JPH0254775B2 - - Google Patents

Info

Publication number
JPH0254775B2
JPH0254775B2 JP59113917A JP11391784A JPH0254775B2 JP H0254775 B2 JPH0254775 B2 JP H0254775B2 JP 59113917 A JP59113917 A JP 59113917A JP 11391784 A JP11391784 A JP 11391784A JP H0254775 B2 JPH0254775 B2 JP H0254775B2
Authority
JP
Japan
Prior art keywords
pressure
pressurized fluid
stretching
polymeric material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59113917A
Other languages
Japanese (ja)
Other versions
JPS60257219A (en
Inventor
Atsushi Aoshima
Tamikuni Komatsu
Sachio Enoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59113917A priority Critical patent/JPS60257219A/en
Publication of JPS60257219A publication Critical patent/JPS60257219A/en
Publication of JPH0254775B2 publication Critical patent/JPH0254775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/222Stretching in a gaseous atmosphere or in a fluid bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0088Molecular weight

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高分子材料長尺体を加圧下で連続的
に引張延伸するための装置、さらに詳しくいえ
ば、必要に応じて加熱媒体である加圧流体を用い
て等方的に圧力を加えながら、該加圧流体の移動
方向に対して、向流方向に高分子材料長尺体を延
伸することにより、その物性を改善するための装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for continuously tension-stretching a long polymeric material under pressure, and more specifically, to an apparatus for continuously stretching a long polymeric material under pressure. This invention relates to an apparatus for improving the physical properties of a long polymeric material by stretching it in a countercurrent direction to the moving direction of the pressurized fluid while applying pressure isotropically using a pressurized fluid. It is something.

従来の技術 一般に、ポリアセタールなどの高分子材料は、
延伸速度を速くすると物性が低下するという傾向
がみられる〔ポリマー(Polymer)、第19巻、第
1338ページ〕。このような傾向は、本発明者らが
先に提案した高分子材料の連続加圧延伸装置(特
願昭59−72029号)においてもみられた。これは、
延伸速度を上げることにより、高分子材料に対す
る熱の供給あるいは延伸時の熱の除去など、熱の
コントロールが不十分となるため、延伸材料の温
度が不均一となることに起因すると考えられる。
例えば、先願の該装置においては、必要に応じて
加熱媒体でもある加圧流体の移動方向と高分子材
料の延伸方向が同一方向であるので、延伸速度を
速くすると、延伸材料と熱媒体との熱の授受が遅
くなつて、該材料の温度が不均一となり、その結
果物性が低下する。もちろん、該装置において
も、延伸速度を速くした場合、それ以上に加圧流
体の流速を速くすることにより、前記の問題は解
決されうる。しかしながら、このように、加圧流
体の流速を延伸速度以上に速めることは実用上好
ましいことではない。
Conventional technology Generally, polymeric materials such as polyacetal are
There is a tendency for physical properties to decrease as the stretching speed increases [Polymer, Vol. 19, Vol.
1338 pages]. Such a tendency was also observed in the continuous press-stretching apparatus for polymeric materials proposed by the present inventors (Japanese Patent Application No. 72029/1982). this is,
This is thought to be due to the fact that by increasing the stretching speed, heat control such as supply of heat to the polymeric material or removal of heat during stretching becomes insufficient, resulting in non-uniform temperature of the stretched material.
For example, in the device of the previous application, the moving direction of the pressurized fluid, which is also a heating medium if necessary, and the stretching direction of the polymeric material are the same, so if the stretching speed is increased, the stretching material and the heating medium are The transfer of heat becomes slow, and the temperature of the material becomes non-uniform, resulting in a decrease in physical properties. Of course, even in this apparatus, the above problem can be solved by increasing the flow rate of the pressurized fluid even more when the stretching speed is increased. However, it is not practically preferable to increase the flow rate of the pressurized fluid higher than the stretching speed.

発明が解決しようとする問題点 本発明者らは、このような事情に鑑み、高分子
材料の延伸速度を速くしても、その物性を改善し
うる、実用的な高分子材料の連続加圧延伸装置を
提供すべく鋭意研究を重ねた結果、必要に応じて
加熱媒体でもある加圧流体を用いて等方的に圧力
を加えながら、該加圧流体の移動方向に対して、
向流方向に高分子材料を延伸することにより、そ
の目的を達成しうることを見出し、この知見に基
づいて本発明を完成するに至つた。
Problems to be Solved by the Invention In view of the above circumstances, the present inventors have developed a practical continuous pressurization method for polymeric materials that can improve the physical properties even if the stretching speed of the polymeric material is increased. As a result of extensive research in order to provide a stretching device, we have found that while applying pressure isotropically using a pressurized fluid that is also a heating medium as necessary, in the direction of movement of the pressurized fluid,
The inventors have discovered that the objective can be achieved by stretching a polymeric material in the countercurrent direction, and have completed the present invention based on this knowledge.

