JPH0254529B2 - - Google Patents

Info

Publication number
JPH0254529B2
JPH0254529B2 JP56051425A JP5142581A JPH0254529B2 JP H0254529 B2 JPH0254529 B2 JP H0254529B2 JP 56051425 A JP56051425 A JP 56051425A JP 5142581 A JP5142581 A JP 5142581A JP H0254529 B2 JPH0254529 B2 JP H0254529B2
Authority
JP
Japan
Prior art keywords
liquid crystal
film
light valve
conductive film
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56051425A
Other languages
Japanese (ja)
Other versions
JPS57165820A (en
Inventor
Keiichi Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5142581A priority Critical patent/JPS57165820A/en
Publication of JPS57165820A publication Critical patent/JPS57165820A/en
Publication of JPH0254529B2 publication Critical patent/JPH0254529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/132Thermal activation of liquid crystals exhibiting a thermo-optic effect

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 この発明はレーザによる高精度デイスプレイ装
置における液晶ライトバルブに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal light valve in a laser-based high-precision display device.

コンピユータの端末装置に使われるデイスプレ
イ装置はコンピユータの大容量と機能の向上によ
り、ますます高精度の分解能を必要とされてい
る。特にコンピユータを用いた画像処理や新聞紙
面の編集、LSIの設計では高精度でかつ部分的に
書き加え加能なデイスプレイが望まれている。従
来装置では用いているCRT(陰極線管)の分解能
を2000本以上に上げることは難しく、電子ビーム
の走査速度も早くなるために画面にチラツキを生
じてしまう。またストレージ管を用いたデイスプ
レイ装置では、螢光体の劣化を防ぐために画面輝
度が低く、部分的な消去もできなく、装置として
高価である。
Display devices used in computer terminal devices are required to have increasingly high resolution resolution due to the increased capacity and improved functionality of computers. Particularly in computer-based image processing, newspaper editing, and LSI design, displays with high precision and the ability to add partial information are desired. In conventional equipment, it is difficult to increase the resolution of the CRT (cathode ray tube) used above 2,000 lines, and the scanning speed of the electron beam also increases, causing flickering on the screen. Furthermore, display devices using storage tubes have low screen brightness to prevent deterioration of the phosphor, cannot be partially erased, and are expensive.

近年、分解能2000本以上のデイスプレイ装置と
して液晶ヘレーザ光で熱書き込みをするデイスプ
レイが有望視されており、この熱書き込み液晶デ
イスプレイについては、例えば雑誌「プロシーデ
イング・オブ・ザ・エス・アイ・デー
(Proceeding of the S.I.D.)」1978年1〜7頁に
記載の論文「レーザ選択液晶投射デイスプレイ
(LASER−ADDRESSED LIQUID CRYSTAL
PROJECTION DISPLAYS)」に詳しく述べら
れている。この論文によれば、第1図に示すよう
な液晶ライトバルブ10にレーザ光1による走査
で画像を記録し、投射光11を入射、反射させて
上記画像をデイスプレイすることができる。液晶
ライトバルブ10はレーザ光吸収膜3、アルミ反
射膜4、液晶配向膜8をその上に形成したガラス
基盤2と、透明電極膜6、液晶配向膜8をその上
に形成したガラス基盤7とで液晶材5をはさんだ
構造となつている。レーザ光1が液晶ライトバル
ブ10に入射するとレーザ光1がレーザ光吸収膜
3に吸収され熱に変換され、アルミ反射膜4、液
晶配向膜8を伝わつて液晶材5の温度を上昇させ
る。液晶材5としてはスメチツク液晶が使われ、
スメチツク液晶は温度が上昇することによつてネ
マチツク相、液体相に変化し、レーザ光1が取り
除かれた時に急冷される。この時、液体状態のラ
ンダムな液晶分子の配向状態が凍結されて散乱核
が形成される特性を有している。この散乱核は投
射光11によつて読みだされ、スクリーン上に画
素としてデイスプレイされる。散乱核によつて
10μm程度の微小幅の線が形成できるので、2イ
ンチ角の液晶ライトバルブには5000本もの線が記
録されることになり、従来のCRTに比べて非常
に高分解能なデイスプレイが可能になる。デイス
プレイ画面を消去するのには、アルミ反射膜3と
透明電極膜6の間に電界を印加して液晶を再び配
向させれば良い。
In recent years, displays that thermally write with liquid crystal laser light have been viewed as promising as display devices with a resolution of 2,000 lines or more. ``Proceeding of the SID'', 1978, pages 1-7, ``LASER-ADDRESSED LIQUID CRYSTAL
PROJECTION DISPLAYS)”. According to this paper, an image can be recorded by scanning with a laser beam 1 on a liquid crystal light valve 10 as shown in FIG. 1, and the image can be displayed by making the projection light 11 incident and reflected. The liquid crystal light valve 10 includes a glass substrate 2 on which a laser light absorption film 3, an aluminum reflection film 4, and a liquid crystal alignment film 8 are formed, and a glass substrate 7 on which a transparent electrode film 6 and a liquid crystal alignment film 8 are formed. It has a structure in which a liquid crystal material 5 is sandwiched between the two. When the laser beam 1 enters the liquid crystal light valve 10, the laser beam 1 is absorbed by the laser beam absorbing film 3 and converted into heat, which is transmitted through the aluminum reflective film 4 and the liquid crystal alignment film 8 to increase the temperature of the liquid crystal material 5. Smectic liquid crystal is used as the liquid crystal material 5,
The smectic liquid crystal changes into a nematic phase and a liquid phase as the temperature rises, and is rapidly cooled when the laser beam 1 is removed. At this time, the random orientation state of the liquid crystal molecules in the liquid state is frozen and scattering nuclei are formed. These scattering nuclei are read out by the projection light 11 and displayed as pixels on the screen. by scattering nuclei
Since lines with a width of about 10 μm can be formed, as many as 5,000 lines can be recorded on a 2-inch square liquid crystal light valve, making it possible to create displays with much higher resolution than conventional CRTs. To erase the display screen, an electric field may be applied between the aluminum reflective film 3 and the transparent electrode film 6 to reorient the liquid crystal.

