 as well, the lead wire attachment portions a to c' of the magnetoresistive thin film element are arranged outside the magnetic grid.

さて本発明装置によつて得られた検出信号をゼ
ロクロス検出方式で処理し、所定のパルス列信号
を得るに当つては、以下に構成的に3つに分類し
た内挿弁別方法を採りうる。
Now, in order to obtain a predetermined pulse train signal by processing the detection signal obtained by the apparatus of the present invention using the zero-cross detection method, it is possible to employ interpolation discrimination methods classified into the following three types.

(a) 検出信号出力を互いに加減算して多相信号を
得て内挿を高める方法。
(a) A method of adding and subtracting the detection signal outputs to each other to obtain a polyphase signal to improve interpolation.

(b) 検出素子を多相に構成し、直接的に多相信号
を得て内挿を高める方法。
(b) A method of increasing interpolation by configuring the detection element to be multiphase and directly obtaining multiphase signals.

(c) (a)と(b)の方法の組合せで多相信号を得て内挿
を高める方法。
(c) A method to improve interpolation by obtaining polyphase signals by combining methods (a) and (b).

(1) まず1/8内挿法について説明するが、この場
合検出信号としては正弦波、三角波又はこれと
類似の波形の検出信号であれば、以下の内挿弁
別法を適用できる。
(1) First, the 1/8 interpolation method will be explained. In this case, if the detection signal is a sine wave, a triangular wave, or a detection signal with a similar waveform, the following interpolation discrimination method can be applied.

(a) 検出素子からの検出信号が磁気格子と同じ
波長周波数の場合(第5図の実施例参照)に
ついて考えると、第13図aに示すように相
差90゜の2つの検出信号出力A,Bが得られ
る。なお説明を簡単にするため出力A,Bの
波形は三角波で示した。
(a) Considering the case where the detection signal from the detection element has the same wavelength frequency as that of the magnetic grating (see the embodiment in Fig. 5), two detection signal outputs A and 90 degrees apart, as shown in Fig. 13a, are generated. B is obtained. Note that the waveforms of outputs A and B are shown as triangular waves to simplify the explanation.

この信号出力を第14図に示す如く加算器
18及び減算器19に与えて加減算して同図
bに示すように上記信号出力とは45゜の相差
を有し、かつ互いに90゜の相差を有する加減
算信号A+B,A−Bを作る。
This signal output is given to an adder 18 and a subtracter 19 as shown in FIG. 14 for addition and subtraction, and as shown in FIG. Addition/subtraction signals A+B and AB are created.

これら4つの信号出力は45゜の相差を伴な
つて現われることになり、これらをシユミツ
ト回路20を通すと、第13図c〜fの矩形
波信号となる。更にこの矩形波信号を微分回
路21に通すと、同図g〜jで示すような検
出方向によつて正負に反転するパルス列が得
られる。
These four signal outputs appear with a phase difference of 45 degrees, and when they are passed through the Schmitt circuit 20, they become rectangular wave signals shown in FIGS. 13c to 13f. Further, when this rectangular wave signal is passed through a differentiating circuit 21, a pulse train that is reversed in positive or negative depending on the detection direction as shown by g to j in the figure is obtained.

各シユミツト回路の2つの出力端子22に
は、互いに逆位相の出力が生ずる。この各出
力信号を微分回路の次段の各アンドゲート回
路23,24のゲート開閉信号を利用する
と、前記微分出力から、+x方向に移動する
場合には第13図kに示すパルス列信号を、
また−x方向に移動する場合には同図1に示
すパルス列信号を、各アンドゲート回路の出
力に得ることができる。
At the two output terminals 22 of each Schmitt circuit, outputs with mutually opposite phases are generated. When these output signals are used as the gate opening/closing signals of the AND gate circuits 23 and 24 at the next stage of the differentiating circuit, when moving in the +x direction from the differentiating output, the pulse train signal shown in FIG.
Further, when moving in the -x direction, the pulse train signal shown in FIG. 1 can be obtained as the output of each AND gate circuit.

従つて上記パルス列信号を可逆カウンタ2
5でカウントさせることにより移動量を検知
することができる。
Therefore, the above pulse train signal is transferred to the reversible counter 2.
The amount of movement can be detected by counting by 5.

上述した(a)項の方法に対し(b)項の方法によれば
下記のようになる。
In contrast to method (a) above, method (b) yields the following results.

(b) 前記した相差が45゜の4つの検出素子を用
いると、次の信号出力が得られる。
(b) Using the four detection elements described above with a phase difference of 45°, the following signal output can be obtained.