問題点を解決するための手段 すなわち、本発明は、加圧流体を満たした実質
的に密閉状態の耐圧容器と、それを貫通して連続
的に移動する高分子材料長尺体に対し、引張応力
を付与するための延伸機構とを備えた連続加圧延
伸装置において、該耐圧容器の高分子材料長尺体
の供給口側に加圧流体排出口を、取出口側に加圧
流体導入口をそれぞれ設け、かつ供給口と取出口
の両方を、それらを通過する長尺体との間に生じ
る間隙から、少量の加圧流体は流出するが耐圧容
器内の圧力の実質的な低下をもたらさない寸法と
するか、あるいは取出口のみを上記の構造とし、
供給口を長尺体は円滑に通過するが、長尺体との
間に生じる間隙から耐圧容器内の加圧流体が実質
的に漏出しない寸法としたことを特徴とする高分
子材料の連続加圧延伸装置を提供するものであ
る。
Means for Solving the Problems In other words, the present invention provides a pressure-resistant container filled with a pressurized fluid in a substantially closed state and an elongated body of polymeric material that continuously moves through the container. In a continuous pressurized stretching device equipped with a stretching mechanism for applying stress, a pressurized fluid outlet is provided on the supply port side of the elongated polymeric material of the pressure-resistant container, and a pressurized fluid inlet port is provided on the outlet side of the elongated polymeric material body of the pressure-resistant container. are provided respectively, and both the supply port and the discharge port are provided with a gap formed between the elongated body passing through them, through which a small amount of pressurized fluid flows out, but does not result in a substantial decrease in the pressure within the pressure vessel. Or, only the outlet has the above structure.
Continuous processing of a polymeric material, characterized in that the long body passes smoothly through the supply port, but the pressurized fluid in the pressure container does not substantially leak out from the gap created between the long body and the long body. The present invention provides a rolling and stretching device.

本発明の装置は、耐圧容器と延伸機構を主体と
して構成される。この耐圧容器の本体は所要の処
理圧力に耐えられるものであればどのような材
質、形状のものでもよく、特に制限はないが、耐
圧性、耐久性、処理効率などの点で、高強度、耐
食性金属で作られた円筒状容器又は角筒状容器を
用いるのが有利である。このような金属の例とし
ては、ステンレス鋼、クロム鋼、ニツケル鋼、
SCM鋼、鉄鋼などを挙げることができる。
The apparatus of the present invention is mainly composed of a pressure container and a stretching mechanism. The main body of this pressure-resistant container may be made of any material and shape as long as it can withstand the required processing pressure, and there are no particular restrictions, but in terms of pressure resistance, durability, processing efficiency, etc. It is advantageous to use cylindrical containers or prismatic containers made of corrosion-resistant metal. Examples of such metals include stainless steel, chrome steel, nickel steel,
Examples include SCM steel and steel.

また、この中に満たされる加圧流体は、液体、
気体のいずれでもよく、液体の例としては、水、
シリコーンオイル、鉱油、植物油、グリセリン、
グリース、ポリエチレングリコール、ポリエチレ
ンなどを、気体の例としては、空気、水蒸気、窒
素、アルゴン、ヘリウム、二酸化炭素などをそれ
ぞれ挙げることができる。使用に際しては、処理
されるべき高分子材料に悪影響を与えないものを
選ぶことが必要なことはいうまでもない。この加
圧流体としては、取扱いの容易さの点で液体を用
いるのが有利である。
In addition, the pressurized fluid filled in this is a liquid,
It can be any gas; examples of liquids include water,
silicone oil, mineral oil, vegetable oil, glycerin,
Examples of the gas include grease, polyethylene glycol, polyethylene, etc., and air, water vapor, nitrogen, argon, helium, carbon dioxide, etc., respectively. It goes without saying that when using it, it is necessary to select a material that does not have an adverse effect on the polymeric material to be treated. It is advantageous to use a liquid as this pressurized fluid in terms of ease of handling.

該耐圧容器本体には、高分子材料の供給口と取
出口とが対向面に穿設されており、高分子材料は
これらを通して、引張応力を加えられながら連続
的に移動しうるようになつている。
The pressure vessel main body is provided with a supply port and a discharge port for the polymeric material on opposing surfaces, and the polymeric material can continuously move through these while being subjected to tensile stress. There is.