熱書き込み液晶ライトバルブは液晶の温度によ
る相変化を利用したものであるから、バイアス温
度を一定に保つ必要がある。通常、セル温合を一
定に保つためにセル全体を包む恒温槽を設ける手
段がとられる。
Since the thermal writing liquid crystal light valve utilizes the phase change caused by the temperature of liquid crystal, it is necessary to keep the bias temperature constant. Usually, in order to keep the cell temperature constant, a method is taken to provide a constant temperature bath that surrounds the entire cell.

第2図は液晶の消去特性を示す図であり、レー
ザ光1で記録された液晶ライトバルブ10のアル
ミ反射膜4と透明電極6との間に電圧を印加し、
印加した電圧に対する液晶材5を通る投射光11
の反射光量を示したものである。実線イはレーザ
光1を入射していない時の特性で、電圧をE2
上に上げると液晶材5は全面が透明になり始め
E3以上で完全に画像が消えて透明になる。実線
ロはレーザ光を照射しながら電圧を加えた時の液
晶材5の反射光量を示すもので、透明になる電圧
はE2に比べて低いE1の電圧で透明になる。一度
透明になると電圧を下げてもその透明状態は持続
する。したがつて、液晶ライトバルブのデイスプ
レイには3つのモードが存在する。(A)の領域では
レーザ光で記録された画像が残るストレージモー
ドであり、(B)の領域ではレーザ光が照射した所が
消えてしまう部分消去のモードである。Cの領域
ではレーザ光が照射しているかしていないかにか
かわらず、全面の画像が消えてしまう全面消去の
モードである。この時、液晶は透明でデイスプレ
イとしては明るい画面になる。
FIG. 2 is a diagram showing the erasing characteristics of the liquid crystal, in which a voltage is applied between the aluminum reflective film 4 of the liquid crystal light valve 10 recorded by the laser beam 1 and the transparent electrode 6,
Projection light 11 passing through the liquid crystal material 5 for applied voltage
This shows the amount of reflected light. The solid line A shows the characteristics when the laser beam 1 is not incident, and when the voltage is increased above E2 , the entire surface of the liquid crystal material 5 begins to become transparent.
At E 3 or higher, the image completely disappears and becomes transparent. The solid line B indicates the amount of light reflected by the liquid crystal material 5 when a voltage is applied while irradiating the laser beam, and the liquid crystal material 5 becomes transparent at a voltage of E1 , which is lower than that of E2 . Once it becomes transparent, it remains transparent even if the voltage is lowered. Therefore, there are three modes in the display of the liquid crystal light valve. The area (A) is a storage mode in which the image recorded with the laser beam remains, and the area (B) is a partial erase mode in which the area irradiated with the laser beam disappears. In area C, the entire image is erased regardless of whether the laser beam is irradiated or not, which is the entire erase mode. At this time, the liquid crystal is transparent and becomes a bright screen.

