JPH025397B2 - - Google Patents

Info

Publication number
JPH025397B2
JPH025397B2 JP56168278A JP16827881A JPH025397B2 JP H025397 B2 JPH025397 B2 JP H025397B2 JP 56168278 A JP56168278 A JP 56168278A JP 16827881 A JP16827881 A JP 16827881A JP H025397 B2 JPH025397 B2 JP H025397B2
Authority
JP
Japan
Prior art keywords
methionine
acetyl
reaction
amide
bacterial cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56168278A
Other languages
Japanese (ja)
Other versions
JPS5871892A (en
Inventor
Ichiro Senhata
Shigeki Yamada
Koichi Nabe
Yutaka Nishida
Katsuhiko Nakamichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP56168278A priority Critical patent/JPS5871892A/en
Publication of JPS5871892A publication Critical patent/JPS5871892A/en
Publication of JPH025397B2 publication Critical patent/JPH025397B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、N−アセチル−L−メチオニンの製
造法に関し、更に詳しくは酵素を利用してN−ア
セチル−DL−メチオニンアミドよりN−アセチ
ル−L−メチオニンを製造する方法に関する。 本発明の目的化合物であるN−アセチル−L−
メチオニンは、輸液成分などの医薬化合物あるい
は食品添加物等として有用な化合物である。 従来、N−アセチル−L−メチオニンの製造法
としては、(1)N−アセチル−DL−メチオニンに
光学活性リジンを作用させて塩を形成させた後、
分別結晶法により所望のL−体を得る方法(特開
昭48−22418号)、(2)L−メチオニンを無水酢酸で
アセチル化する方法(特開昭55−42986号)が知
られているが、(1)の製造法では光学純度の高い化
合物を得るためには再結晶をくり返す必要がある
ため収率が悪く、一方、(2)の製造法は反応中にラ
セミ化が起きやすく、そのため反応条件を厳密に
調節しなければならないという難点を有する。ま
た近年、酵素の持つ鏡像体区別加水分解能を利用
し、N−アセチル−DL−メチオニンのエステル
にセリンプロテアーゼやスルフイドリルプロテア
ーゼを作用させ、N−アセチル−L−メチオニン
を製造する方法の報告がある(特開昭51−142595
号)。しかし、この方法は酵素反応の進行にとも
ないN−アセチル−L−メチオニンエステルが加
水分解されて生成する目的物N−アセチル−L−
メチオニンのため、反応液のPH値が低下する。従
つて酵素反応を維持継続するためには絶えず反応
液のPHを至適範囲に調整しなければならないとい
う難点がある。 かかる状況下、本発明者等は前記技術的、経済
的難点を克服すべく鋭意研究を重ねた結果、全く
意外にも化学合成で得られる安価なN−アセチル
−DL−メチオニンアミドにエルウイニア
(Erwinia)属に属する微生物を培養して得られ
る培養液、該培養液から採取した菌体または該菌
体の処理物を作用させた場合には、これらに含ま
れる酵素が触媒する鏡像体区別加水分解反応によ
り、N−アセチル−L−メチオニンアミドの1位
のアミド結合のみが特異的に加水分解されてN−
アセチル−L−メチオニンが生成することを見出
した。 本発明は、エルウイニア属に属し、N−アセチ
ル−DL−メチオニンアミドからN−アセチル−
L−メチオニンを生成せしめる能力を有する微生
物の培養液、該培養液から採取した菌体または該
菌体の処理物をN−アセチル−DL−メチオニン
アミドに作用せしめ、生成したN−アセチル−L
−メチオニンを採取するN−アセチル−L−メチ
オニンの新規製造法である。 以下、本発明方法を詳細に説明する。 本発明において使用する微生物は、エルウイニ
ア属に属し、N−アセチル−DL−メチオニンア
ミドからN−アセチル−L−メチオニンを生成せ
しめる能力を有する微生物であり、その例として
は例えばエルウイニア・カロトボラ(Erwinia
carotovora)3057(微工研菌寄第6176号)などを
あげることができる。 本発明の鏡像体区別加水分解反応を触媒する酵
素含有培養液は、上記微生物を通常の方法で培養
することにより調製することができる。即ち、栄
養培地の炭素源としては、上記微生物の利用可能
なものならばいずれも使用することができ、例え
ばグルコース、フラクトース、シユクロース、マ
ルトース、デキストリンなどの糖類、グリセロー
ル、ソルビトールなどの糖アルコール、フマール
酸、クエン酸などの有機酸等を好適に使用するこ
とができる。培地中に添加する量は通常0.1〜10
%程度で十分である。また、窒素源としては、例
えば塩化アンモニウム、リン酸アンモニウム、フ
マール酸アンモニウムなどの各種無機酸、有機酸
のアンモニウム塩や肉エキス、酵母エキス、コー
ンステイープリカー、カゼイン加水分解物などの