該供給口の形状は、処理されるべき高分子材料
長尺体の断面形状に対応し、かつその寸法につい
ては、長尺体は円滑に通過しうるが、耐圧容器内
の加圧流体は該容器内の圧力が実質的に低下しな
いように少量流出させる程度の大きさでよいし、
漏出が実質的に生じないように選んでもよい。こ
の寸法は使用される流体の粘度、耐圧容器内の圧
力を考慮して、決められるが、実際には、供給口
とそれを通過する長尺体との間に生じる間隙を
0.05〜2.0mmの範囲内で設定することによつて行
われる。他方、高分子材料の取出口は、その形状
として処理された高分子材料長尺体の断面形状に
ほぼ適合したものを選ぶ点では供給口と同じであ
るが、その寸法は、やや大きくして、取出口とそ
れを通過する長尺体との間に生じる間隙から、耐
圧容器内の加圧流体がある程度流出しうるように
設定する必要がある。これは、加圧流体の粘度、
耐圧容器内の圧力などを考慮し、間隙の大きさを
0.01〜2.0mmの範囲で選ぶことによつて行われる。
また、所望に応じ供給口の構造も前記の取出口と
同じ構造にすることができる。
The shape of the supply port corresponds to the cross-sectional shape of the elongated body of polymeric material to be treated, and its dimensions are such that the elongated body can pass through it smoothly, but the pressurized fluid in the pressure-tight container cannot pass through it. It may be large enough to allow a small amount to flow out without substantially reducing the pressure inside the container,
It may be chosen such that substantially no leakage occurs. This dimension is determined by considering the viscosity of the fluid used and the pressure inside the pressure container, but in reality, it is determined by the gap created between the supply port and the long object passing through it.
This is done by setting within the range of 0.05 to 2.0 mm. On the other hand, the outlet for the polymeric material is selected in the same way as the inlet in that its shape almost matches the cross-sectional shape of the processed long polymeric material, but its dimensions are slightly larger. It is necessary to set it so that the pressurized fluid in the pressure-resistant container can flow out to some extent from the gap created between the outlet and the elongated body passing through it. This is the viscosity of the pressurized fluid,
The size of the gap should be determined taking into consideration the pressure inside the pressure vessel.
This is done by selecting a value within the range of 0.01 to 2.0 mm.
Furthermore, if desired, the structure of the supply port can be the same as that of the above-mentioned outlet.

本発明の耐圧容器には、高分子材料の供給口側
近傍適所に加圧流体排出口が、また取出口側近傍
適所に加圧流体導入口がそれぞれ設けられてい
る。そして、これらを介して、加圧流体が耐圧容
器内を連続的に、高分子材料長尺体の移動方向と
逆の方向に向かつて流れるので、加圧流体の高分
子材料長尺体に対する相対速度が速くなり、該加
圧流体からの熱の授受が速やかに行われて延伸材
料の温度が均一に保たれ、その結果、延伸速度が
速くなつても物性の改善がなされるという効果が
生じる。また、この加圧流体は、取出口から処理
された長尺体と共に流出しても、耐圧容器内の圧
力の低下なしに、該長尺体を等方的に加圧する。
さらに、本発明の装置においては、所望により供
給口、取出口及びその近傍付近の流体の温度調節
の手段、具体的には流体の流れ調節、冷却などの
手段を施すことができる。また、圧力調節の補助
手段として、耐圧容器、あるいは流体の系路に圧
力調節閉のコントロールバルブ、弁などを設ける
場合もある。
The pressure container of the present invention is provided with a pressurized fluid outlet at a suitable location near the polymeric material supply port, and a pressurized fluid inlet at a suitable location near the takeout port. Through these, the pressurized fluid continuously flows in the pressure container in the opposite direction to the moving direction of the elongated polymeric material, so that the relative relationship of the pressurized fluid to the elongated polymeric material increases. As the speed increases, heat is quickly exchanged from the pressurized fluid, and the temperature of the stretched material is maintained uniformly, resulting in the effect that physical properties are improved even when the stretching speed is increased. . Further, even if this pressurized fluid flows out from the outlet together with the treated elongate object, the elongate object is isotropically pressurized without a decrease in the pressure within the pressure container.
Furthermore, in the apparatus of the present invention, means for adjusting the temperature of the fluid at the supply port, the outlet, and the vicinity thereof, specifically, means for controlling the flow of the fluid, cooling, etc., can be provided as desired. Further, as an auxiliary means for pressure regulation, a pressure regulating/closing control valve, valve, etc. may be provided in a pressure-resistant container or in a fluid system.

