JPH0254823B2 - - Google Patents

Info

Publication number
JPH0254823B2
JPH0254823B2 JP3429984A JP3429984A JPH0254823B2 JP H0254823 B2 JPH0254823 B2 JP H0254823B2 JP 3429984 A JP3429984 A JP 3429984A JP 3429984 A JP3429984 A JP 3429984A JP H0254823 B2 JPH0254823 B2 JP H0254823B2
Authority
JP
Japan
Prior art keywords
guanidinoheptanoyl
mmol
water
reduced pressure
under reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3429984A
Other languages
Japanese (ja)
Other versions
JPS60178853A (en
Inventor
Makoto Moriguchi
Yoshihisa Umeda
Katsushige Igai
Teruya Nakamura
Akio Fujii
Tomio Takeuchi
Hamao Umezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Shuzo Co Ltd
Nippon Kayaku Co Ltd
Original Assignee
Takara Shuzo Co Ltd
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co Ltd, Nippon Kayaku Co Ltd filed Critical Takara Shuzo Co Ltd
Priority to JP3429984A priority Critical patent/JPS60178853A/en
Publication of JPS60178853A publication Critical patent/JPS60178853A/en
Publication of JPH0254823B2 publication Critical patent/JPH0254823B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はスパガリン類縁化合物の合成前駆体と
して有用な新規化合物であるスパガリン関連ニト
リル化合物及びそれらの塩並びにそれらの製造法
に関する。 〔従来技術〕 スパガリンは本発明者らによつてバチルス属の
スパガリン生産菌の培養液より単離された化合
物であり、次の構造を有する。 スパガリンはグラム陽性菌及びグラム陰性菌に
対して発育阻止作用を示すと共に、マウス白血病
L−1210、マウス白血病FL−4、エールリツヒ
ガン及び肉腫180(S−180)に対する治療実験で
顕著な治療効果及び延命効果を示し、抗腫瘍剤と
して期待されている化合物である(特開昭57−
48957号参照)。上記スパガリンは合成によつて得
られることも公知である〔ザ ジヤーナル オブ
アンチバイオチクス(J.Antibiotics)、第34巻、
第1625頁(1981)参照〕。 また、本発明者らは、スパガリンの類縁化合物
を検索した結果、次の一般式: (式中pは3〜8の整数を示し、R3は水素原子、
水酸基を有していてもよい炭素数1〜4の低級ア
ルキル基又はベンジル基を示す)で表される化合
物(特願昭57−185991号)や次の一般式: (式中R4は水素原子、水酸基又は炭素数1〜10
個の脂肪族アシルオキシ基を、R5はα又はω−
アミノ酸のα−又はω−アミノ基から水素原子1
個及びカルボキシル基から水酸基を除いた残基、
但し、α−ヒドロキシルグリシンの残基を除く、
を示し、隣接するカルボニル基及びアミノ基と酸
アミド結合しており、qは4〜6の整数を示す)
で表される化合物(特願昭57−151698号)も優れ
た制ガン作用を示すことを見出した。 これら類縁化合物の中で次の一般式(): (式中R6は水素原子、CH2OH、OCH3又はOH
を示し、nは6〜8の整数を示す)で表されるス
パガリン類似化合物が特に優れた制ガン作用を示
す。 これらの結果から、合成前駆体として有用であ
り、大量合成に適した化合物を見出し、本発明を
完成するに至つた。 上記式で表されるスパガリン類縁化合物を大
量合成する時、式の有するスペルミジン(1,
5,10−トリアザデカン)のN10の1級アミンの
み選択的にアシル化する方法の開発が、有利な合
成法を提供する。今までこれらスパガリン類縁化
合物の合成法として (1) 先に挙げた培養により取得したスパガリンを
分解して得られる次式 で表されるグリオキシルスペルミジンを原料に
する方法(特開昭58−52263号) (2) 次式: (式中X1及びX2は同一又は異なるアミノ保護
基を示す)で表される1,5−ジ保護−1,
5,10−トリアザデカンを原料にし、N10の1
級アミンをアシル化した後、脱保護する方法
(特開昭57−192347号)が知られている。 式の化合物はスペルミジンより、次のような
経路で合成される。 (1)の方法は培養で得たスパガリンを原料にして
いること、また(2)の方法は式の化合物を、いく
つかのアミノ保護基を用い数段階の反応行程を経
て合成しなければならないことなど大量合成する
上で有利ではない。 〔発明の目的〕 本発明の目的は、スパガリン類縁化合物の合成
前駆体として有用なスパガリン関連ニトリル化合
物及びその製造方法を提供することにある。 〔発明の構成〕 本発明を概説すれば、本発明の第1の発明はス
パガリン関連ニトリル化合物及びそれらの塩の発
明であつて、下記一般式: (式中、R1は水素原子、ヒドロキシ低級アルキ
ル基、低級アルコキシ基又はベンジルオキシ基を
示し、nは6〜8の整数を示す)で表される。 また、本発明の第2の発明は上記一般式で表
されるスパガリン関連ニトリル化合物又はそれら
の塩の製造法の発明であつて、下記一般式: (式中、R1は水素原子、ヒドロキシ低級アルキ
ル基、低級アルコキシ基又はベンジルオキシ基を
示し、nは6〜8の整数を示す)で表される化合
物又はその反応性誘導体と、下記式: H2N(CH24NH(CH22CN ……〔〕 で表されるN−2−シアノエチルブタン−1,4
−ジアミンとを縮合させることを特徴とする。 そして、本発明の第3の発明は下記一般式
a: (式中、R2は水素原子又はヒドロキシ低級アル
キル基をnは6〜8の整数を示す)で表されるス
パガリン関連ニトリル化合物又はその塩の製造法
の発明であつて、下記一般式: (式中、nは前記と同義である)で表される化合
物又はその反応性誘導体と、下記一般式: (式中、R2は前記と同義である)で表される化
合物とを縮合させることを特徴とする。 そこで本発明者らは、1,4−ジアミノブタン
とアクリロニトリルを縮合させて容易に得られる
上記一般式で表されるN−2−シアノエチルブ
タン−1,4−ジアミン〔ジヤーナル オブ メ
ジシナル ケミストリー(J.Med.Chem)第2
巻、第710頁(1964)参照〕を原料にし、1級ア
ミンのみアシル化して合成できる上記一般式で
表されるニトリル化合物を合成前駆体とする合成
経路を完成した。 式のニトリル化合物の−CNを−CH2NH2
還元することにより、次の一般式: (式中R1及びnは前記式に同じ)で表される
化合物を得ることができる。式に含まれる酸ア
ミドに作用することなく−CNを−CH2NH2に還
元する方法は、公知の反応を用いることができ
る。例えば、塩化コバルト、塩化ニツケルなどの
遷移金属の塩の存在下、水素化ホウ素ナトリウム
で還元する方法〔テトラヘドロンレターズ
(Tetrahedron Letters、第52巻、第4555頁
(1969)参照〕が好ましい。また、式の中でR1
がOCH2C6H5の化合物の場合は、ベンジルエー
テルを加水素分解することにより、容易に一般式
で表され、R6がOHであるスパガリン類縁化合
物を得ることができる。 一般式において、R1が水素原子以外の置換
基を示す場合は、その立体配置はS−、R−及び
SR−型のいずれでもよい。一般式の化合物の
具体的な代表例の構造と化合物名を第1表に示
す。
[Industrial Application Field] The present invention relates to spagarin-related nitrile compounds, which are new compounds useful as synthetic precursors of spagarin-related compounds, salts thereof, and methods for producing them. [Prior Art] Spagarin is a compound isolated by the present inventors from a culture solution of a spagarin-producing bacterium belonging to the genus Bacillus, and has the following structure. Spagarin exhibits a growth-inhibitory effect on Gram-positive and Gram-negative bacteria, and has shown remarkable therapeutic effects in therapeutic experiments against murine leukemia L-1210, murine leukemia FL-4, Ehrlitsuhigan, and sarcoma 180 (S-180). It is a compound that is expected to be used as an antitumor agent because it shows a life-prolonging effect (Japanese Patent Application Laid-Open No. 1983-1999).
(See No. 48957). It is also known that the above spagarin can be obtained by synthesis [The Journal of Antibiotics, Vol. 34,
See page 1625 (1981)]. In addition, as a result of searching for compounds related to spagarin, the present inventors found the following general formula: (In the formula, p represents an integer of 3 to 8, R 3 is a hydrogen atom,
A compound represented by a lower alkyl group having 1 to 4 carbon atoms or a benzyl group which may have a hydroxyl group (Japanese Patent Application No. 185991/1983) or the following general formula: (In the formula, R 4 is a hydrogen atom, a hydroxyl group, or a carbon number of 1 to 10
aliphatic acyloxy groups, R 5 is α or ω-
1 hydrogen atom from α- or ω-amino group of amino acid
and residues obtained by removing the hydroxyl group from the carboxyl group,
However, excluding α-hydroxylglycine residues,
(represents an acid amide bond with the adjacent carbonyl group and amino group, and q represents an integer of 4 to 6)
It has been found that the compound represented by (Japanese Patent Application No. 57-151698) also exhibits excellent anticancer activity. Among these related compounds, the following general formula (): (In the formula, R 6 is a hydrogen atom, CH 2 OH, OCH 3 or OH
and n is an integer of 6 to 8) shows particularly excellent anticancer activity. From these results, we have discovered a compound that is useful as a synthetic precursor and suitable for mass synthesis, leading to the completion of the present invention. When mass-synthesizing the spagarin analog compound represented by the above formula, spermidine (1,
The development of a method for selectively acylating only the N 10 primary amine of (5,10-triazadecane) provides an advantageous synthetic method. Until now, the methods for synthesizing these spagarin-related compounds are (1) The following formula obtained by decomposing spagarin obtained by the above-mentioned culture. A method using glyoxylspermidine expressed as a raw material (Japanese Patent Application Laid-Open No. 58-52263) (2) The following formula: 1,5-diprotected-1, represented by (in the formula, X 1 and X 2 are the same or different amino protecting groups)
Using 5,10-triazadecane as raw material, 1 of N10
A method is known in which a secondary amine is acylated and then deprotected (Japanese Patent Application Laid-Open No. 192347/1983). The compound of the formula is synthesized from spermidine by the following route. Method (1) uses spagarin obtained through culture as a raw material, and method (2) requires the synthesis of the compound of formula through several reaction steps using several amino protecting groups. This is not advantageous for mass synthesis. [Object of the Invention] An object of the present invention is to provide a spagarin-related nitrile compound useful as a synthetic precursor for a spagarin-related compound and a method for producing the same. [Structure of the Invention] To summarize the present invention, the first invention of the present invention is an invention of spagarin-related nitrile compounds and salts thereof, which have the following general formula: (In the formula, R 1 represents a hydrogen atom, a hydroxy lower alkyl group, a lower alkoxy group, or a benzyloxy group, and n represents an integer of 6 to 8.) Further, the second invention of the present invention is an invention of a method for producing a spagarin-related nitrile compound represented by the above general formula or a salt thereof, which comprises the following general formula: (In the formula, R 1 represents a hydrogen atom, a hydroxy lower alkyl group, a lower alkoxy group, or a benzyloxy group, and n represents an integer of 6 to 8) or a reactive derivative thereof, and the following formula: H2N ( CH2 ) 4NH ( CH2 ) 2CN ...N-2-cyanoethylbutane-1,4 represented by []
- It is characterized by condensing with diamine. And, the third invention of the present invention has the following general formula a: (In the formula, R2 is a hydrogen atom or a hydroxy lower alkyl group, and n is an integer of 6 to 8.) An invention of a method for producing a spagarin-related nitrile compound or a salt thereof, represented by the following general formula: (wherein n has the same meaning as above) or a reactive derivative thereof, and the following general formula: It is characterized by condensing with a compound represented by (wherein R 2 has the same meaning as above). Therefore, the present inventors investigated N-2-cyanoethylbutane-1,4-diamine represented by the above general formula, which is easily obtained by condensing 1,4-diaminobutane and acrylonitrile [Journal of Medicinal Chemistry (J. Med.Chem) 2nd
Vol., p. 710 (1964)], and completed a synthetic route using the nitrile compound represented by the above general formula, which can be synthesized by acylating only the primary amine, as a synthetic precursor. By reducing -CN of the nitrile compound of formula to -CH2NH2 , the following general formula: A compound represented by the formula (wherein R 1 and n are the same as in the above formula) can be obtained. A known reaction can be used to reduce -CN to -CH2NH2 without acting on the acid amide included in the formula. For example, a method of reducing with sodium borohydride in the presence of a salt of a transition metal such as cobalt chloride or nickel chloride [see Tetrahedron Letters, Vol. 52, p. 4555 (1969)] is preferred. R 1 in the formula
In the case of a compound where is OCH 2 C 6 H 5 , a spagarin analog compound represented by the general formula and in which R 6 is OH can be easily obtained by hydrolyzing benzyl ether. In the general formula, when R 1 represents a substituent other than a hydrogen atom, its configuration may be S-, R- or
Any SR-type may be used. Table 1 shows the structures and compound names of specific representative examples of the compounds of the general formula.