天然有機窒素源等があげられ、特に天然有機窒素
源は多くの場合炭素源として兼用することもでき
る。さらに、無機塩類としては例えばリン酸カリ
ウム、リン酸ナトリウム、塩化カリウム、塩化ナ
トリウム、硫酸マグネシウム、硫酸第1鉄などが
使用できる。前記微生物の培養条件としては、温
度約20〜40℃、PH5〜8の範囲を採りうるが、よ
り好ましくは約30〜35℃、PH約6〜7において約
16〜72時間好気的な条件下に培養を行うのが好都
合である。 かくして得られる培養液は、そのまま本発明方
法に使用してもよく、また、培養液中の成分が本
発明方法の障害となる場合や菌体量を多く使用し
たい場合には培養液から遠心分離等により一旦菌
体を分離し、その分離した菌体を用いてもよい。
さらに、該菌体の処理物、例えば凍結乾燥菌体、
アセトン乾燥菌体、菌体磨砕物、菌体抽出物や該
菌体もしくはその処理物を公知の方法で固定化し
たもの等も使用できる。 本発明の鏡像体区別加水分解反応は、通常基質
たるN−アセチル−DL−メチオニンアミドと上
記培養液、該培養液から採取した菌体またはその
処理物とを水性媒体中で混合することにより実施
するのが好ましい。反応溶液中での基質濃度は約
0.1乃至20%程度の高濃度まで用いることができ、
高濃度基質で反応させる場合反応液中に基質が不
溶のまま残つていても反応の進行につれて溶解し
てゆくので反応の進行には何ら支障とならない。
基質と培養液等との混合方法は回分式方法でも、
カラムを用いる連続方法でもいずれも可能であ
る。反応は、反応液のPHが約5〜9、より好まし
くは約5.5〜7.5で、反応温度が通常約20〜60℃、
より好ましくは約30〜40℃であるときスムースに
進行する。 上記の如くして得られる本発明の目的化合物N
−アセチル−L−メチオニンの確認、同定は、例
えば反応液より目的物をイオン交換樹脂処理によ
り取出し、イソプロパノールより再結晶後、得ら
れる結晶を元素分析すると共に、各種展開溶媒に
よる薄層クロマトグラフイーのR値、融点、旋
光度、NMRスペクトル、IRスペクトル等を標準
物質のそれらと比較することにより実施した。ま
た、目的物の定量は、例えば反応液の一部を採
り、一方はそのまま、他方には市販のかびのアシ
ラーゼ(N−アセチル−L−メチオニンのみに特
異的に作用する)を加えて37℃で反応させ、N−
アセチル−L−メチオニンを完全にL−メチオニ
ンに転換させ、両試料中のL−メチオニンをロイ
コノストツク・メゼンテロイデスP−60による微
生物定量法で定量し、アシラーゼ操作で増加した
L−メチオニンの量よりN−アセチル−L−メチ
オニンの生成量を換算した。 以上詳記した通り、本発明方法によれば、N−
アセチル−L−メチオニンアミドの1位のアミド
部の加水分解によりN−アセチル−L−メチオニ
ンが生成すると同時に当モルのアンモニアが副生
するため、本質的に反応溶液中でのPHの変動はな
く、全反応期間を通じて反応液のPHを調整する必
要がないので操作が極めて簡単であり、しかも反
応が酵素反応であるので光学異性体に対する特異
性が極めて高く、得られるN−アセチル−L−メ
チオニンの光学純度が非常に高いなど幾多の利点
がある。ちなみに、上記の新しい酵素反応を触媒
する酵素が、エルウイニア カロトボラの培養
液、培養液より採取した菌体および菌体処理物に
存在することは現在まで全く知られておらず、さ
らに酵素をN−アセチル−DL−メチオニンアミ
ドに作用してN−アセチル−L−メチオニンを生
成せしめる酵素反応についても全く報告されてい
ない。また、公知酵素であるアシルアミダーゼ或
はDL−アミノ酸アミドに作用してL−アミノ酸
を生成させる酵素、例えばロイシンアミノペプチ
ダーゼ、アミノアシルアミダーゼなどは全くN−
アセチル−DL−メチオニンアミドには作用しな
い。従つて、N−アセチル−DL−メチオニンア
ミドに作用してN−アセチル−L−メチオニンを
生成させる本発明の酵素反応を触媒する酵素は全
く新しい酵素である。 実施例 1 第二リン酸ナトリウム・12水塩0.875%、第一
リン酸カリウム0.34%、硫酸アンモニウム0.1%、
硫酸マグネシウム・7水塩0.058%、塩化カムシ
ウム・2水塩0.006%、硫酸第一鉄・7水塩0.002
%、硫酸マンガン・6水塩0.0002%、L−アスパ
ラギン0.2%およびイーストエキス1.0%からなる
培地(PH7.0)の100mlを500ml容坂口フラスコに
仕込み、120℃で10分間滅菌した後、予め栄養寒
天培地上で30℃、20時間培養したエルウイニア・
カロトボラ3057(微工研菌寄第6176号)を一白金
耳接種し、30℃で24時間振とう培養(回転数
140γpm、振幅8cm)して得た培養液を種培養液
とする。 グリセロール2%、塩化アンモニウム0.1%、
第一リン酸カリウム0.1%、硫酸マグネシウム・
7水塩0.05%、コーンステイープリカー1%、ミ
ースト0.5%の組成からなる栄養液体培地(PH
7.0)50mlを500ml容坂口フラスコに仕込み、120
℃で10分間滅菌した後、上記種培養液を1ml接種
し、30℃で2時間振とう培養する。 培養液50mlから遠心分離により集菌し、一度50
mlの生理的食塩水で洗浄後、0.2M酢酸緩衝液
(PH5.5)25ml中にけん濁し、別に同緩衝液で100
mg/mlになるように溶かしたN−アセチル−DL
−メチオニンアミド溶液25mlを加え30℃で酵素反
応を行なわせる。 適宜反応液から0.5mlサンプリングし、100℃、
5分間の加熱により反応を停止させた後、水4.5
mlを加えて遠心分離により菌を除去する。上澄の
一部を適当に希釈して、標品のN−アセチル−L
−メチオニンと同時に薄層クロマトグラフイー