加圧流体の導入及び排出は、それぞれ独立して
行うこともできるが、エネルギーの有効利用の見
地から排出された流体を、必要に応じ調圧弁、コ
ンプレツサーなどを介して必要な圧に調整したの
ち、導入孔へ循環させるのが好ましい。また、取
出口から高分子材料長尺体と共に流出した圧力流
体も、必要に応じ適当な手段で捕集し、循環再使
用することができる。
The pressurized fluid can be introduced and discharged independently, but from the standpoint of effective energy use, the discharged fluid should be adjusted to the required pressure via a pressure regulating valve, compressor, etc. as necessary. , it is preferable to circulate it to the introduction hole. Moreover, the pressure fluid flowing out from the outlet together with the elongated polymeric material can be collected by appropriate means as necessary and recycled for reuse.

本発明装置においては、高分子材料の延伸を加
熱下で行うため、あるいは延伸により生じる熱で
高められた加圧流体の温度を下げるために、所望
に応じ加熱手段、冷却手段などを設けることがで
きる。この加熱手段としては、スチームや電熱ヒ
ーターによる外部加熱方式や内部挿入した加熱方
式、高周波誘電方式など、従来の延伸装置に慣用
されている任意の手段を用いることができる。そ
して、この加熱手段は、耐圧容器の外側に設けて
もよいし、また加圧流体循環系路の任意の個所に
設けてもよい。あるいは、高分子材料を耐圧容器
に供給する直前に、特別に予熱帯域を設けて、加
熱することもできる。さらに、延伸速度、装置条
件によつては、延伸される高分子材料近辺の熱媒
体の流速を上げるために、例えば充填材やローラ
ーなどを入れて、局所的にデツドスペースを少な
くすることも、有効である。
In the apparatus of the present invention, heating means, cooling means, etc. may be provided as desired in order to stretch the polymeric material under heating or to lower the temperature of the pressurized fluid that has been increased by the heat generated by the stretching. can. As this heating means, any means commonly used in conventional stretching apparatuses can be used, such as an external heating method using steam or an electric heater, an internal heating method, or a high frequency dielectric method. The heating means may be provided outside the pressure vessel, or may be provided at any location in the pressurized fluid circulation system. Alternatively, a special preheating zone can be provided to heat the polymeric material just before it is fed into the pressure vessel. Furthermore, depending on the stretching speed and equipment conditions, it may be effective to reduce the dead space locally by inserting fillers or rollers, for example, in order to increase the flow rate of the heating medium near the polymer material being stretched. It is.

次に、延伸機構としては、普通の高分子材料長
尺体の延伸に際して慣用されている手段の中から
任意のものを随時選択できるが、通常は、回転比
の異なる供給ロールと引出ロールとの組合せが用
いられる。その他、ベルト方式、キヤタピラー方
式などを用いることもできる。
Next, as the stretching mechanism, any one can be selected from among the means commonly used for stretching a long body of ordinary polymeric material, but usually a supply roll and a pull-out roll with different rotation ratios are used. A combination is used. In addition, a belt method, a track pillar method, etc. can also be used.

本発明装置により処理しうる高分子材料の例と
しては、ポリオキシメチレン、ポリエチレンテレ
フタレート、ナイロン6、ナイロン66、ポリエチ
レン、ポリプロピレン、ポリテトラフルオロエチ
レンなどの結晶性プラスチツクや、ポリパラフエ
ニレンテレフタルアミド、ポリパラフエニレンベ
ンズビスチアゾールなどの芳香族のポリアミド及
びイミド、ポリメタクリル酸メチル、ポリアクリ
ロニトリルなどの非晶性プラスチツクを挙げるこ
とができるが、これらに制限されるものではな
い。また、これらの高分子材料の形状としては、
例えばフイラメント、フイルム、テープ、シー
ト、長尺板、チユーブ、丸棒、角棒、異形断面長
尺体などを挙げることができる。
Examples of polymeric materials that can be treated with the apparatus of the present invention include crystalline plastics such as polyoxymethylene, polyethylene terephthalate, nylon 6, nylon 66, polyethylene, polypropylene, polytetrafluoroethylene, polyparaphenylene terephthalamide, Examples include, but are not limited to, aromatic polyamides and imides such as polyparaphenylenebenzbisthiazole, and amorphous plastics such as polymethyl methacrylate and polyacrylonitrile. In addition, the shapes of these polymer materials are as follows:
Examples include filaments, films, tapes, sheets, long plates, tubes, round bars, square bars, irregular cross-section long bodies, and the like.