以上に述べたように、液晶ライトバルブは白地
に黒地のデイスプレイをするというネガテイブモ
ードの表示装置で、部分消去ができることに特徴
をもつ。黒地に白地のポジテイブモードのデイス
プレイをするためには、一度レーザ光で全面をス
トレージモードで走査して黒地にし、レーザ光で
再び部分消去モードで白地を記録する必要があ
る。しかし、現状のレーザ光走査では一画面の表
示に数秒を要するので、この方法によるポジテイ
ブモードのデイスプレイは実用的でない。多色カ
ラーのデイスプレイをおこなうには、液晶ライト
バルブを数個用いて各色に対応した画像をデイス
プレイして合成するが、この時、液晶ライトバル
ブはポジテイブモードでないと黒地にカラーのデ
イスプレイは困難なことになる。
As mentioned above, the liquid crystal light valve is a negative mode display device that displays a black background on a white background, and is characterized by the ability to partially erase the display. In order to create a positive mode display with a white background on a black background, it is necessary to first scan the entire surface with a laser beam in a storage mode to create a black background, and then record the white background again with a laser beam in a partial erase mode. However, with current laser beam scanning, it takes several seconds to display one screen, so this method of positive mode display is not practical. To create a multicolor display, several LCD light valves are used to display and synthesize images corresponding to each color, but at this time, it is difficult to display a color display on a black background unless the LCD light valves are in positive mode. It turns out.

この発明はかかる点において行なわれたもの
で、ポジテイブモードの熱書き込み液晶ライトバ
ルブを提供するものである。
The present invention has been made in this respect and provides a positive mode thermal writing liquid crystal light valve.

この発明によれば、レーザ光照射で発生する熱
でもつて液晶の相変化を生ぜしめてレーザ光走査
パターンを表示する液晶ライトバルブにおいて、
透明基盤に一様な熱発生用透明導電膜を形成した
ことを特徴とする液晶ライトバルブが得られる。
According to the present invention, in a liquid crystal light valve that displays a laser beam scanning pattern by causing a phase change of the liquid crystal using heat generated by laser beam irradiation,
A liquid crystal light valve characterized in that a uniform transparent conductive film for heat generation is formed on a transparent substrate is obtained.

次に図面を参照してこの発明による液晶ライト
バルブについて説明する。第3図はこの発明によ
る液晶ライトバルブを説明するための図である。
ガラス等の透明基盤12上に透明導電膜13、光
吸収膜14、反射膜15、液晶配向膜16を形成
する。透明導電膜13はIn2O3、InTi2O3
Sb2O3、Ta2O3、PbF2等を蒸着、スパツターした
もので、光吸収膜はCdTe、Mg2Si等の化合物半
導体や色素を含む有機ポリマー材が用いられる。
反射膜15はAlを膜厚500Å程度に蒸着し、液晶
配向膜16はSiOやSiO2や膜厚数100Å位、異方
的に蒸着することで得られる。もう一つの透明基
盤19上には同様に透明導電膜18、液晶配向膜
16を作成し、透明基盤12と対向させて12μm
程度のスペーサをはさみ込み周囲をトールシール
で接着封止する。片面のガラス基盤にあけられた
注入口より液晶材17としてスメクチツク液晶
(例えばn−Octyl Cyano biphenyl)を温めなが
ら低圧下で注入して、液晶ライトバルブが構成さ
れる。この発明は、透明導電膜13に外部電源を
継ぎ、熱発生源として用いるものである。透明導
電膜13の抵抗値は蒸着時の膜厚と蒸着後の酸化
処理によつて選ぶことができる。例えばIn2O3
SnO2膜では比重1.4g/cm3、比熱1.3J/g・℃の
値をもち、面積5cm2に厚み1μmをつけ、表面抵
抗値を10Ω/口とすると、電圧50V、印加時間10
msで温度は約30℃上昇する。スメクチツク液晶
では20℃温度が上昇すればスメクチツク相から液
体相に変化する。
Next, a liquid crystal light valve according to the present invention will be explained with reference to the drawings. FIG. 3 is a diagram for explaining the liquid crystal light valve according to the present invention.
A transparent conductive film 13, a light absorption film 14, a reflection film 15, and a liquid crystal alignment film 16 are formed on a transparent substrate 12 such as glass. The transparent conductive film 13 is made of In 2 O 3 , InTi 2 O 3 ,
Sb 2 O 3 , Ta 2 O 3 , PbF 2 , etc. are vapor-deposited and sputtered, and the light-absorbing film is made of compound semiconductors such as CdTe, Mg 2 Si, and organic polymer materials containing dyes.
The reflective film 15 is obtained by depositing Al to a thickness of about 500 Å, and the liquid crystal alignment film 16 is obtained by anisotropically depositing SiO or SiO 2 to a thickness of about 100 Å. A transparent conductive film 18 and a liquid crystal alignment film 16 were similarly created on another transparent substrate 19, and were made to face the transparent substrate 12 with a thickness of 12 μm.
Insert a spacer of about 100 mL and seal the surrounding area with Tall Seal. A liquid crystal light valve is constructed by injecting smectic liquid crystal (for example, n-Octyl Cyano biphenyl) as the liquid crystal material 17 under low pressure while heating it through an injection port made in one side of the glass substrate. In this invention, an external power source is connected to the transparent conductive film 13 and used as a heat generation source. The resistance value of the transparent conductive film 13 can be selected depending on the film thickness during vapor deposition and the oxidation treatment after vapor deposition. For example, In 2 O 3 /
The SnO 2 film has a specific gravity of 1.4 g/cm 3 and a specific heat of 1.3 J/g・℃, has an area of 5 cm 2 and a thickness of 1 μm, and has a surface resistance of 10 Ω/hole, a voltage of 50 V, and an application time of 10
The temperature rises by about 30°C in ms. In smectic liquid crystals, if the temperature increases by 20°C, the smectic phase changes to the liquid phase.