(溶媒;クロロホルム:メタノール:酢酸=85:
15:3)を行い、ヨウ素発色によりN−アセチル
−L−メチオニンの生成を確認する。また上澄の
一部をPH7.5の50mMリン酸緩衝液で50倍に希釈
後、その1mlに市販のアスペルギルス・オリザエ
のアシラーゼを10mg加えて37℃で1時間反応さ
せ、N−アセチル−L−メチオニンをL−メチオ
ニンに加水分解する。この溶液を50〜100倍希釈
し、ロイコノストツク・メゼンテロイデスP−60
を用いる微生物定量法によりL−メチオニンを定
量し、N−アセチル−L−メチオニン量を求め
た。 反応時間に対するN−アセチル−L−メチオニ
ンの生成量は、100mg/mlのN−アセチル−DL−
メチオニンアミドより20時間後には50mg/mlのN
−アセチル−L−メチオニンが生成し、その時間
的経過は第1表に示す通りである。
The present invention relates to a method for producing N-acetyl-L-methionine, and more particularly to a method for producing N-acetyl-L-methionine from N-acetyl-DL-methionine amide using an enzyme. N-acetyl-L- which is the object compound of the present invention
Methionine is a compound useful as a pharmaceutical compound such as an infusion component or a food additive. Conventionally, the method for producing N-acetyl-L-methionine has been as follows: (1) After reacting optically active lysine with N-acetyl-DL-methionine to form a salt,
A method of obtaining the desired L-form by fractional crystallization (Japanese Patent Application Laid-open No. 48-22418) and (2) a method of acetylating L-methionine with acetic anhydride (Japanese Patent Application Laid-Open No. 55-42986) are known. However, production method (1) requires repeated recrystallization to obtain a compound with high optical purity, resulting in poor yields, while production method (2) tends to cause racemization during the reaction. Therefore, it has the disadvantage that reaction conditions must be strictly controlled. In recent years, there have been reports of a method for producing N-acetyl-L-methionine by using the enantiomer-distinguishing hydrolysis ability of enzymes and allowing serine protease or sulfhydryl protease to act on the ester of N-acetyl-DL-methionine. Yes (Unexamined Japanese Patent Publication No. 51-142595
issue). However, as the enzymatic reaction progresses, N-acetyl-L-methionine ester is hydrolyzed and the target product N-acetyl-L-methionine is produced.
Due to methionine, the pH value of the reaction solution decreases. Therefore, in order to maintain and continue the enzymatic reaction, there is a problem in that the pH of the reaction solution must be constantly adjusted to an optimum range. Under such circumstances, the inventors of the present invention have carried out intensive research to overcome the technical and economical difficulties described above, and as a result, it was completely unexpected that Erwinia (Erwinia ) Enantiodifferential hydrolysis catalyzed by the enzymes contained in the culture fluid obtained by culturing microorganisms belonging to the genus genus, bacterial cells collected from the culture fluid, or processed products of the bacterial cells. Through the reaction, only the 1-position amide bond of N-acetyl-L-methionine amide is specifically hydrolyzed to form N-