次に、添付図面に従つて本発明の実施態様をさ
らに詳細に説明する。
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

第1図及び第2図は、本発明装置の1例を示す
断面説明図であつて、高分子材料長尺体Aは、繰
出ローラ1から供給ローラ2,2′を経て加圧延
伸装置Bへ供給される。なお、高分子材料長尺体
の供給は複数本にすることもできる。この延伸装
置は、供給口12を有する保圧部材3と取出口1
3を有する保圧部材4を両端に備え、かつ供給口
側に加圧流体排出口14を、また取出口側に加圧
流体導入口15をそれぞれ設けた円筒状容器5か
ら構成され、この中は媒体として加圧流体Cが満
たされている。長尺体Aは、この加圧延伸装置B
中を通過する間に、加圧流体Cにより所要の圧力
で加圧され、かつ円筒状容器5の外側に配置され
たヒーター11,11′により加圧流体Cを介し
て加熱されながら延伸処理されたのち、取り出さ
れ、引取ローラ6,6′を経て巻取ローラ7に巻
き取られる。上記の保持部材3,4にそれぞれ設
けられた供給口12と取出口13は、長尺体Aは
円滑に通すが、延伸装置B内の圧力低下をもたら
さないようなシールを有しており、このシール
は、開口と通過物体との間隙から流体を流出させ
て、その際の圧力損失で保圧しうるように開口を
適度に調整することによつて行われる。
FIGS. 1 and 2 are cross-sectional explanatory views showing an example of the apparatus of the present invention, in which a long polymeric material A is passed from a feeding roller 1 to supply rollers 2 and 2' to a pressure-stretching device B. supplied to Note that a plurality of elongated polymeric material bodies can be supplied. This stretching device includes a pressure holding member 3 having a supply port 12 and a take-out port 1.
It consists of a cylindrical container 5 equipped with a pressure retaining member 4 having a diameter of 3 at both ends, a pressurized fluid outlet 14 on the supply port side, and a pressurized fluid inlet port 15 on the outlet side. is filled with pressurized fluid C as a medium. The elongated body A is passed through this pressurized stretching device B.
While passing through the cylindrical container 5, it is pressurized to a required pressure by the pressurized fluid C, and is stretched while being heated by the heaters 11 and 11' arranged outside the cylindrical container 5 via the pressurized fluid C. Thereafter, it is taken out, passed through take-up rollers 6 and 6', and then wound onto a take-up roller 7. The supply port 12 and the take-out port 13 provided in the holding members 3 and 4, respectively, have seals that allow the elongated body A to pass through smoothly but do not cause a pressure drop in the stretching device B. This sealing is achieved by appropriately adjusting the opening so that the fluid can flow out from the gap between the opening and the object passing through, and the pressure loss caused at that time can be maintained.

次に加圧流体導入口15から導入される加圧流
体と加圧流体排出口14から排出される加圧流体
とはそれぞれ独立に用意してもよいが、エネルギ
ー消費をできるだけ少なくするため、両者を管路
18,19及び加圧流体溜め21によつて連結
し、コンプレツサー8を用いて循環させる。ま
た、加圧流体Cの加熱は、前記のような円筒状容
器5の外側に配置したヒーター11,11′によ
る代りに循環路の適所に設けた加熱器によつて行
うこともできる。圧力の調整は、調圧弁9,10
によつて行われる。
Next, the pressurized fluid introduced from the pressurized fluid inlet 15 and the pressurized fluid discharged from the pressurized fluid outlet 14 may be prepared independently, but in order to reduce energy consumption as much as possible, both are connected by pipes 18, 19 and a pressurized fluid reservoir 21, and circulated using a compressor 8. Further, the pressurized fluid C can be heated by a heater placed at an appropriate position in the circulation path instead of using the heaters 11, 11' placed outside the cylindrical container 5 as described above. The pressure is adjusted using pressure regulating valves 9 and 10.
It is carried out by.

処理された長尺体と共に取出口13から流出す
る加圧流体は捕集室16で捕集され、管路20を
介して循環使用される。また、供給口側の捕集室
17と管路20′は必要に応じて設けることがで
きる。
The pressurized fluid flowing out from the outlet 13 together with the treated elongated body is collected in the collection chamber 16 and circulated through the pipe 20 for use. Further, the collection chamber 17 and the conduit 20' on the supply port side can be provided as necessary.

本発明装置は単一の耐圧容器から構成されても
よいし、また第2図に示すように複数個の耐圧容
器B,B′を含んでいてもよい。後者の場合、各
耐圧容器における処理条件は同一にしてもよい
し、また異なつたものとし、数段階で所望の延伸
を行うこともできる。さらに、必要に応じ予熱
器、冷却器、洗浄器、熟成器、延伸体に付着した
液体を除いて該流体を回収するための液体回収部
などを組み込むこともできる。また、本発明の装
置は横長に設置して延伸してもよいし、縦長に設
置して垂直方向に延伸してもよい。
The apparatus of the present invention may be constructed from a single pressure vessel, or may include a plurality of pressure vessels B, B' as shown in FIG. In the latter case, the processing conditions in each pressure container may be the same or may be different, and the desired stretching can be carried out in several stages. Furthermore, if necessary, a preheater, a cooler, a washer, a maturing device, a liquid recovery section for removing the liquid adhering to the stretched body and recovering the fluid, etc. can be incorporated. Moreover, the apparatus of the present invention may be installed horizontally for stretching, or may be installed vertically for stretching in the vertical direction.