【表】【table】

【表】 一般式の化合物は酸と塩を形成するが、塩を
形成するための酸としては、無機酸、有機酸のい
ずれでもよく、特に制限はないが、取扱い上塩酸
が好ましい。 代表例の塩酸塩の赤外線吸収スペクトル
(KBr錠として測定)、プロトンNMRスペクトル
(重メタノール中TMSを基準物質として測定)及
び旋光度を第2表に示す。
[Table] The compound of the general formula forms a salt with an acid, and the acid for forming the salt may be either an inorganic acid or an organic acid, and is not particularly limited, but hydrochloric acid is preferred for handling reasons. Table 2 shows the infrared absorption spectrum (measured as a KBr tablet), proton NMR spectrum (measured using TMS in deuterated methanol as a reference material), and optical rotation of a representative example of the hydrochloride.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明
するが、本発明は、これらの実施例に限定されな
い。 実施例 1 8−〔N−(7−グアニジノヘプタノイル)−グ
リシル〕−1−シアノ−3,8−ジアザオクタ
ン2塩酸塩 N−(7−グアニジノヘプタノイル)グリシン
塩酸塩3.89g(13.85ミリモル)とN−ヒドロキ
シコハク酸イミド1.91g(16.61ミリモル)をジ
メチルホルムアミド30mlに溶かし、ジシクロヘキ
シルカルボジイミド3.43g(16.61ミリモル)の
ジメチルホルムアミド20mlの溶液を氷冷下滴下し
た。滴下後、室温で3時間かくはんし、析出する
ジシクロヘキシル尿素を去し、液をN−2−
シアノエチルブタン−1,4−ジアミン3.13g
(22.15ミリモル)のジメチルホルムアミド20mlの
溶液に滴下し、室温で一夜かくはんした。溶媒を
留去して得た残留固体を水300mlに溶かし、酢酸
エチルで洗浄後、CM−セフアデツクス C−25
(Na型)(フアルマシア社製)500mlのカラムにか
け、水洗(500ml)後、水2.5と1M NaCl2.5
によるグラジエント溶出を行つた。目的物を含む
フラクシヨンを集め、減圧乾固し、残留固体にメ
タノールを加えて不溶のNaClを去した。この
操作を2回繰返し得られた液を、セフアデツク
ス LH−20の500mlのカラムにかけ、メタノー
ルで溶出した。目的物を含むフラクシヨンを集
め、減圧濃縮し、8−〔N−(7−グアニジノヘプ
タノイル)グリシル〕−1−シアノ−3,8−ジ
アザオクタン2塩酸塩を2.62g得た。mp111〜
113℃、収率43.0% 実施例 2 8−〔N−(7−グアニジノヘプタノイル)−L
−セリル〕−1−シアノ−3,8−ジアザオク
タン2塩酸塩 7−グアニジノヘプタン酸塩酸塩116.9g
(0.52モル)とN−ヒドロキシコハク酸イミド
72.2g(0.63モル)をジメチルホルムアミド500
mlに溶かし、ジシクロヘキシルカルボジイミド
129.4g(0.63モル)のジメチルホルムアミド500
mlの溶液を氷冷下滴下し、滴下後、室温で一夜か
くはんした。析出するジシクロヘキシル尿素を
去し、液を8−(L−セリル)−1−シアノ−
3,8−ジアザオクタン塩酸塩166.0g(0.63モ
ル)のジメチルホルムアミド500mlの溶液に滴下
し、室温で一夜かくはんした。溶媒を留去して得
た残留固体に水2を加えて溶かし、酢酸エチル
で洗浄後、水を加え5に希釈し、CM−セフア
デツクス C−25(Na型)2のカラムにかけ、
水洗(5)後、0.1〜0.2M NaClで溶出した。
目的物を含むフラクシヨンを集め、減圧で乾固
し、残留固体をメタノール抽出した。メタノール
抽出液からメタノールを留去し、その残留固体を
1M NaCl溶液に溶かし1M NaClで調整したダイ
ヤイオン HP−20(三菱化成工業社製)5の
カラムにかけ、1M NaCl5で洗浄後、水−メタ
ノール(8:2)10で溶出した。目的物を含む
フラクシヨンを集め、減圧で乾固し、メタノール
を加えて不溶のNaClを別する。この操作を2
回繰返し、得られた溶液をセフアデツクス LH
−20の9のカラムにかけ、メタノール溶出し
た。目的物を含むフラクシヨンを集め、減圧濃縮
し、シロツプ状の8−〔N−(7−グアニジノヘプ
タノイル)−L−セリル〕−1−シアノ−3,8−
ジアザオクタン2塩酸塩を151.9g得た。〔α〕D
−14.8゜、収率61.8%。 実施例 3 (±)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−メトキシグリシル〕−1−シアノ−
3,8−ジアザオクタン2塩酸塩 N−(7−グアニジノヘプタノイル)−α−メト
キシグリシン塩酸塩774mg(2.49ミリモル)とp
−ニトロフエノール346mg(2.49ミリモル)をジ
メチルホルムアミド8mlに溶かし、ジシクロヘキ
シルカルボジイミド1.03g(4.98ミリモル)のジ
メチルホルムアミド2mlの溶液を滴下し、室温で
3.5時間かくはんした。反応液をN−2−シアノ
エチルブタン−1,4−ジアミン422mg(2.99ミ
リモル)のジメチルホルムアミド2ml溶液に滴下
し、室温で1時間かくはんした。析出しているジ
シクロヘキシル尿素を去し、液を減圧濃縮し
て得られる残留固体を水50mlに溶かし、PHを6.5
に調整後、酢酸エチルで洗浄した。水層をCM−
セフアデツクス C−25(Na型)300mlにかけ、
水洗(500ml)後、水1.5と0.6M NaCl1.5に
よるグラジエント溶出を行つた。目的物を含むフ
ラクシヨンを集め、減圧で乾固し、残留固体にメ
タノールを加えて不溶のNaClを去した。この
操作を2回繰返し、得られた液をセフアデツク
ス LH−20の300mlのカラムにかけ、メタノー
ルで溶出した。目的物を含むフラクシヨンを集
め、減圧濃縮し、シロツプ状の(±)−8−〔N−
(7−グアニジノヘプタノイル)−α−メトキシグ
リシル〕−1−シアノ−3,8−ジアザオクタン
2塩酸塩を933mg得た。収率79.6%。 実施例 4 (−)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−メトキシグリシル〕−1−シアノ−
3,8−ジアザオクタン2塩酸塩 (−)−N−(7−グアニジノヘプタノイル)−
α−メトキシグリシン塩酸塩709mg(2.28ミリモ
ル)をジメチルホルムアミド10mlに溶かし、N−
2−シアノエチルブタン−1,4−ジアミン塩酸
塩810mg(4.56ミリモル)〔N−2−シアノエチル
ブタン−1,4−ジアミン643.9mg(4.56ミリモ
ル)を1N−HCl4.56mlに溶かし、減圧乾固した
もの〕のジメチルホルムアミド5ml溶液及びN−
ヒドロキシコハク酸イミド524mg(4.56ミリモル)
を加え、続いてジシクロヘキシルカルボジイミド
941mgのジメチルホルムアミド5ml溶液を滴下し、
室温で一夜かくはんした。析出するジシクロヘキ
シル尿素を去し、液を水100mlに加え、酢酸
エチルで洗浄した。水層を実施例3と同様にCM
−セフアデツクス C−25(Na型)400mlとセフ
アデツクス LH−20の500mlのカラムを用いて
精製し、シロツプ状の(−)−8−〔N−(7−グ
アニジノヘプタノイル)−α−メトキシグリシル〕
−1−シアノ−3,8−ジアザオクタン2塩酸塩
を599mg得た。〔α〕D=−33.9゜、収率55.9%。 実施例 5 (−)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−ベンジルオキシグリシル〕−1−シア
ノ−3,8−ジアザオクタン2塩酸塩 (+)−N−(7−グアニジノヘプタノイル)−
α−ベンジルオキシグリシン塩酸塩240mg(0.62
ミリモル)をジメチルホルムアミド5mlに溶か
し、N−2−シアノエチルブタン−1,4−ジア
ミン塩酸塩220mg(1.24ミリモル)のジメチルホ
ルムアミド5ml溶液及びN−ヒドロキシコハク酸
イミド143mg(1.24ミリモル)を加え、続いてジ
シクロヘキシルカルボジイミド256mg(1.24ミリ
モル)のジメチルホルムアミド3ml溶液を滴下
し、室温で一夜かくはんした。析出するジシクロ
ヘキシル尿素を去し、液を減圧濃縮して得た
残留固体を水20mlに溶かし、実施例3と同様に
CM−セフアデツクス C−25(Na型)300mlと
セフアデツクス LH−20の300mlのカラムを用
いて精製し、シロツプ状の(−)−8−〔N−(7
−グアニジノヘプタノイル)−α−ベンジルオキ
シグリシン〕−1−シアノ−3,8−ジアザオク
タン2塩酸塩を202mg得た。〔α〕D=−20.8゜、収率
59.5%。 実施例 6 (±)−8−〔N−(9−グアニジノノナノイル)
−α−メトキシグリシル〕−1−シアノ−3,
8−ジアザオクタン2塩酸塩 N−(9−グアニジノノナノイル)−α−メトキ
シグリシン塩酸塩487mg(1.50ミリモル)とp−
ニトロフエノール209mg(1.50ミリモル)をジメ
チルホルムアミド8mlに溶かし、ジシクロヘキシ
ルカルボジイミド619mg(3.00ミリモル)のジメ
チルホルムアミド2mlの溶液を滴下し、室温で
3.5時間かくはんした。反応液をN−2−シアノ
エチルブタン−1,4−ジアミン318mg(2.25ミ
リモル)のジメチルホルムアミド2ml溶液に滴下
し、室温で1時間かくはんした。析出しているジ
シクロヘキシル尿素を去し、液を減圧濃縮し
て得られる残留固体を水50mlに溶かし、PHを6.5
に調整後、酢酸エチルで洗浄した。水層をCM−
セフアデツクス C−25(Na型)300mlにかけ、
水洗(500ml)後、水1.5と0.6M NaCl1.5に
よるグラジエント溶出を行つた。目的物を含むフ
ラクシヨンを集め、減圧で乾固し、残留固体にメ
タノールを加えて不溶のNaClを去した。この
操作を2回繰返し、得られた液をセフアデツク
ス LH−20の300mlのカラムにかけ、メタノー
ルで溶出した。目的物を含むフラクシヨンを集
め、減圧濃縮し、シロツプ状の(±)−8−〔N−
(9−グアニジノノナノイル)−α−メトキシグリ
シル〕−1−シアノ−3,8−ジアザオクタン2
塩酸塩を519mg得た。収率71.4%。 参考例 1 8−〔N−(7−グアニジノヘプタノイル)グリ
シル〕−1−シアノ−3,8−ジアザオクタン
2塩酸塩の還元 8−〔N−(7−グアニジノヘプタノイル)グリ
シル〕−1−シアノ−3,8−ジアザオクタン2
塩酸塩2.52g(5.71ミリモル)と塩化コバルト
(CoCl2・6H2O)1.63g(6.86ミリモル)をメタ
ノール40mlに溶かし、水素化ホウ素ナトリウム
1.30g(34.28ミリモル)を氷冷下徐々に加える。
室温で1.5時間かくはんした後、水20mlを加え、
2N−HClでPHを7.0に調整し、黒色析出物を去
した。液を減圧濃縮して得た残留固体を水30ml
に溶かし、CM−セフアデツクス C−25(Na
型)500mlのカラムにかけ、水洗(500ml)後、水
2.5と1M NaCl2.5によるグラジエント溶出を
行つた。目的物を含むフラクシヨンを集め、減圧
乾固し、残留固体にメタノールを加えて不溶の
NaClを去した。この操作を2回繰返し得られ
た液をセフアデツクス LH−20の500mlのカ
ラムにかけ、メタノールで溶出した。目的物を含
むフラクシヨンを集め、減圧濃縮に得た残留固体
(1.65g)をメタノール−エタノール(1:2)
より結晶化し、10−〔N−(7−グアニジノヘプタ
ノイル)グリシル〕−1,5,10−トリアザデカ
ン3塩酸塩を1.43g得た。収率52.0% mp178〜180℃ NMR(CH3OH−d4):δ=1.2〜1.9(CH2×6)、
1.9〜2.4(CH2×2)、2.8〜3.4(NCH2×5)、
3.80(CH2) IR(KBr):ν(cm-1)=3300、3150、2930、1640、
1550、1515、1460、1410、1160 参考例 2 8−〔N−(7−グアニジノヘプタノイル)−L
−セリル〕−1−シアノ−3,8−ジアザオク
タン2塩酸塩の還元 8−〔N−(7−グアニジノヘプタノイル)−L
−セリル〕−1−シアノ−3,8−ジアザオクタ
ン2塩酸塩151.0g(0.32モル)と塩化コバルト
92.2g(0.39モル)をメタノール2.5に溶かし、
水素化ホウ素ナトリウム97.8g(2.58モル)を氷
冷下徐々に加える。室温で1時間かくはんした
後、水6を加え、PHを7.0に調整し、黒色析出
物を去した。液を半量に濃縮し、Na2CO3
飽和水溶液を加えPHを8.5に調整し、析出する炭
酸コバルトを去した。液のPHを6.0に調整後、
水で50に希釈し、CM−セフアデツクス C−
25(Na型)2のカラムにかけ、水洗(4)
後、0.2M NaClで溶出した。目的物を含むフラ
クシヨンを集め、減圧乾固し、残留固体にメタノ
ールを加え、不溶のNaClを去した。この操作
を2回繰返して得た液をセフアデツクス LH
−20の9のカラムにかけメタノールで溶出し
た。目的物を含むフラクシヨンを集め、減圧濃縮
して得た残留固体をメタノール(20ml)−エタノ
ール(100ml)より結晶化し、10−〔N−(7−グ
アニジノヘプタノイル)−L−セリル〕−1,5,
10−トリアザデカン3塩酸塩を74.9g得た。収率
45.8%。 mp145〜146.5℃ NMR(CH3OH−d4):δ=1.2〜1.9(CH2×6)、
1.9〜2.5(CH2×2)、2.9〜3.4(NCH2×5)、
3.78(CH2)、4.35(CH) IR(KBr):ν(cm-1)=3350、3150、2930、1650、
1530、1460、1380、1250、1165、1060 参考例 3 (±)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−メトキシグリシル〕−1−シアノ−
3,8−ジアザオクタン2塩酸塩の還元 (±)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−メトキシグリシル〕−1−シアノ−3,
8−ジアザオクタン2塩酸塩900mg(1.91ミリモ
ル)と塩化コバルト455mg(1.91ミリモル)をメ
タノール12mlに溶かし、水素化ホウ素ナトリウム
361mg(9.55ミリモル)を氷冷下徐々に加える。
室温で1.5時間かくはんした後、参考例1と同様
に後処理し、CM−セフアデツクス C−25(Na
型)300ml及びセフアデツクス LH−20の300ml
のカラムを用いて精製し、白色粉末状の(±)−
10−〔N−(7−グアニジノヘペタノイル)−α−
メトキシグリシル〕−1,5,10−トリアザデカ
ン3塩酸塩を391mg得た。収率40.0%。 NMR(CH3OH−d4):δ=1.2〜2.0(CH2×6)、
2.0〜2.5(CH2×2)、2.9〜3.4(NCH2×5)、
3.37(OCH3)、5.26(CH) IR(KBr):ν(cm-1)=3420、2950、1650、1520、
1460、1360、1190、1160、1090 参考例 4 (−)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−メトキシグリシル〕−1−シアノ−
3,8−ジアザオクタン2塩酸塩の還元 (−)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−メトキシグリシル〕−1−シアノ−3,
8−ジアザオクタン2塩酸塩584mg(1.24ミリモ
ル)と塩化コバルト355mg(1.49ミリモル)をメ
タノール13mlに溶かし、水素化ホウ素ナトリウム
282mg(7.44ミリモル)を氷冷下、徐々に加える。
室温で1時間かくはん後、参考例1と同様に後処
理し、CM−セフアデツクス C−25(Na型)
200ml及びセフアデツクス LH−20の200mlのカ
ラムを用いて精製し、白色粉末状の(−)−10−
〔N−(7−グアニジノヘプタノイル)−α−メト
キシグリシル〕−1,5,10−トリアザデカン3
塩酸塩を405mg得た。収率63.9%。 〔α〕D=−29.4゜(C=1、H2O) NMR(CH3OH−d4):δ=1.2〜2.0(CH2×6)、
2.0〜2.5(CH2×2)、2.9〜3.4(NCH2×5)、
3.37(OCH3)、5.26(CH) IR(KBr):ν(cm-1)=3420、2950、1650、1520、
1460、1360、1190、1160、1090 参考例 5 (−)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−ベンジルオキシグリシル〕−1−シア
ノ−3,8−ジアザオクタン2塩酸塩の還元 (−)−8−〔N−(7−グアニジノヘプタノイ
ル)−α−ベンジルオキシグリシル〕−1−シアノ
−3,8−ジアザオクタン2塩酸塩201mg(0.37
ミリモル)と塩化コバルト105mg(0.44ミリモル)
をメタノール4mlに溶かし、水素化ホウ素ナトリ
ウム84mg(2.21ミリモル)を氷冷下、徐々に加え
る。室温で2時間かくはん後、参考例1と同様に
後処理し、CM−セフアデツクス C−25(Na
型)300mlとセフアデツクス LH−20の300mlの
カラムを用いて精製し、白色粉末状の(−)−10
−〔N−(7−グアニジノヘプタノイル)−α−ベ
ンジルオキシグリシル〕−1,5,10−トリアザ
デカン3塩酸塩を64.8mg得た。収率30.0%。 〔α〕D−22.1゜(C=1、H2O) NMR(CH3OH−d4):δ=1.2〜2.0(CH2×6)、
2.0〜2.5(CH2×2)、2.8〜3.4(NCH2×5)、
4.60(CH2)、5.46(CH)、7.30(C6H5) IR(KBr):ν(cm-1)=3320、3250、3160、2930、
1660、1525、1460、1450、1370、1160、1070、
1025、745、700 上で得た(−)−10−〔N−(7−グアニジノヘ
プタノイル)−α−ベンジルオキシグリシル〕−
1,5,10−トリアザデカン3塩酸塩63.2mg
(0.11ミリモル)を1N−酢酸1.5mlに溶かし、パラ
ジウム黒30mgを加え、水素気圧(9Kg/cm2)下、
1日かくはんした。触媒を去し、液に水10ml
を加え、CM−セフアデツクス C−25(Na型)
150mlのカラムにかけ、水900mlと1M NaCl900ml
とによるグラジエント溶出を行つた。目的物を含
むフラクシヨンを集めて、減圧乾固し、残留固体
にメタノールを加えて、不溶のNaClを去した。
この操作を2回繰返して得た液をセフアデツク
ス LH−20の300mlのカラムにかけ、メタノー
ルで溶出した。目的物を含むフラクシヨンを集
め、減圧濃縮し、白色粉末状の(−)−10−〔N−
(7−グアニジノヘプタノイル)−α−ヒドロキシ