It was discovered that acetyl-L-methionine was produced. The present invention relates to N-acetyl-DL-methionine amide, which belongs to the genus Erwinia, and is derived from N-acetyl-DL-methionine amide.
The N-acetyl-L produced by allowing a culture of a microorganism capable of producing L-methionine, bacterial cells collected from the culture, or a processed product of the bacterial cells to act on N-acetyl-DL-methionine amide.
- A new method for producing N-acetyl-L-methionine that collects methionine. The method of the present invention will be explained in detail below. The microorganism used in the present invention belongs to the genus Erwinia and has the ability to produce N-acetyl-L-methionine from N-acetyl-DL-methionine amide.
carotovora) 3057 (Feikoken Bibori No. 6176). The enzyme-containing culture solution that catalyzes the enantiomer-differentiated hydrolysis reaction of the present invention can be prepared by culturing the above-mentioned microorganisms in a conventional manner. That is, as a carbon source for the nutrient medium, any carbon source that can be used by the above-mentioned microorganisms can be used, such as sugars such as glucose, fructose, sucrose, maltose, and dextrin, sugar alcohols such as glycerol and sorbitol, and fumar. Acids, organic acids such as citric acid, etc. can be suitably used. The amount added to the medium is usually 0.1 to 10
% is sufficient. Nitrogen sources include various inorganic acids such as ammonium chloride, ammonium phosphate, and ammonium fumarate, ammonium salts of organic acids, and natural organic nitrogen sources such as meat extract, yeast extract, cornstarch liquor, and casein hydrolyzate. In particular, natural organic nitrogen sources can also be used as carbon sources in many cases. Further, as inorganic salts, for example, potassium phosphate, sodium phosphate, potassium chloride, sodium chloride, magnesium sulfate, ferrous sulfate, etc. can be used. The culture conditions for the microorganism may be a temperature of about 20 to 40°C, a pH of about 5 to 8, and more preferably a temperature of about 30 to 35°C, a pH of about 6 to 7, and a pH of about 6 to 7.