次に第3図は、取出口13を有する保圧部材4
の構造の1例を示す斜視図であり、これは肉厚円
筒状容器5に結合したノズルから成つている。ま
た、このノズル部分は、延伸されるべき材料の形
状に応じ、第4図に示すようなスリツトとするこ
ともできる。
Next, FIG. 3 shows a pressure retaining member 4 having an outlet 13.
FIG. 2 is a perspective view showing an example of a structure consisting of a nozzle connected to a thick-walled cylindrical container 5; The nozzle portion can also be formed into a slit as shown in FIG. 4, depending on the shape of the material to be drawn.

発明の効果 本発明装置は、高分子材料長尺体を連続的に延
伸する実用的な装置であり、これによると、高分
子材料に等方的な圧力をかけながら延伸すること
ができる上に、延伸速度が速くなつても、延伸の
際発生する熱をすみやかに除去しうること、及び
加熱下で加圧流体を介して高分子材料にすみやか
に熱の伝達が行われることから、延伸材料を均一
な延伸温度にしうるので物性の改善ができるとい
う利点がある。
Effects of the Invention The device of the present invention is a practical device for continuously stretching a long polymeric material.According to this, it is possible to stretch the polymeric material while applying isotropic pressure. , Even if the stretching speed increases, the heat generated during stretching can be quickly removed, and heat is quickly transferred to the polymeric material via the pressurized fluid under heating. It has the advantage that physical properties can be improved because the stretching temperature can be made uniform.

実施例 次に実施例によつて本発明をさらに詳細に説明
する。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples.

実施例 第2図に示す形式の加圧延伸装置を用い、ポリ
アセタールのテープ(テナツク3010、厚さ0.20
mm、幅5mm)を、高速で連続的に加圧延伸した。
第一段目の装置及び第二段目の装置はそれぞれ、
全長2m、内径10mmの空洞を有する耐圧容器に、
間隙0.25mm、幅5mm、長さ200mmのスリツトを保
圧部材として付してある。また、この加圧延伸装
置内で、ポリアセタールが移動する方向と、加圧
流体が移動する方向は、たがいに向流方向とし
た。
Example A polyacetal tape (Tenatsuku 3010, thickness 0.20
mm, width 5 mm) was continuously pressure stretched at high speed.
The first stage device and the second stage device are respectively
A pressure vessel with a total length of 2m and a cavity of 10mm inside diameter.
A slit with a gap of 0.25 mm, a width of 5 mm, and a length of 200 mm is attached as a pressure holding member. Further, within this pressurized stretching device, the direction in which the polyacetal moves and the direction in which the pressurized fluid moves were set in countercurrent directions.

第一段目の装置では、加圧流体として150℃の
シリコーンオイルを用い、これを毎分0.5程度
高圧定量ポンプで循環し、内部圧力を約50Kg/cm2
に維持し、一方、第二段目の装置では、加圧流体
として170℃のシリコーンオイルを用い、これを
毎分0.5程度高圧定量ポンプで循環して、内部
圧力を約200Kg/cm2に維持しながら、ポリアセタ
ールのテープを第一段目の装置に毎分50cmの速さ
で供給して毎分4mで取出し、8倍に延伸する。
次に、このものを第二段目の装置に毎分4mで供
給した毎分8mで取出し、合計16倍に延伸した。
The first stage equipment uses silicone oil at 150℃ as the pressurized fluid, which is circulated by a high-pressure metering pump at about 0.5 per minute to maintain an internal pressure of about 50Kg/ cm2.
Meanwhile, in the second stage equipment, silicone oil at 170℃ is used as the pressurized fluid, and this is circulated by a high-pressure metering pump at about 0.5 per minute to maintain the internal pressure at about 200Kg/ cm2 . Meanwhile, the polyacetal tape is fed into the first stage apparatus at a speed of 50 cm/min, taken out at 4 m/min, and stretched 8 times.
Next, this material was supplied to the second stage apparatus at a rate of 4 m/min and taken out at a rate of 8 m/min, and was stretched a total of 16 times.

このようにして得られた延伸体は透明であり、
引張弾性率は30GPa、密度は1.45g/cm3であつ
た。
The stretched body obtained in this way is transparent,
The tensile modulus was 30 GPa and the density was 1.45 g/cm 3 .