VA=Esin(nλ+θ) VB=Esin(nλ+θ−π/4) VC=Esin(nλ+θ−π/2) VD=Esin(nλ+θ−3π/4) この4つの信号出力の説明を簡単にするた
め三角波で示すと第15図aのA〜Dで表わ
され、これらをシユミツト回路に通すと同図
b〜eで示す矩形波信号となる。これは第1
3図の矩形波信号c〜fに対応するもので、
以後の処理は第13図及び14図で示した方
法をそのまま適用できる。
V A = Esin (nλ + θ) V B = Esin (nλ + θ - π/4) V C = Esin (nλ + θ - π/2) V D = Esin (nλ + θ - 3π/4) Briefly explain these four signal outputs. Therefore, when represented by triangular waves, they are represented by A to D in FIG. 15a, and when these are passed through a Schmitt circuit, they become rectangular wave signals shown by b to e in the same figure. This is the first
This corresponds to the rectangular wave signals c to f in Fig. 3,
For subsequent processing, the method shown in FIGS. 13 and 14 can be applied as is.

かくして得られた出力信号は磁気スケールに対
する検出素子の移動方向を弁別し、かつ磁気格子
の一波長を8分割したデイジタル信号となつてい
る。
The output signal thus obtained is a digital signal that discriminates the moving direction of the detection element with respect to the magnetic scale and that divides one wavelength of the magnetic grating into eight.

(2) 次に1/16内挿法について説明する。(2) Next, the 1/16 interpolation method will be explained.

(a) 第16図aに示す如く相差45゜の4つの信
号出力を得るべく検出素子を用意する。そし
てこれら信号出力を加減算して上記信号出力
とは22.5゜の相差があり、かつ互いに45゜の相
差を有する同図bに示す4つの加減算信号を
作る。このようにして相差22.5゜の8相信号
が得られるので、第16図c〜rに示すよう
に前述の信号処理と同様な信号処理を施して
磁気格子の一波長を16分割した同図s,Tに
示す内挿信号を得る。
(a) As shown in FIG. 16a, a detection element is prepared to obtain four signal outputs with a phase difference of 45°. Then, these signal outputs are added and subtracted to produce four addition/subtraction signals shown in FIG. In this way, 8-phase signals with a phase difference of 22.5° are obtained, and one wavelength of the magnetic grating is divided into 16 by performing signal processing similar to the signal processing described above, as shown in Fig. 16 c to r. , T are obtained.

(b) 8個の検出素子を所定の相差で配置して第
17図aに示す相差22.5゜の8相の検出信号
を直接得る。この内挿法によると検出素子数
が増えるが、内挿信号がゼロクロス点から読
み出されるために、磁気格子のピツチを精確
に形成しておくことにより、高精度の内挿が
実現でき、また加減算回路が不要なので、回
路構成も簡単化される。
(b) Eight detection elements are arranged with a predetermined phase difference to directly obtain eight-phase detection signals with a phase difference of 22.5° as shown in FIG. 17a. Although this interpolation method increases the number of detection elements, since the interpolation signal is read from the zero-crossing point, high-precision interpolation can be achieved by accurately forming the pitch of the magnetic grid. Since no circuit is required, the circuit configuration is also simplified.

第17図aの信号出力はシユミツト回路を
通すことにより同図b〜iに示す矩形波信号
となるが、これは第16図で示したものと同
一であり、前述と同様に同図j〜gに示すよ
うな信号処理を施して1/16の内挿信号(同図
r)が得られる。
The signal output in FIG. 17a becomes the rectangular wave signals shown in FIG. By performing signal processing as shown in g, a 1/16 interpolated signal (r in the figure) is obtained.

(c) 1/8内挿手段を2組使用して1/16内挿を構
成しうる。例えば第13図a,bに示す信号
出力を22.5゜の相差でシフトした状態のもう
1組の信号出力を得ることにより全体として
16分割した内挿信号を作る方法である。
(c) Two sets of 1/8 interpolation means can be used to construct 1/16 interpolation. For example, by obtaining another set of signal outputs in which the signal outputs shown in Figure 13a and b are shifted by a phase difference of 22.5°, the overall
This is a method to create an interpolated signal divided into 16 parts.