第4図は透明導電膜13に電圧を印加したとき
の膜の温度上昇を示す図である。(a)に示すような
パルス状の電圧(50V)を印加した時に得られた
温度変化が(b)の波形である。ガラス基盤等への熱
損失があるために立ち上り、立ち下り共にある時
定数をもつ。10msのパルス幅で20℃以上の温度
上昇が得られ、パルス立ち下り後の減衰も10ms
以内に押さえることができる。したがつて、透明
導電膜に電圧を印加することによつて熱を発生
し、液晶ライトバルブの全液晶をスメクチツク相
から液体相に転移せしめ、急冷効果によるストレ
ージ状態を実現できる。この時、液晶ライトバル
ブの全面が黒地のデイスプレイとなり、次に第2
図の(B)領域における部分消去モードでレーザ光に
よる白地の線を描くことができる。すなわち、ポ
ジテイブモードのデイスプレイが実現される。
FIG. 4 is a diagram showing the temperature rise of the transparent conductive film 13 when a voltage is applied to the film. The waveform in (b) is the temperature change obtained when the pulsed voltage (50V) shown in (a) is applied. Due to heat loss to the glass substrate, etc., both rise and fall have a certain time constant. A temperature rise of 20℃ or more can be obtained with a pulse width of 10ms, and the attenuation after the pulse falls is also 10ms.
It can be held within. Therefore, by applying a voltage to the transparent conductive film, heat is generated to cause all the liquid crystals in the liquid crystal light valve to transition from the smectic phase to the liquid phase, thereby achieving a storage state due to the rapid cooling effect. At this time, the entire surface of the liquid crystal light valve becomes a black display, and then the second
In the partial erase mode in area (B) in the figure, a white line can be drawn using laser light. In other words, a positive mode display is realized.

透明導電膜13に必要な膜厚は2つの制限を受
ける。1つは熱発生に必要な印加電圧が消去モー
ドに必要な消去電圧より低くなければならない。
導電膜に面と平行な方向に電圧を印加した時、電
圧分布は勾配をもつが、消去電圧より高い電圧が
加わつた部分では、ストレージ状態が不安定にな
るからである。したがつて、導電膜の抵抗値は低
い方が良く、膜厚が大きい程良い。もう一つは、
導電膜の光学的特性であつて、膜厚が大きくなる
程光学的吸収が増し、1μm以上の膜で黄色に色
付く。したがつて、膜厚は小さい方が良い。この
両者の条件は相反するもので、In2O3/SnO2膜で
は表面抵抗値が10Ω/口近傍で1μm厚み程度の
膜が最適条件と考えられる。
The thickness required for the transparent conductive film 13 is subject to two restrictions. First, the applied voltage required for heat generation must be lower than the erase voltage required for erase mode.
This is because when a voltage is applied to the conductive film in a direction parallel to the surface, the voltage distribution has a gradient, but the storage state becomes unstable in the portion where a voltage higher than the erase voltage is applied. Therefore, the lower the resistance value of the conductive film, the better, and the larger the film thickness. the other one is,
It is an optical characteristic of a conductive film, and the optical absorption increases as the film thickness increases, and a film with a thickness of 1 μm or more becomes yellow in color. Therefore, the smaller the film thickness, the better. These two conditions are contradictory, and it is considered that the optimal conditions for the In 2 O 3 /SnO 2 film are a film with a surface resistance value of 10 Ω/near the mouth and a thickness of about 1 μm.