グリシル〕−1,5,10−トリアザデカン3塩酸
塩を30.7mg得た。収率57.4%。 〔α〕D=−12.0゜(C=1、H2O) NMR(CH3OH−d4):δ=1.2〜2.0(CH2×6)、
2.24(CH2)、2.30(CH2)、2.9〜3.4(NCH2×
5)、5.56(CH) IR(KBr):ν(cm-1)=3400、2950、1655、1525、
1460、1360、1160、1120、1080 参考例 6 N−(7−グアニジノヘプタノイル)グリシン
塩酸塩の合成 7−グアニジノヘプタン酸塩酸塩10.0g
(44.70ミリモル)とN−ヒドロキシコハク酸イミ
ド6.17g(53.64ミリモル)をジメチルホルムア
ミド50mlに溶かし、ジシクロヘキシルカルボジイ
ミド11.06g(53.64ミリモル)のジメチルホルム
アミド20mlの溶液を氷冷下滴下した。滴下後、室
温で2時間かくはんし、析出するジシクロヘキシ
ル尿素を去し、液をグリシンエチルエステル
塩酸塩7.49g(53.64ミリモル)、トリエチルアミ
ン7.54mlのジメチルホルムアミド10mlの溶液に滴
下し、室温で一夜かくはんした。溶液を留去して
得た残留固体を0.5M NaClに溶かし、0.5M
NaClで調整したダイヤイオン HP−20の800ml
のカラムにかけ、0.5M NaCl2.5、水5、8
%メタノール水2で溶出した。目的物を含むフ
ラクシヨンを集め、減圧濃縮し、シロツプ状のN
−(7−グアニジノヘプタノイル)グリシンエチ
ルエステル塩酸塩を11.68g得た。収率70.8%。 N−(7−グアニジノヘプタノイル)グリシン
エチルエステル塩酸塩4.28g(13.85ミリモル)
を50%メタノール水20mlに溶かし、1N−
NaCl16.6mlを氷冷下加え、室温で1時間かくは
んした。PHを7.0に調整後、減圧濃縮し、得られ
た残留固体に水10mlを加え、PHを2.0に調整して
溶かし、減圧乾固した。得られたN−(7−グア
ニジノヘプタノイル)グリシン塩酸塩は精製する
ことなく、次の反応に使用した。 参考例 7 8−(L−セリル)−1−シアノ−3,8−ジア
ザオクタン塩酸塩の合成 カルボベンゾキシ−L−セリン598g(2.5モ
ル)とN−ヒドロキシコハク酸イミド317g
(2.75モル)をジオキサン2.5に溶かし、氷冷
下、ジシクロヘキシルカルボジイミド576g
(2.75モル)のジオキサン(2)溶液を滴下し
た。滴下後、室温で一夜かくはんし、析出してい
るジシクロヘキシル尿素を去し、液をN−2
−シアノエチルブタン−1,4−ジアミン530g
(3.75モル)のジオキサン1溶液に滴下し、室
温で一夜かくはんした。反応溶液に水1.5を加
え、減圧濃縮して得た残留固体にNaHCO3の飽
和水溶液2.5を加え、酢酸エチル(1.5)で6
回抽出した。酢酸エチル層を合せ、飽和食塩水で
2回洗浄後、無水Na2SO4で乾燥した。溶媒を留
去して得た残留固体(約700g)をエタノール2.5
に溶かし、塩化水素ガス飽和のエタノールを酸
性になるまで加えた。析出した結晶を取し、8
−(カルボベンゾキシ−L−セリル)−1−シアノ
−3,8−ジアザオクタン塩酸塩を693g得た。
収率69.5%。 mp151〜153℃ 〔α〕D−4.6゜(C=1、CH3OH) 上で得た8−(カルボベンゾキシ−L−セリル)
−1−シアノ−3,8−ジアザオクタン塩酸塩
350g(0.88モル)をメタノール4に溶かし、
10%パラジウム−炭素8.75gを加え、水素気流中
2日間かくはんした。触媒を去し、液を減圧
濃縮し、シロツプ状の8−(L−セリル)−1−シ
アノ−3,8−ジアザオクタン塩酸塩を233g得
た。精製することなく次の反応の原料として使用
できる。 参考例 8 (±)−N−(7−グアニジノヘプタノイル)−
α−メトキシグリシン塩酸塩の合成 7−グアニジノヘプタンアミド塩酸塩10g
(44.9ミリモル)をジメチルホルムアミド150mlに
加熱溶解し、グリオキシル酸4.55g(49.4ミリモ
ル)とアセトン150mlを加え、90℃油浴中で3時
間還流した。溶媒を留去して得た残留固体を、水
100mlに溶かし、CM−セフアデツクスC−25
(Na型)1100mlのカラムにかけ、水で溶出した。
目的物を含むフラクシヨンを集め、減圧濃縮し、
N−(7−グアニジノヘプタノイル)−α−ヒドロ
キシグリシンを9.36g得た。mp165〜6℃(分
解)、収率80.1%。N−(7−グアニジノヘプタノ
イル)−α−ヒドロキシグリシン9.36g(36.0ミ
リモル)を無水メタノール300mlに溶かし、氷冷
下濃硫酸5mlを加え、室温で3時間かくはんし
た。反応液を減圧で約100mlまで濃縮し、水200ml
中に加え、2N−NaOHでPHを10.0に調整する。
1時間後、PHを6.5に調整し、減圧濃縮して得た
残留物をCM−セフアデツクス C−25(Na型)
1100mlのカラムにかけ、水で溶出した。目的物を
含むフラクシヨンを集め、減圧濃縮し、(±)−N
−(7−グアニジノヘプタノイル)−α−メトキシ
グリシンを7.90g得た。 mp201〜2℃(分解)収率80.0%。 NMR(CH3OH−d4):δ=1.2〜1.9(CH2×4)、
2.30(CH2)、3.17(NCH2)、3.32(OCH3)、5.23
(CH) IR(KBr):ν(cm-1)=3370、3275、2930、1655、
1580、1540、1475、1415、1330、1195、1120、
1090、985、800 (±)−N−(7−グアニノヘプタノイル)−α
−メトキシグリシン7.80g(2.84ミリモル)を1N
−HCl28.4mlに溶かし、減圧濃縮して白色粉末状
の(±)−N−(7−グアニジノヘプタノイル)−
α−メトキシグリシン塩酸塩を8.83g得た。 参考例 9 (−)−N−(7−グアニジノヘプタノイル)−
α−メトキシグリシン塩酸塩の合成 参考例8で得た(±)−N−(7−グアニジノヘ
プタノイル)−α−メトキシグリシン塩酸塩6.58
g(21.2ミリモル)とN−ヒドロキシコハク酸イ
ミド4.88g(42.4ミリモル)をジメチルホルムア
ミド70mlに溶かし、L−フエニルアラニンエチル
エステル塩酸塩4.87g(21.2ミリモル)とトリエ
チルアミン2.98mlを加える。氷冷下、ジシクロヘ
キシルカルボジイミド8.75g(42.4ミリモル)の
ジメチルホルムアミド30ml溶液を滴下し、滴下後
室温で4時間かくはんした。析出するジシクロヘ
キシル尿素を去し、液を減圧濃縮して得た残
留固体を水300mlに溶かし、CM−セフアデツク
ス C−25(Na型)1のカラムにかけ、水洗
(1)後、0.2M NaClで溶出した。目的物を含
むフラクシヨンを集めて、減圧濃縮して得た残留
物を水で調整したダイヤイオン HP−20の1
のカラムにかけ、水1.5、25%メタノール水2
、50%メタノール水4で順次溶出した。目的
物を含む50%メタノール水の溶出部を減圧濃縮
し、N−(7−グアニジノヘプタノイル)−α−メ
トキシグリシル−L−フエニルアラニンエチルエ
ステル塩酸塩を5.31g得た。収率51.6%。 NMR(CH3OH−d4)δ:1.17(CH3)、1.1〜1.9
(CH2×4)、2.27(CH2)、2.9〜3.4(5H)、3.31
(OCH3)、4.11(CH2)、5.30(CH)、7.20(C6H5) 上で得たN−(7−グアニジノヘプタノイル)−
α−メトキシグリシル−L−フエニルアラニンエ
チルエステル塩酸塩5.21g(10.7ミリモル)をメ
タノール35mlに溶かし、氷冷下1N−NaOHを
12.8ml加え1.5時間かくはんした。PHを6.5に調整
し、減圧濃縮して得た残留固体(約5.7g)を
0.05M酢酸ナトリウム−塩酸緩衝液(PH5.0)100
mlに溶かし、カルボキシペプチダーゼP(賓酒造
社製)10mgを加え、30℃で8時間振とうした。溶
媒を留去して得た残留物をセフアデツクス LH
−20の4のカラムにかけ、水で溶出した。目的
物を含むフラクシヨンを集めて約30mlまで濃縮
し、PHを2.1に調整し、CM−セフアデツクス C
−25(Na型)500mlのカラムにかけ、水で溶出し
た。目的物を含むフラクシヨンを集め、減圧濃縮
し、(−)−N−(7−グアニジノヘプタノイル)−
α−メトキシグリシンを1.16g得た。収率32.6
%。mp197〜198℃(分解) 〔α〕D−20.2゜(C=1、H2O) (−)−N−(7−グアニジノヘプタノイル)−
α−メトキシグリシン1g(3.65ミリモル)を
1N−HCl3.65mlに溶かし、減圧濃縮することに
より、白色粉末状の(−)−N−(7−グアニジノ
ヘプタノイル)−α−メトキシグリシン塩酸塩を
1.13g得た。 参考例 10 (+)−N−(7−グアニジノヘプタノイル)−
α−ベンジルオキシグリシン塩酸塩の合成 参考例8と同様にして得たN−(7−グアニジ
ノヘプタノイル)−α−ヒドロキシグリシン6.94
g(26.7ミリモル)にベンジルアルコール130ml
と濃塩酸6.5mlを加え、65℃で5時間かくはんし
た。反応液を水130mlとメタノール130mlの混液に
加え、2N−NaOHでPHを12.0に調整し、室温で
2時間かくはんした。PHを7.0に調整し、減圧で
メタノールを留去し、水層を別け、ベンジルアル
コール層を更に水で2回抽出した。水層を合せ、
酢酸エチルで2回洗浄した後、減圧で約50mlに濃
縮し、CM−セフアデツクス C−25(Na型)
500mlのカラムにかけ、水で溶出した。目的物を
含むフラクシヨンを集めて、減圧濃縮し、(±)−
N−(7−グアニジノヘプタノイル)−α−ベンジ
ルオキシグリシンを3.66g得た。収率39.1%。 mp197〜199℃(分解) NMR(CH3OH−d4):δ=1.2〜1.8(CH2×4)、
2.25(CH2)、3.04(NCH2)、4.58(CH2)、5.39
(CH)、7.28(C6H5) IR(KBr):ν(cm-1)=3400、3270、3150、2925、
1675、1625、1575、1520、1470、1405、1325、
1240、1205、1060、975、915、800、750、700、
605 (±)−N−(7−グアニジノヘプタノイル)−
α−ベンジルオキシグリシン1.64g(4.68ミリモ
ル)を1N−HCl4.68mlに溶かし、減圧乾固して
得られる(±)−N−(7−グアニジノヘプタノイ
ル)−α−ベンジルオキシグリシン塩酸塩をジメ
チルホルムアミド75mlに溶かし、N−ヒドロキシ
コハク酸イミド4.08g(9.36ミリモル)、L−フ
エニルアラニンエチルエステル塩酸塩1.08g
(4.68ミリモル)、トリエチルアミン0.65ml(4.68
ミリモル)を加え、次に氷冷下ジシクロヘキシル
カルボジイミド1.93g(9.36ミリモル)のジメチ
ルホルムアミド10ml溶液を滴下した。滴下後室温
で一夜かくはんし、析出するジシクロヘキシル尿
素を去した。液を減圧濃縮して得た残留物を
水で調整したダイヤイオン HP−20の500mlの
カラムにかけ、水1、50%メタノール水1.5、
75%メタノール水1.5で順次溶出した。目的物
を含む75%メタノール水の溶出部を集めて、減圧
濃縮し、N−(7−グアニジノヘプタノイル)−α
−ベンジルオキシグリシル−L−フエニルアラニ
ンエチルエステル塩酸塩を1.04g得た。収率39.5
%。 NMR(CH3OH−d4):δ=1.19及び1.22(CH3)、
1.1〜2.0(CH2×4)、2.28(CH2)、3.0〜3.4
(5H)、4.14及び4.17(CH2)、4.58(CH2)、5.53
(CH)、7.22(C6H5)、7.33(C6H5) N−(7−グアニジノヘプタノイル)−α−ベン
ジルオキシグリシル−L−フエニルアラニンエチ
ルエステル塩酸塩1.00g(1.78ミリモル)をメタ
ノール10mlに溶かし、氷冷下1N−NaOHを2.14
ml加え、1.5時間かくはんした。水20mlを加え、
PHを7.0に調整後、減圧濃縮して得た残留固体を、
0.05M酢酸ナトリウム−塩酸緩衝液(PH5.0)270
mlとメタノール30mlの混液に溶かし、カルボキシ
ペプチダーゼP(賓酒造社製)10mgを加え、30℃
で7時間振とうした。約50mlに濃縮後、析出物を
去し、液をセフアデツクス LH−20の1
のカラムにかけ、水で溶出した。目的物を含むフ
ラクシヨンを集め(+)−N−(7−グアニジノヘ
プタノイル)−α−ベンジルオキシグリシンを
256.2mg得た。収率41.1%。〔α〕D+11.5゜(C=1、
CH3OH) 〔発明の効果〕 本発明によれば、従来の合成法において必要と
されたスペルミジンの選択的アミノ保護体の合成
及び脱保護の工程を必要とせず、極めて安価な原
料であるN−2−シアノエチルブタン−1,4−
ジアミンから短い工程でスパガリン類縁化合物を
合成することができる。 したがつて、本発明はスパガリン類縁化合物の
経済的に有利な製造方法を提供するものである。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 8-[N-(7-guanidinoheptanoyl)-glycyl]-1-cyano-3,8-diazaoctane dihydrochloride 3.89 g (13.85 mmol) of N-(7-guanidinoheptanoyl)glycine hydrochloride 1.91 g (16.61 mmol) of N-hydroxysuccinimide was dissolved in 30 ml of dimethylformamide, and a solution of 3.43 g (16.61 mmol) of dicyclohexylcarbodiimide in 20 ml of dimethylformamide was added dropwise under ice cooling. After dropping, the solution was stirred at room temperature for 3 hours to remove the precipitated dicyclohexyl urea, and the solution was diluted with N-2-
Cyanoethylbutane-1,4-diamine 3.13g
(22.15 mmol) was added dropwise to a solution of 20 ml of dimethylformamide and stirred overnight at room temperature. The residual solid obtained by distilling off the solvent was dissolved in 300 ml of water, washed with ethyl acetate, and washed with CM-Sephadex C-25.
(Na type) (manufactured by Pharmacia) Pour into a 500 ml column, wash with water (500 ml), then add 2.5 ml of water and 2.5 ml of 1M NaCl.
Gradient elution was performed using Fractions containing the target product were collected and dried under reduced pressure, and methanol was added to the remaining solid to remove insoluble NaCl. This operation was repeated twice, and the resulting solution was applied to a 500 ml column of Sephadex LH-20 and eluted with methanol. Fractions containing the target product were collected and concentrated under reduced pressure to obtain 2.62 g of 8-[N-(7-guanidinoheptanoyl)glycyl]-1-cyano-3,8-diazaoctane dihydrochloride. mp111~
113°C, yield 43.0% Example 2 8-[N-(7-guanidinoheptanoyl)-L
-Ceryl]-1-cyano-3,8-diazaoctane dihydrochloride 7-guanidinoheptanoic acid hydrochloride 116.9g
(0.52 mol) and N-hydroxysuccinimide
72.2g (0.63mol) of dimethylformamide 500
dicyclohexylcarbodiimide dissolved in ml
129.4g (0.63mol) dimethylformamide 500
ml of the solution was added dropwise under ice-cooling, and after the dropwise addition, the solution was stirred overnight at room temperature. The precipitated dicyclohexyl urea was removed, and the liquid was diluted with 8-(L-seryl)-1-cyano-
A solution of 166.0 g (0.63 mol) of 3,8-diazaoctane hydrochloride in 500 ml of dimethylformamide was added dropwise and stirred overnight at room temperature. The residual solid obtained by distilling off the solvent was dissolved by adding 2 parts of water, washed with ethyl acetate, diluted to 5 with water, and applied to a column of CM-Sephadex C-25 (Na type) 2.
After washing with water (5), it was eluted with 0.1-0.2M NaCl.
Fractions containing the target product were collected and dried under reduced pressure, and the remaining solid was extracted with methanol. Methanol is distilled off from the methanol extract and the remaining solid is removed.