(A)信号 VA=E1sin(nλ+θ) (B)信号 VB=E1sin(nλ+θ−π/2) (A)+(B)信号 VA+B=E2sin(nλ+θ−π/4) (A)−(B)信号 VA-B=E2sin(nλ+θ+π/4) (C)信号 VC=E1sin(nλ+θ−π/8) (D)信号 VD=E1sin(nλ+θ−5π/8) (C)+(D)信号 VC+D=E2sin(nλ+θ−3π/8) (C)−(D)信号 VC-D=E2sin(nλ+θ+π/8) この内挿方法は前述の(a)項の内挿方法(第16
図)に比較して検出素子からの信号出力の相差、
従つて検出素子の配置間隔は異なるが、8相の信
号出力として見たときには等価と見なすことがで
きる。
(A) Signal V A = E 1 sin (nλ + θ) (B) Signal V B = E 1 sin (nλ + θ - π/2) (A) + (B) Signal V A + B = E 2 sin (nλ + θ - π /4) (A) - (B) Signal V AB = E 2 sin (nλ + θ + π/4) (C) Signal V C = E 1 sin (nλ + θ - π/8) (D) Signal V D = E 1 sin ( nλ+θ−5π/8) (C)+(D) signal V C+D =E 2 sin(nλ+θ−3π/8) (C)−(D) signal V CD =E 2 sin(nλ+θ+π/8) The interpolation method is the interpolation method in section (a) above (Section 16).
The phase difference in the signal output from the detection element compared to Fig.
Therefore, although the arrangement intervals of the detection elements are different, they can be regarded as equivalent when viewed as eight-phase signal outputs.

なお第18図a,bに実際の検出素子の回路構
成を例示する。同図に示すように駆動電源端子或
いは接地端子等を各素子毎に共通化することがで
きる。従つて検出素子8,8′の端子数を第19
図で略示するように薄膜形成上で削減することが
可能である。
Note that FIGS. 18a and 18b illustrate the circuit configuration of an actual detection element. As shown in the figure, a drive power supply terminal, a ground terminal, etc. can be made common to each element. Therefore, the number of terminals of the detection elements 8, 8' is set to 19th.
It is possible to reduce on thin film formation as schematically illustrated in the figure.

以上説明した所から明らかなように、本発明に
よれば短波長の磁気スケールを実現することがで
きるようになり、しかも簡易な検出回路の適用が
可能で、安価なデイジタルスケールを提供しう
る。
As is clear from the above description, according to the present invention, a short wavelength magnetic scale can be realized, and a simple detection circuit can be applied, and an inexpensive digital scale can be provided.

また特に本発明においては検出素子が磁気格子
に対し面対向に配置される構成で、バイアス磁界
を印加しているので分解能が向上し、出力歪みは
低減され、かつ出力振幅のむらが抑制されるばか
りでなく、リード線取付部が磁気格子面外にある
ので、かかる面対向でバイアス磁界を印加する構
造でも配線作業が容易となる。
In particular, in the present invention, the detection element is arranged in a plane facing the magnetic grating, and a bias magnetic field is applied, which improves resolution, reduces output distortion, and suppresses unevenness in output amplitude. However, since the lead wire attachment portion is located outside the magnetic lattice plane, wiring work is facilitated even in a structure in which a bias magnetic field is applied in such a plane facing the plane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は夫々従来の検出素子と磁気
スケールとの関係を示す図、第4図乃至第12図
は夫々本発明の各実施例の構成を示す概略図、第
13図a乃至lは1/8内挿法の1つの方法を説明
するための波形図、第14図は1/8内挿回路を示
すブロツク図、第15図a〜eは1/8内挿の他の
方法を説明するための波形図、第16図a〜Tは
1/16内挿の1つの方法を説明するための波形図、
第17図a〜rは1/16内挿の他の方法を説明する
ための波形図、第18図a,b及び第19図a,
bは実際の検出素子の回路構成例示する図、第2
0図は本発明の動作原理を説明するための図であ
る。 7,7′……素片、8,8′……検出素子、9…
…磁気格子面。
FIGS. 1 to 3 are diagrams showing the relationship between a conventional detection element and a magnetic scale, FIGS. 4 to 12 are schematic diagrams showing the configuration of each embodiment of the present invention, and FIGS. l is a waveform diagram to explain one method of 1/8 interpolation, Fig. 14 is a block diagram showing a 1/8 interpolation circuit, and Fig. 15 a to e are other methods of 1/8 interpolation. Waveform diagrams for explaining the method; FIGS. 16A to 16T are waveform diagrams for explaining one method of 1/16 interpolation;
Figures 17 a to r are waveform diagrams for explaining other methods of 1/16 interpolation, Figures 18 a, b, and 19 a,
b is a diagram illustrating an example of the circuit configuration of an actual detection element;
FIG. 0 is a diagram for explaining the operating principle of the present invention. 7, 7'... elemental piece, 8, 8'... detection element, 9...
...Magnetic lattice surface.