透明導電膜13を設ける液晶ライトバルブ中の
位置としては、透明導電膜18を熱発生用膜とし
ても良い。しかし、上に記したように膜が厚くな
り吸収によつてデイスプレイに色がついてしまう
のは好ましいことではない。さらに熱書き込み液
晶ライトバルブでは液晶界面の温度上昇が重要で
あるので、レーザ記録側の反対側から暖めるのは
記録の履歴が残ることがあり望ましくない。ま
た、レーザ記録側で光吸収層14から液晶17の
間に設置することは、レーザ光で発生した熱を散
逸せしめ、記録特性を劣化させることになる。し
たがつて、ガラス基盤12と光吸収層14の間に
熱発生用導電膜13を形成するのが、レーザ光の
吸収効果も小さいので最適である。また、熱発生
用透明導電膜13に一定電流を流し、温度バイア
スを発生することも可能である。
Regarding the position in the liquid crystal light valve where the transparent conductive film 13 is provided, the transparent conductive film 18 may be used as a heat generating film. However, as mentioned above, it is not desirable that the film becomes thick and the display becomes colored due to absorption. Furthermore, since temperature rise at the liquid crystal interface is important in thermal writing liquid crystal light valves, it is not desirable to heat the liquid crystal from the side opposite to the laser recording side because recording history may remain. Moreover, if it is installed between the light absorption layer 14 and the liquid crystal 17 on the laser recording side, the heat generated by the laser beam will be dissipated, which will deteriorate the recording characteristics. Therefore, it is optimal to form the heat-generating conductive film 13 between the glass substrate 12 and the light absorption layer 14 because the laser light absorption effect is also small. It is also possible to generate a temperature bias by flowing a constant current through the heat-generating transparent conductive film 13.

以上、詳細に述べたように、この発明によれば
ポジテイブモードのレーザ光熱書き込み液晶ライ
トバルブを得られる。
As described above in detail, according to the present invention, a positive mode laser photothermal writing liquid crystal light valve can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液晶ライトバルブを示す図、第
2図は液晶の消去特性を示す図、第3図はこの発
明による液晶ライトバルブを示す図、第4図は膜
の温度上昇を示す図である。 図において、1はレーザ光、12,19はガラ
ス基盤、14は光吸収膜、15は反射膜、17は
液晶材、16は液晶配向膜、13,18は透明電
極、11は投射光である。
Fig. 1 is a diagram showing a conventional liquid crystal light valve, Fig. 2 is a diagram showing erasing characteristics of liquid crystal, Fig. 3 is a diagram showing a liquid crystal light valve according to the present invention, and Fig. 4 is a diagram showing temperature rise of the film. It is. In the figure, 1 is a laser beam, 12 and 19 are glass substrates, 14 is a light absorption film, 15 is a reflection film, 17 is a liquid crystal material, 16 is a liquid crystal alignment film, 13 and 18 are transparent electrodes, and 11 is a projection light. .

Claims (1)