また、ポリアセタールの移動方向と、加圧流体
の移動方向を同方向とした以外は、前記と全く同
様に条件で延伸したものは、透明性が若干低下
し、引張弾性率は27GPa、密度は1.42g/cm3であ
つた。すなわち、向流方向で延伸したものは、同
一方向で延伸したものに比べ、引張弾性率におい
て約10%向上がみられた。
In addition, when stretched under the same conditions as above except that the moving direction of the polyacetal and the moving direction of the pressurized fluid were the same, the transparency decreased slightly, the tensile modulus was 27 GPa, and the density was 1.42. g/ cm3 . That is, the tensile modulus of the film stretched in the countercurrent direction was about 10% higher than that of the film stretched in the same direction.

さらに、ポリアセタールの延伸速度を1/5にし、
第一段目の温度を150℃、第二段目の温度を163℃
にした以外は、同様の延伸倍率と圧力で延伸し、
ポリアセタールの移動方向と加圧流体の移動方向
がたがいに向流の場合と、同一の場合とを比べた
ところ、得られた延伸体は、どちらの場合も透明
で、引張弾性率が30GPa、密度が1.45g/cm3であ
つた。
Furthermore, the stretching speed of polyacetal was reduced to 1/5,
The temperature of the first stage is 150℃, the temperature of the second stage is 163℃
Stretched at the same stretching ratio and pressure, except for
A comparison was made between cases where the moving direction of polyacetal and the moving direction of the pressurized fluid were countercurrent to each other, and cases where they were the same. In both cases, the obtained drawn body was transparent, had a tensile modulus of 30 GPa, and a density of was 1.45g/ cm3 .

このようなことから、特に延伸速度が速い場合
に、本発明の向流方向に延伸することの効果が表
われることが分つた。
From these facts, it was found that the effect of stretching in the countercurrent direction of the present invention appears particularly when the stretching speed is high.

なお、比較のために、加圧流体を用いずに空気
中で常圧下、同様の延伸条件で延伸した場合、延
伸速度が毎分8mのときには、得られたものは白
色であり、引張弾性率は20GPa、密度は1.22g/
cm3であつた。
For comparison, when stretching was performed in air under normal pressure without using a pressurized fluid under the same stretching conditions, when the stretching speed was 8 m/min, the obtained product was white and had a tensile modulus of elasticity. is 20GPa, density is 1.22g/
It was warm at cm3 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の1例を示す断面説明図、
第2図は2個の耐圧容器を備えた例を示す断面説
明図、第3図及び第4図は保圧部材のそれぞれ異
なる例の斜視図であり、図中符号Aは高分子材料
長尺体、B,B′は加圧延伸装置、Cは加圧流体、
1は材料供給部、2,2′は供給ローラ、3,4
は保圧部材、6,6′は引取ローラ、7は巻取機、
8はポンプ、9,10はバルブ、11,11′は
ヒーター、12,13はそれぞれ高分子材料の供
給口と取出口、14,15はそれぞれ加圧流体の
排出口と導入口、16,17は加圧流体受け、1
8,19は加圧流体循環のための連結管、20,
20′は加圧流体の回収管、21は加圧流体溜め
である。 第3図及び第4図は保圧部材の構造のそれぞれ
異なつた例を示す斜視図であり、第3図はノズル
構造、第4図はスリツト構造を示す。
FIG. 1 is a cross-sectional explanatory diagram showing an example of the device of the present invention;
FIG. 2 is a cross-sectional explanatory view showing an example equipped with two pressure-resistant containers, and FIGS. 3 and 4 are perspective views of different examples of pressure-retaining members, and the reference numeral A in the figure is a long piece of polymeric material. body, B and B′ are pressurized stretching devices, C is pressurized fluid,
1 is a material supply section, 2, 2' are supply rollers, 3, 4
is a pressure holding member, 6 and 6' are take-up rollers, 7 is a winder,
8 is a pump, 9 and 10 are valves, 11 and 11' are heaters, 12 and 13 are a polymeric material supply port and an output port, respectively, 14 and 15 are a pressurized fluid discharge port and an inlet port, respectively, 16 and 17 is a pressurized fluid receiver, 1
8, 19 are connection pipes for pressurized fluid circulation; 20;
20' is a recovery pipe for pressurized fluid, and 21 is a pressurized fluid reservoir. 3 and 4 are perspective views showing different examples of the structure of the pressure retaining member, with FIG. 3 showing a nozzle structure and FIG. 4 showing a slit structure.