The column was applied to a column of Diaion HP-20 (manufactured by Mitsubishi Chemical Industries, Ltd.) 5 dissolved in 1M NaCl solution and adjusted with 1M NaCl, washed with 1M NaCl5, and eluted with water-methanol (8:2) 10. Fractions containing the target product are collected, dried under reduced pressure, and methanol is added to separate insoluble NaCl. This operation 2
Repeat several times and transfer the resulting solution to Sephadex LH.
It was applied to a -20 9 column and eluted with methanol. Fractions containing the target product were collected and concentrated under reduced pressure to obtain a syrupy form of 8-[N-(7-guanidinoheptanoyl)-L-seryl]-1-cyano-3,8-
151.9 g of diazaoctane dihydrochloride was obtained. [α] D =
−14.8°, yield 61.8%. Example 3 (±)-8-[N-(7-guanidinoheptanoyl)-α-methoxyglycyl]-1-cyano-
3,8-diazaoctane dihydrochloride N-(7-guanidinoheptanoyl)-α-methoxyglycine hydrochloride 774 mg (2.49 mmol) and p
- Dissolve 346 mg (2.49 mmol) of nitrophenol in 8 ml of dimethylformamide, add dropwise a solution of 1.03 g (4.98 mmol) of dicyclohexylcarbodiimide in 2 ml of dimethylformamide, and at room temperature
Stirred for 3.5 hours. The reaction solution was added dropwise to a solution of 422 mg (2.99 mmol) of N-2-cyanoethylbutane-1,4-diamine in 2 ml of dimethylformamide, and the mixture was stirred at room temperature for 1 hour. Remove the precipitated dicyclohexyl urea, concentrate the liquid under reduced pressure, dissolve the resulting solid in 50 ml of water, and adjust the pH to 6.5.
After adjusting to , it was washed with ethyl acetate. CM− aqueous layer
Pour 300ml of Sephadex C-25 (Na type),
After washing with water (500 ml), gradient elution with 1.5 of water and 1.5 of 0.6M NaCl was performed. Fractions containing the target product were collected and dried under reduced pressure, and methanol was added to the remaining solid to remove insoluble NaCl. This operation was repeated twice, and the resulting solution was applied to a 300 ml column of Sephadex LH-20 and eluted with methanol. Fractions containing the target product were collected and concentrated under reduced pressure to form a syrupy (±)-8-[N-
933 mg of (7-guanidinoheptanoyl)-α-methoxyglycyl]-1-cyano-3,8-diazaoctane dihydrochloride was obtained. Yield 79.6%. Example 4 (-)-8-[N-(7-guanidinoheptanoyl)-α-methoxyglycyl]-1-cyano-
3,8-diazaoctane dihydrochloride (-)-N-(7-guanidinoheptanoyl)-
Dissolve 709 mg (2.28 mmol) of α-methoxyglycine hydrochloride in 10 ml of dimethylformamide and
810 mg (4.56 mmol) of 2-cyanoethylbutane-1,4-diamine hydrochloride [643.9 mg (4.56 mmol) of N-2-cyanoethylbutane-1,4-diamine was dissolved in 4.56 ml of 1N HCl and dried under reduced pressure. ] in dimethylformamide and N-
Hydroxysuccinimide 524 mg (4.56 mmol)
followed by dicyclohexylcarbodiimide
Drop a 5 ml solution of 941 mg of dimethylformamide,
Stir overnight at room temperature. The precipitated dicyclohexyl urea was removed, and the solution was added to 100 ml of water and washed with ethyl acetate. CM the aqueous layer as in Example 3.
-Purified using 400 ml of Cephadex C-25 (Na type) and 500 ml of Cephadex LH-20 columns to form syrupy (-)-8-[N-(7-guanidinoheptanoyl)-α-methoxyglycyl. ]
599 mg of -1-cyano-3,8-diazaoctane dihydrochloride was obtained. [α] D = -33.9°, yield 55.9%. Example 5 (−)-8-[N-(7-guanidinoheptanoyl)-α-benzyloxyglycyl]-1-cyano-3,8-diazaoctane dihydrochloride (+)-N-(7-guanidino heptanoyl) −
α-benzyloxyglycine hydrochloride 240 mg (0.62
220 mg (1.24 mmol) of N-2-cyanoethylbutane-1,4-diamine hydrochloride in 5 ml of dimethylformamide and 143 mg (1.24 mmol) of N-hydroxysuccinimide were added, followed by A solution of 256 mg (1.24 mmol) of dicyclohexylcarbodiimide in 3 ml of dimethylformamide was added dropwise, and the mixture was stirred overnight at room temperature. The precipitated dicyclohexyl urea was removed, the liquid was concentrated under reduced pressure, the resulting residual solid was dissolved in 20 ml of water, and the solution was dissolved in the same manner as in Example 3.
It was purified using a 300 ml column of CM-Sephadex C-25 (Na type) and a 300 ml column of Sephadex LH-20, and a syrupy (-)-8-[N-(7
202 mg of -guanidinoheptanoyl)-α-benzyloxyglycine]-1-cyano-3,8-diazaoctane dihydrochloride was obtained. [α] D = −20.8°, yield
59.5%. Example 6 (±)-8-[N-(9-guanidinononanoyl)
-α-methoxyglycyl]-1-cyano-3,
8-Diazaoctane dihydrochloride N-(9-guanidinononanoyl)-α-methoxyglycine hydrochloride 487 mg (1.50 mmol) and p-
209 mg (1.50 mmol) of nitrophenol was dissolved in 8 ml of dimethylformamide, a solution of 619 mg (3.00 mmol) of dicyclohexylcarbodiimide in 2 ml of dimethylformamide was added dropwise, and the mixture was stirred at room temperature.
Stirred for 3.5 hours. The reaction solution was added dropwise to a solution of 318 mg (2.25 mmol) of N-2-cyanoethylbutane-1,4-diamine in 2 ml of dimethylformamide, and the mixture was stirred at room temperature for 1 hour. Remove the precipitated dicyclohexyl urea, concentrate the liquid under reduced pressure, dissolve the resulting solid in 50 ml of water, and adjust the pH to 6.5.
After adjusting to , the mixture was washed with ethyl acetate. CM− aqueous layer
Pour 300ml of Sephadex C-25 (Na type),
After washing with water (500 ml), gradient elution with 1.5 of water and 1.5 of 0.6M NaCl was performed. Fractions containing the target product were collected and dried under reduced pressure, and methanol was added to the remaining solid to remove insoluble NaCl. This operation was repeated twice, and the resulting solution was applied to a 300 ml column of Sephadex LH-20 and eluted with methanol. Fractions containing the target product were collected and concentrated under reduced pressure to form a syrupy (±)-8-[N-
(9-guanidinononanoyl)-α-methoxyglycyl]-1-cyano-3,8-diazaoctane 2
519 mg of hydrochloride was obtained. Yield 71.4%. Reference Example 1 Reduction of 8-[N-(7-guanidinoheptanoyl)glycyl]-1-cyano-3,8-diazaoctane dihydrochloride 8-[N-(7-guanidinoheptanoyl)glycyl]-1-cyano -3,8-diazaoctane 2
Dissolve 2.52 g (5.71 mmol) of hydrochloride and 1.63 g (6.86 mmol) of cobalt chloride (CoCl 2 6H 2 O) in 40 ml of methanol, and add sodium borohydride.
Gradually add 1.30 g (34.28 mmol) under ice cooling.
After stirring at room temperature for 1.5 hours, add 20 ml of water.
The pH was adjusted to 7.0 with 2N-HCl to remove the black precipitate. The remaining solid obtained by concentrating the liquid under reduced pressure was added to 30 ml of water.
Dissolve in CM-Sephadex C-25 (Na
Type) 500ml column, washed with water (500ml), and then
Gradient elution was performed with 2.5 and 1M NaCl2.5. Fractions containing the target product are collected, dried under reduced pressure, and methanol is added to the remaining solid to remove insoluble matter.
NaCl was removed. This operation was repeated twice, and the resulting solution was applied to a 500 ml column of Sephadex LH-20 and eluted with methanol. Fractions containing the target product were collected, concentrated under reduced pressure, and the residual solid (1.65 g) was mixed with methanol-ethanol (1:2).
The product was crystallized to obtain 1.43 g of 10-[N-(7-guanidinoheptanoyl)glycyl]-1,5,10-triazadecane trihydrochloride. Yield 52.0% mp178-180°C NMR (CH 3 OH-d 4 ): δ = 1.2-1.9 (CH 2 ×6),
1.9 to 2.4 (CH 2 × 2), 2.8 to 3.4 (NCH 2 × 5),
3.80 (CH 2 ) IR (KBr): ν (cm -1 ) = 3300, 3150, 2930, 1640,
1550, 1515, 1460, 1410, 1160 Reference example 2 8-[N-(7-guanidinoheptanoyl)-L
-Ceryl]-1-cyano-3,8-diazaoctane dihydrochloride reduction 8-[N-(7-guanidinoheptanoyl)-L
-Ceryl]-1-cyano-3,8-diazaoctane dihydrochloride 151.0g (0.32 mol) and cobalt chloride
Dissolve 92.2 g (0.39 mol) in 2.5 methanol,
97.8 g (2.58 mol) of sodium borohydride is gradually added under ice cooling. After stirring at room temperature for 1 hour, water 6 was added to adjust the pH to 7.0 and remove the black precipitate. The liquid was concentrated to half its volume, and a saturated aqueous solution of Na 2 CO 3 was added to adjust the pH to 8.5 to remove precipitated cobalt carbonate. After adjusting the pH of the liquid to 6.0,
Dilute to 50% with water and use CM-Sephadex C-
25 (Na type) 2 columns and washed with water (4)
Afterwards, it was eluted with 0.2M NaCl. Fractions containing the target product were collected and dried under reduced pressure, and methanol was added to the remaining solid to remove insoluble NaCl. Repeat this operation twice and use the liquid obtained as Sephadex LH.