It is convenient to carry out the cultivation under aerobic conditions for 16 to 72 hours. The culture fluid thus obtained may be used as is in the method of the present invention, or if components in the culture fluid interfere with the method of the present invention or if a large amount of bacterial cells is desired to be used, the culture fluid may be centrifuged. The bacterial cells may be once separated by a method such as the following, and then the isolated bacterial cells may be used.
Furthermore, processed products of the bacterial cells, such as freeze-dried bacterial cells,
Acetone-dried microbial cells, ground microbial cells, microbial extracts, and microbial cells or processed products thereof immobilized by known methods can also be used. The enantiomer-differentiated hydrolysis reaction of the present invention is usually carried out by mixing N-acetyl-DL-methionine amide, which is a substrate, with the above-mentioned culture solution, bacterial cells collected from the culture solution, or a treated product thereof in an aqueous medium. It is preferable to do so. The substrate concentration in the reaction solution is approximately
It can be used up to a high concentration of about 0.1 to 20%,
When reacting with a high concentration of substrate, even if the substrate remains insoluble in the reaction solution, it will dissolve as the reaction progresses, so it will not interfere with the progress of the reaction.
The mixing method of substrate and culture solution etc. can be batch method or
A continuous method using a column is also possible. In the reaction, the pH of the reaction solution is about 5 to 9, preferably about 5.5 to 7.5, and the reaction temperature is usually about 20 to 60°C.
More preferably, the process proceeds smoothly when the temperature is about 30 to 40°C. Target compound N of the present invention obtained as described above
- Confirmation and identification of acetyl-L-methionine can be carried out, for example, by extracting the target product from the reaction solution by treatment with an ion exchange resin, recrystallizing it from isopropanol, elemental analysis of the obtained crystals, and thin layer chromatography using various developing solvents. The R value, melting point, optical rotation, NMR spectrum, IR spectrum, etc. of the sample were compared with those of the standard substance. For quantitative determination of the target product, for example, take a portion of the reaction solution, add one part as is, and add commercially available mold acylase (which specifically acts only on N-acetyl-L-methionine) to the other at 37°C. to react with N-
Acetyl-L-methionine was completely converted to L-methionine, and L-methionine in both samples was quantified by a microbial assay using Leuconostoc mesenteroides P-60. The amount of acetyl-L-methionine produced was calculated. As detailed above, according to the method of the present invention, N-
N-acetyl-L-methionine is produced by hydrolysis of the amide moiety at position 1 of acetyl-L-methionine amide, and at the same time, the same mole of ammonia is produced as a by-product, so there is essentially no PH fluctuation in the reaction solution. The operation is extremely simple as there is no need to adjust the pH of the reaction solution throughout the reaction period, and since the reaction is an enzymatic reaction, the specificity for optical isomers is extremely high, and the resulting N-acetyl-L-methionine It has many advantages such as extremely high optical purity. Incidentally, it has not been known until now that the enzyme that catalyzes the above-mentioned new enzymatic reaction is present in the culture solution of Erwinia carotovora, the cells collected from the culture solution, and the bacterial cell products. There has also been no report on an enzymatic reaction that acts on acetyl-DL-methionine amide to produce N-acetyl-L-methionine. Furthermore, known enzymes such as acylamidase or enzymes that act on DL-amino acid amide to produce L-amino acids, such as leucine aminopeptidase and aminoacylamidase, are completely N-
It has no effect on acetyl-DL-methionine amide. Therefore, the enzyme that catalyzes the enzymatic reaction of the present invention, which acts on N-acetyl-DL-methionine amide to produce N-acetyl-L-methionine, is a completely new enzyme. Example 1 Dibasic sodium phosphate/decahydrate 0.875%, monobasic potassium phosphate 0.34%, ammonium sulfate 0.1%,
Magnesium sulfate heptahydrate 0.058%, camsium chloride dihydrate 0.006%, ferrous sulfate heptahydrate 0.002
%, manganese sulfate hexahydrate 0.0002%, L-asparagine 0.2%, and yeast extract 1.0%. Erwinia cultured on agar medium at 30℃ for 20 hours.