【特許請求の範囲】 1 レーザ光照射で発生する熱により液晶の相変
化を生じせしめてレーザ光走査パターンを表示す
る液晶ライトバルブにおいて、面内一様な熱発生
用透明導電膜と光吸収膜と反射膜と液晶配向膜と
をこの順番で片面に構成した第一の透明基板と、
透明導電膜と液晶配向膜とをこの順で片面に構成
した第2の透明基板とで液晶を挟んだことを特徴
とする液晶ライトバルブ。 2 熱発生用透明導電膜の表面抵抗値を約10Ω/
□とした特許請求の範囲第1項記載の液晶ライト
バルブ。 3 熱発生用透明導電膜が透明基盤と光吸収膜と
の間に形成された特許請求の範囲第1項記載の液
晶ライトバルブ。
[Scope of Claims] 1. In a liquid crystal light valve that displays a laser beam scanning pattern by causing a phase change in the liquid crystal due to heat generated by laser beam irradiation, a transparent conductive film for heat generation and a light absorption film that are uniform in the surface are provided. a first transparent substrate comprising a reflective film and a liquid crystal alignment film in this order on one side;
A liquid crystal light valve characterized in that a liquid crystal is sandwiched between a second transparent substrate having a transparent conductive film and a liquid crystal alignment film formed on one side in this order. 2 The surface resistance value of the transparent conductive film for heat generation is approximately 10Ω/
The liquid crystal light valve according to claim 1, which is defined as □. 3. The liquid crystal light valve according to claim 1, wherein the heat-generating transparent conductive film is formed between the transparent substrate and the light absorption film.
JP5142581A 1981-04-06 1981-04-06 Liquid-crystal light valve Granted JPS57165820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142581A JPS57165820A (en) 1981-04-06 1981-04-06 Liquid-crystal light valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142581A JPS57165820A (en) 1981-04-06 1981-04-06 Liquid-crystal light valve

Publications (2)

Publication Number Publication Date
JPS57165820A JPS57165820A (en) 1982-10-13
JPH0254529B2 true JPH0254529B2 (en) 1990-11-21

Family

ID=12886565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142581A Granted JPS57165820A (en) 1981-04-06 1981-04-06 Liquid-crystal light valve

Country Status (1)

Country Link
JP (1) JPS57165820A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49125049A (en) * 1973-04-02 1974-11-29
JPS5048944A (en) * 1973-08-31 1975-05-01
JPS53137165A (en) * 1977-05-02 1978-11-30 Hughes Aircraft Co Liquid crystal light valve
JPS5432341A (en) * 1977-08-17 1979-03-09 Toray Industries Liquid crystal indicator
JPS5458042A (en) * 1977-09-23 1979-05-10 Thomson Csf Monochromatic image analyzing recorder
JPS57104115A (en) * 1980-12-22 1982-06-29 Nec Corp Liquid crystal light valve
JPS57120235A (en) * 1981-12-04 1982-10-30 Yokogawa Hewlett Packard Ltd Storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49125049A (en) * 1973-04-02 1974-11-29
JPS5048944A (en) * 1973-08-31 1975-05-01
JPS53137165A (en) * 1977-05-02 1978-11-30 Hughes Aircraft Co Liquid crystal light valve
JPS5432341A (en) * 1977-08-17 1979-03-09 Toray Industries Liquid crystal indicator
JPS5458042A (en) * 1977-09-23 1979-05-10 Thomson Csf Monochromatic image analyzing recorder
JPS57104115A (en) * 1980-12-22 1982-06-29 Nec Corp Liquid crystal light valve
JPS57120235A (en) * 1981-12-04 1982-10-30 Yokogawa Hewlett Packard Ltd Storage device

Also Published As

Publication number Publication date
JPS57165820A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
US4196974A (en) Smectic liquid crystal display cell
JPS6217726A (en) Display
WO1983001841A1 (en) Liquid crystal display unit
JPS59216126A (en) Optical recording element and its recording method
US4595260A (en) Liquid crystal projection display with even temperature elevation
JP2924623B2 (en) Optical writing type liquid crystal display recording device
CA1202131A (en) Display screen with "n" lines controlled by 2 devices
JPH0253769B2 (en)
US4059340A (en) Doped liquid crystal display device
JPH0254529B2 (en)
JPS5929228A (en) Positive type liquid crystal light bulb
Maydan Infrared laser addressing of media for recording and displaying of high-resolution graphic information
JPH0548883B2 (en)
Land Ferroelectric ceramic electro-optic storage and display devices
JPH0765044B2 (en) Liquid crystal optical element
JP3070252B2 (en) Spatial light modulation element and display device
JPH0655134U (en) LCD panel
JPS5991645A (en) Electron beam address type optical bulb and method of producing same
US4894180A (en) Liquid crystal optical element
JPH0150916B2 (en)
JPS63175827A (en) Thermal write liquid crystal light valve
JPS60151688A (en) Reflection type liquid crystal light valve
Dewey Projection Storage Displays Using Laser-Addressed Smectic Liquid Crystals
JPS58207074A (en) Liquid crystal light valve positive type display
JPH04136821A (en) Optical writing type liquid crystal display element