The mixture was applied to a -20 9 column and eluted with methanol. Fractions containing the target product were collected and concentrated under reduced pressure. The residual solid obtained was crystallized from methanol (20 ml) and ethanol (100 ml) to give 10-[N-(7-guanidinoheptanoyl)-L-seryl]-1, 5,
74.9 g of 10-triazadecane trihydrochloride was obtained. yield
45.8%. mp145-146.5℃ NMR (CH 3 OH-d 4 ): δ = 1.2-1.9 (CH 2 ×6),
1.9 to 2.5 (CH 2 × 2), 2.9 to 3.4 (NCH 2 × 5),
3.78 (CH 2 ), 4.35 (CH) IR (KBr): ν (cm -1 ) = 3350, 3150, 2930, 1650,
1530, 1460, 1380, 1250, 1165, 1060 Reference example 3 (±)-8-[N-(7-guanidinoheptanoyl)-α-methoxyglycyl]-1-cyano-
Reduction of 3,8-diazaoctane dihydrochloride (±)-8-[N-(7-guanidinoheptanoyl)-α-methoxyglycyl]-1-cyano-3,
Dissolve 900 mg (1.91 mmol) of 8-diazaoctane dihydrochloride and 455 mg (1.91 mmol) of cobalt chloride in 12 ml of methanol and add sodium borohydride.
Gradually add 361 mg (9.55 mmol) under ice cooling.
After stirring at room temperature for 1.5 hours, post-treatment was carried out in the same manner as in Reference Example 1, and CM-Sephadex C-25 (Na
Type) 300ml and Sephadex LH-20 300ml
Purification using a column of white powder (±)-
10-[N-(7-guanidinohepetanoyl)-α-
391 mg of methoxyglycyl]-1,5,10-triazadecane trihydrochloride was obtained. Yield 40.0%. NMR (CH 3 OH−d 4 ): δ = 1.2 to 2.0 (CH 2 ×6),
2.0 to 2.5 (CH 2 × 2), 2.9 to 3.4 (NCH 2 × 5),
3.37 (OCH 3 ), 5.26 (CH) IR (KBr): ν (cm -1 ) = 3420, 2950, 1650, 1520,
1460, 1360, 1190, 1160, 1090 Reference example 4 (-)-8-[N-(7-guanidinoheptanoyl)-α-methoxyglycyl]-1-cyano-
Reduction of 3,8-diazaoctane dihydrochloride (-)-8-[N-(7-guanidinoheptanoyl)-α-methoxyglycyl]-1-cyano-3,
Dissolve 584 mg (1.24 mmol) of 8-diazaoctane dihydrochloride and 355 mg (1.49 mmol) of cobalt chloride in 13 ml of methanol, and add sodium borohydride.
Gradually add 282 mg (7.44 mmol) under ice cooling.
After stirring at room temperature for 1 hour, post-treatment was performed in the same manner as in Reference Example 1 to obtain CM-Sephadex C-25 (Na type).
It was purified using a 200 ml column and a 200 ml column of Cephadex LH-20, and a white powder (-)-10-
[N-(7-guanidinoheptanoyl)-α-methoxyglycyl]-1,5,10-triazadecane 3
405 mg of hydrochloride was obtained. Yield 63.9%. [α] D = −29.4° (C = 1, H 2 O) NMR (CH 3 OH−d 4 ): δ = 1.2 to 2.0 (CH 2 × 6),
2.0 to 2.5 (CH 2 × 2), 2.9 to 3.4 (NCH 2 × 5),
3.37 (OCH 3 ), 5.26 (CH) IR (KBr): ν (cm -1 ) = 3420, 2950, 1650, 1520,
1460, 1360, 1190, 1160, 1090 Reference example 5 (−)-8-[N-(7-guanidinoheptanoyl)-α-benzyloxyglycyl]-1-cyano-3,8-diazaoctane dihydrochloride Reduction (-)-8-[N-(7-guanidinoheptanoyl)-α-benzyloxyglycyl]-1-cyano-3,8-diazaoctane dihydrochloride 201 mg (0.37
mmol) and cobalt chloride 105 mg (0.44 mmol)
Dissolve in 4 ml of methanol, and gradually add 84 mg (2.21 mmol) of sodium borohydride under ice cooling. After stirring at room temperature for 2 hours, post-treatment was carried out in the same manner as in Reference Example 1, and CM-Sephadex C-25 (Na
(type) 300ml and a 300ml column of Sephadex LH-20 were used to purify the (-)-10 as a white powder.
64.8 mg of -[N-(7-guanidinoheptanoyl)-α-benzyloxyglycyl]-1,5,10-triazadecane trihydrochloride was obtained. Yield 30.0%. [α] D −22.1° (C = 1, H 2 O) NMR (CH 3 OH-d 4 ): δ = 1.2 to 2.0 (CH 2 × 6),
2.0 to 2.5 (CH 2 × 2), 2.8 to 3.4 (NCH 2 × 5),
4.60 (CH 2 ), 5.46 (CH), 7.30 (C 6 H 5 ) IR (KBr): ν (cm -1 ) = 3320, 3250, 3160, 2930,
1660, 1525, 1460, 1450, 1370, 1160, 1070,
1025, 745, 700 (-)-10-[N-(7-guanidinoheptanoyl)-α-benzyloxyglycyl]- obtained above
1,5,10-triazadecane trihydrochloride 63.2mg
(0.11 mmol) was dissolved in 1.5 ml of 1N acetic acid, 30 mg of palladium black was added, and under hydrogen pressure (9 Kg/cm 2 ),
I stirred it for a day. Remove the catalyst and add 10ml of water to the liquid.
Add CM-Sephadex C-25 (Na type)
Pour into a 150 ml column, add 900 ml of water and 900 ml of 1M NaCl.
Gradient elution was performed using Fractions containing the target product were collected and dried under reduced pressure, and methanol was added to the remaining solid to remove insoluble NaCl.
This operation was repeated twice, and the resulting solution was applied to a 300 ml column of Sephadex LH-20 and eluted with methanol. Fractions containing the target product were collected and concentrated under reduced pressure to obtain a white powder (-)-10-[N-
30.7 mg of (7-guanidinoheptanoyl)-α-hydroxyglycyl]-1,5,10-triazadecane trihydrochloride was obtained. Yield 57.4%. [α] D = −12.0° (C = 1, H 2 O) NMR (CH 3 OH−d 4 ): δ = 1.2 to 2.0 (CH 2 × 6),
2.24( CH2 ), 2.30( CH2 ), 2.9~3.4( NCH2 ×
5), 5.56 (CH) IR (KBr): ν (cm -1 ) = 3400, 2950, 1655, 1525,
1460, 1360, 1160, 1120, 1080 Reference example 6 Synthesis of N-(7-guanidinoheptanoyl)glycine hydrochloride 7-guanidinoheptanoic hydrochloride 10.0g
(44.70 mmol) and 6.17 g (53.64 mmol) of N-hydroxysuccinimide were dissolved in 50 ml of dimethylformamide, and a solution of 11.06 g (53.64 mmol) of dicyclohexylcarbodiimide in 20 ml of dimethylformamide was added dropwise under ice cooling. After dropping, the solution was stirred at room temperature for 2 hours to remove precipitated dicyclohexyl urea, and the solution was added dropwise to a solution of 7.49 g (53.64 mmol) of glycine ethyl ester hydrochloride and 7.54 ml of triethylamine in 10 ml of dimethylformamide, and the mixture was stirred at room temperature overnight. . The residual solid obtained by distilling off the solution was dissolved in 0.5M NaCl and diluted with 0.5M NaCl.
800ml of Diaion HP-20 adjusted with NaCl
0.5M NaCl2.5, water 5,8
It was eluted with 2% methanol water. Fractions containing the target product are collected, concentrated under reduced pressure, and dissolved in a syrupy form of N.
11.68 g of -(7-guanidinoheptanoyl)glycine ethyl ester hydrochloride was obtained. Yield 70.8%. N-(7-guanidinoheptanoyl)glycine ethyl ester hydrochloride 4.28 g (13.85 mmol)
Dissolved in 20ml of 50% methanol water and diluted with 1N−
16.6 ml of NaCl was added under ice cooling, and the mixture was stirred at room temperature for 1 hour. After adjusting the pH to 7.0, it was concentrated under reduced pressure, and 10 ml of water was added to the resulting residual solid, the pH was adjusted to 2.0, it was dissolved, and the mixture was dried under reduced pressure. The obtained N-(7-guanidinoheptanoyl)glycine hydrochloride was used in the next reaction without being purified. Reference Example 7 Synthesis of 8-(L-seryl)-1-cyano-3,8-diazaoctane hydrochloride 598 g (2.5 mol) of carbobenzoxy-L-serine and 317 g of N-hydroxysuccinimide
(2.75 mol) was dissolved in 2.5 mol of dioxane, and 576 g of dicyclohexylcarbodiimide was cooled on ice.
A solution of (2.75 mol) in dioxane (2) was added dropwise. After dropping, the solution was stirred overnight at room temperature to remove the precipitated dicyclohexyl urea, and the solution was poured with N-2
-cyanoethylbutane-1,4-diamine 530g
(3.75 mol) was added dropwise to a dioxane 1 solution, and the mixture was stirred at room temperature overnight. Add 1.5 liters of water to the reaction solution, concentrate under reduced pressure, add 2.5 liters of a saturated aqueous solution of NaHCO 3 to the obtained residual solid, and dilute with ethyl acetate (1.5 liters).
Extracted twice. The ethyl acetate layers were combined, washed twice with saturated brine, and dried over anhydrous Na 2 SO 4 . The residual solid obtained by distilling off the solvent (approximately 700 g) was diluted with 2.5 g of ethanol.
and ethanol saturated with hydrogen chloride gas was added until acidic. Take the precipitated crystals and
693 g of -(carbobenzoxy-L-seryl)-1-cyano-3,8-diazaoctane hydrochloride was obtained.
Yield 69.5%. mp151-153℃ [α] D -4.6゜(C=1, CH 3 OH) 8-(Carbobenzoxy-L-seryl) obtained above
-1-cyano-3,8-diazaoctane hydrochloride
Dissolve 350g (0.88mol) in methanol 4,
8.75 g of 10% palladium-carbon was added and stirred for 2 days in a hydrogen stream. The catalyst was removed and the liquid was concentrated under reduced pressure to obtain 233 g of syrupy 8-(L-seryl)-1-cyano-3,8-diazaoctane hydrochloride. It can be used as a raw material for the next reaction without purification. Reference example 8 (±)-N-(7-guanidinoheptanoyl)-
Synthesis of α-methoxyglycine hydrochloride 7-guanidinoheptanamide hydrochloride 10g