One platinum loop of Carotovora 3057 (Feikoken Bacteria No. 6176) was inoculated and cultured at 30℃ for 24 hours with shaking (rotation speed
140 γ pm, amplitude 8 cm) and use the culture solution obtained as the seed culture solution. 2% glycerol, 0.1% ammonium chloride,
Monobasic potassium phosphate 0.1%, magnesium sulfate
Nutrient liquid medium (PH
7.0) Pour 50ml into a 500ml Sakaguchi flask and make 120
After sterilizing at 30°C for 10 minutes, 1 ml of the above seed culture was inoculated and cultured with shaking at 30°C for 2 hours. Collect bacteria from 50 ml of culture solution by centrifugation, and
After washing with 1 ml of physiological saline, suspend in 25 ml of 0.2 M acetate buffer (PH5.5), and add 100 ml of the same buffer separately.
N-acetyl-DL dissolved to mg/ml
- Add 25 ml of methionine amide solution and carry out the enzyme reaction at 30°C. Take a 0.5ml sample from the reaction solution and incubate at 100℃.
After stopping the reaction by heating for 5 minutes, water 4.5
ml and remove bacteria by centrifugation. Appropriately dilute a portion of the supernatant to obtain standard N-acetyl-L.
- Thin layer chromatography simultaneously with methionine (solvent; chloroform: methanol: acetic acid = 85:
15:3) and confirm the production of N-acetyl-L-methionine by iodine coloring. In addition, a portion of the supernatant was diluted 50 times with 50 mM phosphate buffer at pH 7.5, and 10 mg of commercially available Aspergillus oryzae acylase was added to 1 ml and reacted at 37°C for 1 hour. - Hydrolyze methionine to L-methionine. This solution was diluted 50 to 100 times and Leuconostoc mesenteroides P-60 was added.
L-methionine was quantified by a microbial assay using a microbial assay, and the amount of N-acetyl-L-methionine was determined. The amount of N-acetyl-L-methionine produced with respect to the reaction time was 100 mg/ml of N-acetyl-DL-
50 mg/ml N after 20 hours from methionine amide.
-Acetyl-L-methionine was produced, and its time course is shown in Table 1.

【表】 実施例 2 実施例1と同様に種培養したエルウイニア・カ
ロトボラ3057(微工研菌寄第6176号)をグリセロ
ール2%、塩化アンモニウム0.1%、ポリペプト
ン2%、第一リン酸カリウム0.1%、硫酸マグネ
シウム・7水塩0.05%の組成からなる栄養液体培
地(PH7.0)に1%接種し、30℃で28時間振とう
培養した。 培養液200mlから遠心分離で集菌し、一度生理
食塩水で洗浄後、純水にけん濁して100mlとした。
そこへ、N−アセチル−DL−メチオニンアミド
15gを含む水溶液100mlを加え、酢酸にてPHを6.0
に調製した。30℃で24時間反応させた後、遠心分
離で菌体を除いた上澄区分に含まれるN−アセチ
ル−L−メチオニン量は実施例1と同様の方法で
定量すると7.2g(転換率98%)であつた。 この上澄を塩酸でPH2とした後、弱塩基性イオ
ン交換樹脂WA−10(OH-型、三菱化成製の商品
名)カラムに通し、N−アセチル−L−メチオニ
ンを吸着させる。カラムを充分水洗後、3%アン
モニア水でN−アセチル−L−メチオニンを溶出
させる。減圧下に過剰のアンモニアを除いた溶出
液を強酸性イオン交換樹脂IR−120(H+型、ロー
ムアンドハース社製の商品名)カラムに通し、通
過液を濃縮してN−アセチル−L−メチオニンの
粗結晶を得る。これを少量のイソプロパノールよ
り再結晶することによりN−アセチル−L−メチ
オニン5.8gを得る。本品の融点は104℃で、比旋
光度は〔α〕D−20.2゜(C=4、水)である。 実施例 3 実施例2と同様に調製したエルウイニア・カロ
トボラ3057(微工研菌寄第6176号)の生菌体2g
に生理食塩水2mlを加えてけんだくし、そこへ予
め調製した5%カラギーナンゾル8.5mlを加える。