Claims (1)

【特許請求の範囲】 1 磁気スケール9の磁気格子のピツチλに対応
するnλ/2(nは0以外の整数)の距離を隔てて
磁気抵抗の異方性効果を有する複数の強磁性体素
片7,7′を略平行に配列し、該各素片を電流路
10,10′で直列に接続した2個の構成要素を
有し、夫々が略平行に配列された構成要素の一端
を直列に接続し、この構成要素の一端の接続部に
出力端子bを設けると共に、上記2個の構成要素
の他端に電流端子a,cを設け、夫々の構成要素
の面と、磁気格子面と面対向させて磁気スケール
信号を検出する装置において、上記2個の構成要
素は略(n/2+1/4)λの間隔(nは整数)を
離して配列して検出素子を構成し、かつ上記各素
片と略同一方向にバイアス磁場を印加し、上記検
出素子のリード線取付部を磁気格子面の外側に配
設したことを特徴とする磁気スケール信号検出装
置。 2 前記電流路を素片に対比して幅広く形成した
ことを特徴とする特許請求の範囲第1項記載の磁
気スケール信号検出装置。 3 磁気スケール9の磁気格子のピツチλに対応
するnλ(nは0以外の整数)の距離を隔てて磁気
抵抗の異方性効果を有する複数の強磁性体素片
7,7′を略平行に配列し、該各素片を電流路1
0,10′で直列に接続した2個の構成要素を有
し、夫々が略平行に配列された構成要素の一端を
直列に接続し、この構成要素の一端の接続部に出
力端子bを設けると共に、上記2個の構成要素の
他端に電流端子a,cを設け、夫々の構成要素の
面と、磁気格子面と面対向させて磁気スケール信
号を検出する装置において、上記2個の構成要素
は略(n+1/2)λの間隔(nは整数)を離して
配列して検出素子を構成し、かつ上記各素片と略
45゜方向にバイアス磁場を印加し、上記検出素子
のリード線取付部を磁気格子面の外側に配設した
ことを特徴とする磁気スケール信号検出装置。 4 2つの検出素子をλ/4の間隔をもつて配設
したことを特徴とする特許請求の範囲第3項記載
の磁気スケール信号検出装置。 5 前記素片を磁気スケールの長手方向と直交す
る方向に対し所定角度傾斜せしめると共に各素片
を磁気格子ピツチの整数倍の間隔で交互に配列し
たことを特徴とする特許請求の範囲第3項記載の
磁気スケール信号検出装置。 6 前記電流路を素片に対比して幅広く形成した
ことを特徴とする特許請求の範囲第3項記載の磁
気スケール信号検出装置。
[Claims] 1. A plurality of ferromagnetic elements having an anisotropic effect of magnetoresistance separated by a distance of nλ/2 (n is an integer other than 0) corresponding to the pitch λ of the magnetic grating of the magnetic scale 9. It has two components in which the pieces 7 and 7' are arranged substantially in parallel and each of the pieces is connected in series by a current path 10 and 10', each of which has one end of the component arranged in substantially parallel. These two components are connected in series, and an output terminal b is provided at the connection point at one end of the component, and current terminals a and c are provided at the other end of the two components, and the surface of each component and the magnetic lattice surface are connected. In a device for detecting a magnetic scale signal by facing each other face-to-face, the above two components are arranged at an interval of approximately (n/2+1/4)λ (n is an integer) to form a detection element, and A magnetic scale signal detection device, characterized in that a bias magnetic field is applied in substantially the same direction as each of the pieces, and a lead wire attachment portion of the detection element is disposed outside a magnetic lattice surface. 2. The magnetic scale signal detection device according to claim 1, wherein the current path is formed to be wider than the elemental piece. 3 A plurality of ferromagnetic pieces 7 and 7' having an anisotropic effect of magnetoresistance are arranged approximately parallel to each other at a distance of nλ (n is an integer other than 0) corresponding to the pitch λ of the magnetic grating of the magnetic scale 9. and each element is arranged in the current path 1.
It has two components connected in series at 0 and 10', one end of each of the components arranged substantially parallel is connected in series, and an output terminal b is provided at the connection point of one end of this component. In addition, in an apparatus for detecting a magnetic scale signal by providing current terminals a and c at the other ends of the two components and making the surfaces of the respective components and the magnetic lattice surface face each other, the two components described above. The elements are arranged at intervals of approximately (n+1/2)λ (n is an integer) to constitute a detection element, and each element is approximately
A magnetic scale signal detection device, characterized in that a bias magnetic field is applied in a 45° direction, and a lead wire attachment portion of the detection element is disposed outside a magnetic lattice plane. 4. The magnetic scale signal detection device according to claim 3, characterized in that two detection elements are arranged with an interval of λ/4. 5. Claim 3, characterized in that the elemental pieces are inclined at a predetermined angle with respect to a direction perpendicular to the longitudinal direction of the magnetic scale, and each elemental piece is arranged alternately at an interval that is an integral multiple of the magnetic lattice pitch. The magnetic scale signal detection device described. 6. The magnetic scale signal detection device according to claim 3, wherein the current path is formed to be wider than the elemental piece.
JP893484A 1984-01-20 1984-01-20 Magnetic-scale-signal detecting device Granted JPS6035215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP893484A JPS6035215A (en) 1984-01-20 1984-01-20 Magnetic-scale-signal detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP893484A JPS6035215A (en) 1984-01-20 1984-01-20 Magnetic-scale-signal detecting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13281078A Division JPS5559314A (en) 1978-10-27 1978-10-27 Magnetic scale signal detector