(44.9 mmol) was heated and dissolved in 150 ml of dimethylformamide, 4.55 g (49.4 mmol) of glyoxylic acid and 150 ml of acetone were added, and the mixture was refluxed in an oil bath at 90° C. for 3 hours. The residual solid obtained by distilling off the solvent was dissolved in water.
Dissolve in 100ml, CM-Sephadex C-25
(Na type) It was applied to a 1100ml column and eluted with water.
Collect fractions containing the target product, concentrate under reduced pressure,
9.36 g of N-(7-guanidinoheptanoyl)-α-hydroxyglycine was obtained. mp165-6℃ (decomposition), yield 80.1%. 9.36 g (36.0 mmol) of N-(7-guanidinoheptanoyl)-α-hydroxyglycine was dissolved in 300 ml of anhydrous methanol, 5 ml of concentrated sulfuric acid was added under ice cooling, and the mixture was stirred at room temperature for 3 hours. Concentrate the reaction solution to about 100ml under reduced pressure, and add 200ml of water.
and adjust the pH to 10.0 with 2N-NaOH.
After 1 hour, the pH was adjusted to 6.5 and the residue obtained by concentration under reduced pressure was converted into CM-Sephadex C-25 (Na type).
It was applied to a 1100ml column and eluted with water. Fractions containing the target product were collected, concentrated under reduced pressure, and (±)-N
7.90 g of -(7-guanidinoheptanoyl)-α-methoxyglycine was obtained. mp201~2℃ (decomposition) yield 80.0%. NMR (CH 3 OH−d 4 ): δ = 1.2 to 1.9 (CH 2 ×4),
2.30 ( CH2 ), 3.17 ( NCH2 ), 3.32 ( OCH3 ), 5.23
(CH) IR (KBr): ν (cm -1 ) = 3370, 3275, 2930, 1655,
1580, 1540, 1475, 1415, 1330, 1195, 1120,
1090, 985, 800 (±)-N-(7-guaninoheptanoyl)-α
-Methoxyglycine 7.80g (2.84 mmol) 1N
-Dissolved in 28.4ml of HCl and concentrated under reduced pressure to obtain a white powder (±)-N-(7-guanidinoheptanoyl)-
8.83g of α-methoxyglycine hydrochloride was obtained. Reference example 9 (-)-N-(7-guanidinoheptanoyl)-
Synthesis of α-methoxyglycine hydrochloride (±)-N-(7-guanidinoheptanoyl)-α-methoxyglycine hydrochloride obtained in Reference Example 8 6.58
(21.2 mmol) and 4.88 g (42.4 mmol) of N-hydroxysuccinimide are dissolved in 70 ml of dimethylformamide, and 4.87 g (21.2 mmol) of L-phenylalanine ethyl ester hydrochloride and 2.98 ml of triethylamine are added. Under ice cooling, a solution of 8.75 g (42.4 mmol) of dicyclohexylcarbodiimide in 30 ml of dimethylformamide was added dropwise, and after the addition, the mixture was stirred at room temperature for 4 hours. Precipitated dicyclohexyl urea was removed, and the liquid was concentrated under reduced pressure. The remaining solid obtained was dissolved in 300 ml of water, applied to a column of CM-Sephadex C-25 (Na type) 1, washed with water (1), and eluted with 0.2 M NaCl. did. The fractions containing the target product were collected and concentrated under reduced pressure.The resulting residue was adjusted with water.Diaion HP-20 1
column, 1.5% water, 22% methanol water
, 50% methanol water 4 were sequentially eluted. The eluate of 50% methanol water containing the target product was concentrated under reduced pressure to obtain 5.31 g of N-(7-guanidinoheptanoyl)-α-methoxyglycyl-L-phenylalanine ethyl ester hydrochloride. Yield 51.6%. NMR( CH3OHd4 )δ: 1.17( CH3 ), 1.1-1.9
(CH 2 × 4), 2.27 (CH 2 ), 2.9-3.4 (5H), 3.31
(OCH 3 ), 4.11 (CH 2 ), 5.30 (CH), 7.20 (C 6 H 5 ) N-(7-guanidinoheptanoyl)- obtained above
Dissolve 5.21 g (10.7 mmol) of α-methoxyglycyl-L-phenylalanine ethyl ester hydrochloride in 35 ml of methanol, and add 1N-NaOH under ice cooling.
Added 12.8ml and stirred for 1.5 hours. Adjust the pH to 6.5 and concentrate the residual solid (about 5.7 g) under reduced pressure.
0.05M sodium acetate-hydrochloric acid buffer (PH5.0) 100
ml, 10 mg of carboxypeptidase P (manufactured by Hinshuzo Co., Ltd.) was added, and the mixture was shaken at 30°C for 8 hours. The residue obtained by distilling off the solvent was
-20 4 column and eluted with water. Collect the fractions containing the target product, concentrate to about 30 ml, adjust the pH to 2.1, and add CM-Sephadex C.
-25 (Na type) was applied to a 500ml column and eluted with water. Fractions containing the target product were collected and concentrated under reduced pressure to give (-)-N-(7-guanidinoheptanoyl)-
1.16g of α-methoxyglycine was obtained. Yield 32.6
%. mp197-198℃ (decomposition) [α] D -20.2゜ (C=1, H 2 O) (-)-N-(7-guanidinoheptanoyl)-
1g (3.65 mmol) of α-methoxyglycine
By dissolving in 3.65 ml of 1N-HCl and concentrating under reduced pressure, (-)-N-(7-guanidinoheptanoyl)-α-methoxyglycine hydrochloride as a white powder was obtained.
Obtained 1.13g. Reference example 10 (+)-N-(7-guanidinoheptanoyl)-
Synthesis of α-benzyloxyglycine hydrochloride N-(7-guanidinoheptanoyl)-α-hydroxyglycine obtained in the same manner as Reference Example 8 6.94
g (26.7 mmol) to 130 ml of benzyl alcohol
and 6.5 ml of concentrated hydrochloric acid were added and stirred at 65°C for 5 hours. The reaction solution was added to a mixture of 130 ml of water and 130 ml of methanol, the pH was adjusted to 12.0 with 2N-NaOH, and the mixture was stirred at room temperature for 2 hours. The pH was adjusted to 7.0, methanol was distilled off under reduced pressure, the aqueous layer was separated, and the benzyl alcohol layer was further extracted twice with water. Combine the water layer,
After washing twice with ethyl acetate, it was concentrated to about 50 ml under reduced pressure, and CM-Sephadex C-25 (Na type)
It was applied to a 500ml column and eluted with water. Fractions containing the target product are collected, concentrated under reduced pressure, and (±)−
3.66 g of N-(7-guanidinoheptanoyl)-α-benzyloxyglycine was obtained. Yield 39.1%. mp197-199℃ (decomposition) NMR (CH 3 OH-d 4 ): δ = 1.2-1.8 (CH 2 × 4),
2.25 ( CH2 ), 3.04 ( NCH2 ), 4.58 ( CH2 ), 5.39
(CH), 7.28 (C 6 H 5 ) IR (KBr): ν (cm -1 ) = 3400, 3270, 3150, 2925,
1675, 1625, 1575, 1520, 1470, 1405, 1325,
1240, 1205, 1060, 975, 915, 800, 750, 700,
605 (±)-N-(7-guanidinoheptanoyl)-
(±)-N-(7-guanidinoheptanoyl)-α-benzyloxyglycine hydrochloride obtained by dissolving 1.64 g (4.68 mmol) of α-benzyloxyglycine in 4.68 ml of 1N HCl and drying it under reduced pressure. Dissolved in 75 ml of formamide, 4.08 g (9.36 mmol) of N-hydroxysuccinimide, 1.08 g of L-phenylalanine ethyl ester hydrochloride.
(4.68 mmol), triethylamine 0.65 ml (4.68
Then, under ice-cooling, a solution of 1.93 g (9.36 mmol) of dicyclohexylcarbodiimide in 10 ml of dimethylformamide was added dropwise. After the addition, the mixture was stirred at room temperature overnight to remove precipitated dicyclohexyl urea. The residue obtained by concentrating the liquid under reduced pressure was applied to a 500ml column of Diaion HP-20 prepared with water.
It was sequentially eluted with 1.5 ml of 75% methanol water. The eluate of 75% methanol water containing the target product was collected and concentrated under reduced pressure to obtain N-(7-guanidinoheptanoyl)-α.
1.04 g of -benzyloxyglycyl-L-phenylalanine ethyl ester hydrochloride was obtained. Yield 39.5
%. NMR ( CH3OH - d4 ): δ=1.19 and 1.22 ( CH3 ),
1.1~2.0 ( CH2 x 4), 2.28 ( CH2 ), 3.0~3.4
(5H), 4.14 and 4.17 (CH 2 ), 4.58 (CH 2 ), 5.53
(CH), 7.22 (C 6 H 5 ), 7.33 (C 6 H 5 ) N-(7-guanidinoheptanoyl)-α-benzyloxyglycyl-L-phenylalanine ethyl ester hydrochloride 1.00 g (1.78 mmol) ) in 10 ml of methanol, and add 2.14 ml of 1N-NaOH under ice-cooling.
ml and stirred for 1.5 hours. Add 20ml of water,
After adjusting the pH to 7.0, the residual solid obtained by concentration under reduced pressure was
0.05M sodium acetate-hydrochloric acid buffer (PH5.0) 270
ml and 30 ml of methanol, add 10 mg of carboxypeptidase P (manufactured by Hin Shuzo Co., Ltd.), and incubate at 30°C.
It was shaken for 7 hours. After concentrating to about 50 ml, remove the precipitate and pour the liquid into a
column and eluted with water. Collect fractions containing the target product and extract (+)-N-(7-guanidinoheptanoyl)-α-benzyloxyglycine.
256.2 mg was obtained. Yield 41.1%. [α] D +11.5° (C=1,
(CH 3 OH) [Effects of the Invention] According to the present invention, there is no need for the synthesis and deprotection steps of the selective amino-protected form of spermidine that were required in conventional synthesis methods, and N, which is an extremely cheap raw material, is used. -2-cyanoethylbutane-1,4-
Spagarin analogs can be synthesized from diamines in a short process. Therefore, the present invention provides an economically advantageous method for producing spagarin-related compounds.