Claims (1)

【特許請求の範囲】[Claims] 1 加圧流体を満たした実質的に密閉状態の耐圧
容器と、それを貫通して連続的に移動する高分子
材料長尺体に対し、引張応力を付与するための延
伸機構とを備えた連続加圧延伸装置において、該
耐圧容器の高分子材料長尺体の供給口側に加圧流
体排出口を、取出口側に加圧流体導入口をそれぞ
れ設け、かつ供給口と取出口の両方を、それらを
通過する長尺体との間に生じる間隙から、少量の
加圧流体は流出するが耐圧容器内の圧力の実質的
な低下をもたらさない寸法とするか、あるいは取
出口のみを上記の構造とし、供給口を長尺体は円
滑に通過するが、長尺体との間に生じる間隙から
耐圧容器内の加圧流体が実質的に漏出しない寸法
としたことを特徴とする高分子材料の連続加圧延
伸装置。
1. A continuous container comprising a pressure-resistant container in a substantially sealed state filled with a pressurized fluid and a stretching mechanism for applying tensile stress to a long body of polymeric material that continuously moves through the container. In the pressure stretching device, a pressurized fluid outlet is provided on the supply port side of the polymer material elongate body of the pressure-resistant container, and a pressurized fluid inlet port is provided on the take-out port side, and both the supply port and the take-out port are provided. , and the elongated body passing through them, the dimensions are such that a small amount of pressurized fluid can flow out but do not cause a substantial drop in the pressure inside the pressure vessel, or only the outlet is configured as described above. A polymeric material having such a structure that the elongated body can smoothly pass through the supply port, but the pressurized fluid in the pressure container does not substantially leak out from the gap created between the elongated body and the elongated body. Continuous pressure stretching equipment.
JP59113917A 1984-06-05 1984-06-05 Continuous pressure stretching machine for high molecular material Granted JPS60257219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59113917A JPS60257219A (en) 1984-06-05 1984-06-05 Continuous pressure stretching machine for high molecular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59113917A JPS60257219A (en) 1984-06-05 1984-06-05 Continuous pressure stretching machine for high molecular material

Publications (2)

Publication Number Publication Date
JPS60257219A JPS60257219A (en) 1985-12-19
JPH0254775B2 true JPH0254775B2 (en) 1990-11-22

Family

ID=14624423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59113917A Granted JPS60257219A (en) 1984-06-05 1984-06-05 Continuous pressure stretching machine for high molecular material

Country Status (1)

Country Link
JP (1) JPS60257219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189627A1 (en) * 2018-03-30 2019-10-03 三菱ケミカル株式会社 Fiber drawing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073488B2 (en) * 1986-02-24 1995-01-18 三菱レイヨン株式会社 Processing method for plastic optical fiber
JP2705453B2 (en) * 1992-01-23 1998-01-28 東レ株式会社 Method and apparatus for steam stretching acrylic yarn
DK1061163T3 (en) * 1998-02-28 2005-11-14 Ube Nitto Kasei Co Device for extractable, thermoplastic resinable drawable material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189627A1 (en) * 2018-03-30 2019-10-03 三菱ケミカル株式会社 Fiber drawing device

Also Published As

Publication number Publication date
JPS60257219A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
US3558580A (en) Thin oriented plastic strips and tape
US3248463A (en) Continuous production of biaxially oriented crystalline thermoplastic film
US4434128A (en) Method and apparatus for stretching thermoplastic polymer films
US4571765A (en) Method of and apparatus for thermally treating fiber yarns
JPH0254775B2 (en)
WO1990002644A1 (en) Method of pipe manufacture
US4428723A (en) Apparatus for stretching a continuously advancing synthetic-resin web and feeding same stepwise to a thermoforming machine
JPH0254773B2 (en)
US3563064A (en) Pressure sealing apparatus for processing of fibers in tow form
US4654094A (en) Hose cooling process with cold gas recycle
JPH0611495B2 (en) Refrigerant-cooled plastic molding
US3315308A (en) Continuous production of biaxially oriented, crystalline, thermoplastic film
DE2252638B2 (en) STORAGE DEVICE TO COMPENSATE CHANGING GAS DEMAND
US4919870A (en) Process of and apparatus for treating a shaped product
US4014084A (en) Texturizing of filaments
US5925307A (en) Method for forming oriented plastic pipe
CA1075893A (en) Heat transfer roll and method
CN213972553U (en) Packaging film stretching device with waste heat recovery function
US3274314A (en) Thermoplastic film production
JPH0254774B2 (en)
CN114508904A (en) Belt type vacuum pulsation drying device
FI94328C (en) Method and apparatus for heating a press belt of a press
US3221370A (en) Apparatus for extruding thermoplastic film
PL184413B1 (en) Method of treating biaxially drawn plastic pipes and apparatus therefor
JP2589400B2 (en) Continuous production method of high strength and high modulus polyolefin material