Publications (2)

Publication Number Publication Date
JPS6035215A JPS6035215A (en) 1985-02-23
JPH0254883B2 true JPH0254883B2 (en) 1990-11-22

Family

ID=11706493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP893484A Granted JPS6035215A (en) 1984-01-20 1984-01-20 Magnetic-scale-signal detecting device

Country Status (1)

Country Link
JP (1) JPS6035215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483032A (en) * 1990-07-24 1992-03-17 Inax Corp Fixing for closet
JPH0573083U (en) * 1992-03-17 1993-10-05 株式会社イナックス Western-style toilet installation structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110321U (en) * 1988-01-19 1989-07-25

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081117A (en) * 1973-11-17 1975-07-01
JPS5116970A (en) * 1974-07-31 1976-02-10 Sony Corp
JPS5293358A (en) * 1976-02-02 1977-08-05 Denki Onkyo Co Ltd Rotary motion detecting device
JPS52130614A (en) * 1976-04-26 1977-11-02 Nec Corp Magnetic head
JPS5369659A (en) * 1976-12-02 1978-06-21 Xerox Corp Induction transducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572891Y2 (en) * 1974-04-16 1982-01-19

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081117A (en) * 1973-11-17 1975-07-01
JPS5116970A (en) * 1974-07-31 1976-02-10 Sony Corp
JPS5293358A (en) * 1976-02-02 1977-08-05 Denki Onkyo Co Ltd Rotary motion detecting device
JPS52130614A (en) * 1976-04-26 1977-11-02 Nec Corp Magnetic head
JPS5369659A (en) * 1976-12-02 1978-06-21 Xerox Corp Induction transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483032A (en) * 1990-07-24 1992-03-17 Inax Corp Fixing for closet
JPH0573083U (en) * 1992-03-17 1993-10-05 株式会社イナックス Western-style toilet installation structure

Also Published As

Publication number Publication date
JPS6035215A (en) 1985-02-23

Similar Documents

Publication Publication Date Title
JPH0145008B2 (en)
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
JPS62204118A (en) Magnetically detecting device for position or speed
JPH0252807B2 (en)
JP3367230B2 (en) Position detection device
JPH0254883B2 (en)
JPH04282417A (en) Magnetic sensor
JPS6243483B2 (en)
JPH10206104A (en) Position detecting apparatus
JP2722605B2 (en) Magnetic encoder
JPH0448175B2 (en)
JPH0618279A (en) Detecting apparatus for position
JPS6153644B2 (en)
JPS5853722B2 (en) magnetic head
JPH0330089B2 (en)
JPH0440776B2 (en)
JP2619621B2 (en) Encoder device
JP4487252B2 (en) Magnetic position rotation detection element
JPH1151694A (en) Revolutions-sensor
JP2546233B2 (en) Origin detection unit of magnetic head for magnetic encoder
JPS6139592A (en) Magnetic encoder
JPH0584444B2 (en)
JPH10227805A (en) Rotation sensor
JPH0711429B2 (en) Encoder device
JPH01272912A (en) Magnetic encoder