Claims (1)

【特許請求の範囲】 1 下記一般式: (式中、R1は水素原子、ヒドロキシ低級アルキ
ル基、低級アルコキシ基又はベンジルオキシ基を
示し、nは6〜8の整数を示す)で表されるスパ
ガリン関連ニトリル化合物及びそれらの塩。 2 下記一般式: (式中、R1は水素原子、ヒドロキシ低級アルキ
ル基、低級アルコキシ基又はベンジルオキシ基を
示し、nは6〜8の整数を示す)で表される化合
物又はその反応性誘導体と、下記式: H2N(CH24NH(CH22CN ……〔〕 で表されるN−2−シアノエチルブタン−1,4
−ジアミンとを縮合させることを特徴とする下記
一般式: (式中、R1及びnは上記式と同義である)で
表されるスパガリン関連ニトリル化合物又はその
塩の製造法。 3 下記一般式: (式中、nは6〜8の整数を示す)で表される化
合物又はその反応性誘導体と、下記一般式: (式中、R2は水素原子又はヒドロキシ低級アル
キル基を示す)で表される化合物とを縮合させる
ことを特徴とする下記一般式a: (式中、R2及びnは前記と同義である)で表さ
れるスパガリン関連ニトリル化合物又はその塩の
製造法。
[Claims] 1. The following general formula: (wherein, R 1 represents a hydrogen atom, a hydroxy lower alkyl group, a lower alkoxy group, or a benzyloxy group, and n represents an integer of 6 to 8) and salts thereof. 2 General formula below: (In the formula, R 1 represents a hydrogen atom, a hydroxy lower alkyl group, a lower alkoxy group, or a benzyloxy group, and n represents an integer of 6 to 8) or a reactive derivative thereof, and the following formula: H2N ( CH2 ) 4NH ( CH2 ) 2CN ...N-2-cyanoethylbutane-1,4 represented by []
- The following general formula is characterized by condensing with diamine: A method for producing a spagarin-related nitrile compound or a salt thereof represented by the formula (wherein R 1 and n have the same meanings as the above formula). 3 General formula below: (wherein n represents an integer of 6 to 8) or a reactive derivative thereof, and the following general formula: (In the formula, R 2 represents a hydrogen atom or a hydroxy lower alkyl group.) The following general formula a is characterized by condensing with a compound represented by: A method for producing a spagarin-related nitrile compound or a salt thereof represented by the formula (wherein R 2 and n are as defined above).
JP3429984A 1984-02-27 1984-02-27 Spergualin-relating nitrile compound and its preparation Granted JPS60178853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3429984A JPS60178853A (en) 1984-02-27 1984-02-27 Spergualin-relating nitrile compound and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3429984A JPS60178853A (en) 1984-02-27 1984-02-27 Spergualin-relating nitrile compound and its preparation