氷冷してゲル化させ、2%塩化カリウム水溶液に
30分間浸漬後、3×3×3mmの立方体に成型す
る。この成型ゲル6mlを30℃の水が循環している
外とう管付カラムに充填し、50mg/mlのN−アセ
チル−DL−メチオニンアミド水溶液(2%酢酸
アンモニウム共存、PH6.0に酢酸で調製)をSV=
0.2で流下させる。流下液中のN−アセチル−L
−メチオニンを実施例1と同様の方法で定量する
と24.9mg/ml(転換率99%)含まれている。
[Table] Example 2 Erwinia carotovora 3057 (Feikoken Bibori No. 6176), which was seed cultured in the same manner as in Example 1, was mixed with 2% glycerol, 0.1% ammonium chloride, 2% polypeptone, and 0.1% monobasic potassium phosphate. , 1% was inoculated into a nutrient liquid medium (PH7.0) consisting of 0.05% magnesium sulfate/heptahydrate, and cultured with shaking at 30°C for 28 hours. Bacteria were collected from 200 ml of culture solution by centrifugation, washed once with physiological saline, and suspended in pure water to make 100 ml.
There, N-acetyl-DL-methionine amide
Add 100ml of an aqueous solution containing 15g and adjust the pH to 6.0 with acetic acid.
It was prepared as follows. After reacting at 30°C for 24 hours, the amount of N-acetyl-L-methionine contained in the supernatant after removing the bacterial cells by centrifugation was determined using the same method as in Example 1. The amount was 7.2 g (conversion rate 98%). ). After adjusting the pH of this supernatant to 2 with hydrochloric acid, it is passed through a weakly basic ion exchange resin WA-10 (OH - type, trade name manufactured by Mitsubishi Kasei) column to adsorb N-acetyl-L-methionine. After thoroughly washing the column with water, N-acetyl-L-methionine is eluted with 3% aqueous ammonia. Excess ammonia was removed under reduced pressure, and the eluate was passed through a strongly acidic ion exchange resin IR-120 (H + type, trade name manufactured by Rohm and Haas) column, and the passed liquid was concentrated to obtain N-acetyl-L- Obtain crude crystals of methionine. By recrystallizing this from a small amount of isopropanol, 5.8 g of N-acetyl-L-methionine was obtained. The melting point of this product is 104°C, and the specific optical rotation is [α] D -20.2° (C=4, water). Example 3 2 g of live cells of Erwinia carotovora 3057 (Feikoken Bacterium No. 6176) prepared in the same manner as in Example 2
Add 2 ml of physiological saline to the solution, stir, and add 8.5 ml of 5% carrageenan sol prepared in advance.
Cool on ice to gel, then add to 2% potassium chloride aqueous solution.
After soaking for 30 minutes, shape into a cube of 3 x 3 x 3 mm. 6 ml of this molded gel was packed into a column with a jacket tube in which water at 30°C was circulated, and a 50 mg/ml N-acetyl-DL-methioninamide aqueous solution (coexisting with 2% ammonium acetate, prepared with acetic acid to pH 6.0) SV=
Flow down at 0.2. N-acetyl-L in flowing liquid
- Methionine was quantified in the same manner as in Example 1 and found to be 24.9 mg/ml (conversion rate 99%).