Publications (2)

Publication Number Publication Date
JPS60178853A JPS60178853A (en) 1985-09-12
JPH0254823B2 true JPH0254823B2 (en) 1990-11-22

Family

ID=12410276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3429984A Granted JPS60178853A (en) 1984-02-27 1984-02-27 Spergualin-relating nitrile compound and its preparation

Country Status (1)

Country Link
JP (1) JPS60178853A (en)

Also Published As

Publication number Publication date
JPS60178853A (en) 1985-09-12

Similar Documents

Publication Publication Date Title
KR870000656B1 (en) Preparation of n-(4-(3-aminopropyl)-aminobutyl)-2-(w-guanidino-fatty-acid-amido)-2-substituted-ethanamide and salt thereof
CA1199641A (en) Spergualin-related compounds and process for production thereof
NZ227113A (en) Synthesis of amikacin
US4430346A (en) Novel carcinostatic substance and process for synthesis thereof
KR900001076B1 (en) Process for the preparation of n-(4-(3-aminopropyl) aminobutyl)-2,2-dihydroxy ethaneamide
JPH0254823B2 (en)
KR920003838B1 (en) Process for the preparation of 1-n |(omega-amino-(alpha)-hidroxy alkanoyl)¨-2',3'-dideoxy kanamycin a
US4892939A (en) Oligopeptidyl-5-fluorouridine compounds and process for preparing the same
EP0309971A2 (en) New spergualin-related compound and pharmaceutical composition
AU658728B2 (en) N-methyldeacetylcolchiceinamide derivatives
US5061787A (en) Novel spergualin-related compounds and compositions
US4990536A (en) Immunopotentiator and spergualin-related compound therefor
IKEDA et al. Total syntheses of bellenamine and its isomers
EP0212606B1 (en) Spergualin-related nitrile compounds containing a phenylene group and a process for producing the same
US5137917A (en) Spergualin-related compound and use thereof
JPH05500214A (en) Novel synthesis method for tertiary alkyl esters
Shin et al. Dehydrooligopeptides. VIII. Convenient syntheses of various dehydrotyrosine derivatives protected with useful N, O-protecting groups via N-carboxy dehydrotyrosine anhydrides.
CA2322424A1 (en) 5-imino-13-deoxy anthracycline derivatives, their uses, and processes for preparing them
KR100450607B1 (en) Process for preparing Galamin
JPH09511765A (en) 15-deoxyspergualin analogues, their therapeutic use and methods for their preparation
CA1083175A (en) .alpha.-SUBSTITUTED NEGAMYCIN DERIVATIVES AND SYNTHESES
CA2094753A1 (en) 5,6,7,9-tetrahydro-1,2,3,-trimethoxy-9-oxobenzo[.alpha.]heptalene derivative
JPS59176236A (en) Beta-adrenalin active antagonistic compound and derivatives
KR800001590B1 (en) Process for the preparation of 1-(l-(-)-r-amino- -hydroxy-butyryl)-kanamycin a
JPS6011718B2 (en) Novel hortimycin B derivative and its production method