Claims (1)

【特許請求の範囲】 1 エルウイニア(Erwinia)属に属し、N−ア
セチル−DL−メチオニンアミドからN−アセチ
ル−L−メチオニンを生成せしめる能力を有する
微生物の培養液、該培養液から採取した菌体また
は該菌体の処理物をN−アセチル−DL−メチオ
ニンアミドに作用せしめ、生成したN−アセチル
−L−メチオニンを採取することを特徴とするN
−アセチル−L−メチオニンの製造法。 2 微生物がN−アセチル−DL−メチオニンア
ミドからN−アセチル−L−メチオニンを生成せ
しめる能力を有するエルウイニア・カロトボラ
(Erwinia carotovora)3057である特許請求の範
囲第1項記載の製造法。
[Scope of Claims] 1. A culture solution of a microorganism that belongs to the genus Erwinia and has the ability to produce N-acetyl-L-methionine from N-acetyl-DL-methionine amide, and bacterial cells collected from the culture solution. Or N-acetyl-L-methionine is collected by allowing the processed product of the bacterial cells to act on N-acetyl-DL-methionine amide and collecting the produced N-acetyl-L-methionine.
- Method for producing acetyl-L-methionine. 2. The production method according to claim 1, wherein the microorganism is Erwinia carotovora 3057, which has the ability to produce N-acetyl-L-methionine from N-acetyl-DL-methionine amide.
JP56168278A 1981-10-20 1981-10-20 Preparation of n-acetyl-l-methionine Granted JPS5871892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56168278A JPS5871892A (en) 1981-10-20 1981-10-20 Preparation of n-acetyl-l-methionine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56168278A JPS5871892A (en) 1981-10-20 1981-10-20 Preparation of n-acetyl-l-methionine

Publications (2)

Publication Number Publication Date
JPS5871892A JPS5871892A (en) 1983-04-28
JPH025397B2 true JPH025397B2 (en) 1990-02-01

Family

ID=15865047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56168278A Granted JPS5871892A (en) 1981-10-20 1981-10-20 Preparation of n-acetyl-l-methionine

Country Status (1)

Country Link
JP (1) JPS5871892A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572567B2 (en) * 1985-06-07 1997-01-16 理化学研究所 Enzyme production method
KR101821050B1 (en) * 2015-10-14 2018-03-09 씨제이제일제당 (주) Bio-based N-acetyl-L-methionine and use thereof

Also Published As

Publication number Publication date
JPS5871892A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
US4080259A (en) Process of preparing L and D α-amino acids by enzyme treatment of DL-α-amino acid amide
CA1244788A (en) Process for the production of l-carnitine and its derivatives
JPWO2004022766A1 (en) Method for producing L-α-methylcysteine derivative
JPH025397B2 (en)
Dropsy et al. Cholinesterase‐catalyzed resolution of D, L‐carnitine
JPS5922516B2 (en) Method for producing L-phenylalanine
JP3116102B2 (en) Method for producing L-3,4-dihydroxyphenylalanine
JP2002153294A5 (en)
JP3006615B2 (en) Method for producing D-β-hydroxy amino acid
JP3758680B2 (en) Method for producing L-2-aminoadipic acid
JP3117790B2 (en) Method for producing L-α-aminoadipic acid
JP2716477B2 (en) Method for producing S-carboxymethyl-L-cysteine
JP2674078B2 (en) Process for producing D-α-amino acid
JPH04341195A (en) Production of optically active mandelic acid
JPS6125359B2 (en)
JP3917723B2 (en) Lactone hydrolase and process for producing the same
JPH047678B2 (en)
JP2674076B2 (en) Method for producing D-α-amino acid
JP2899071B2 (en) Method for producing L-α-alanine
JPH0254077B2 (en)
WO2022259458A1 (en) Method for producing (s)-3-halogeno-2-methyl-1,2-propanediol
JPH0591895A (en) Production of d-serine
JPH047677B2 (en)
GB1577087A (en) Enzyme preparation having l-amino acyl amidase activity
JPS61173789A (en) Production of 4-chloro-3-hydroxybutyric acid