JPH0253481B2 - - Google Patents

Info

Publication number
JPH0253481B2
JPH0253481B2 JP60048097A JP4809785A JPH0253481B2 JP H0253481 B2 JPH0253481 B2 JP H0253481B2 JP 60048097 A JP60048097 A JP 60048097A JP 4809785 A JP4809785 A JP 4809785A JP H0253481 B2 JPH0253481 B2 JP H0253481B2
Authority
JP
Japan
Prior art keywords
melt
mold
gas
nozzle
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60048097A
Other languages
Japanese (ja)
Other versions
JPS60211001A (en
Inventor
Uetsuseru Otsutoo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of JPS60211001A publication Critical patent/JPS60211001A/en
Publication of JPH0253481B2 publication Critical patent/JPH0253481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 a 産業上の利用分野 本発明は、特許請求の範囲第1項の前文に記載
の熱間加工工具の製造方法と装置に関する。
DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to a method and apparatus for manufacturing a hot working tool as set forth in the preamble of claim 1.

b 従来の技術とその問題点 金属融成物を噴霧し、その粒子を直ちに型に集
めることによつて気孔のない又は殆んど気孔のな
い原成形品を製造することは既に知られている。
そのような方法は、例えばドイツ連邦共和国特許
出願公開第2537103号公報に記載されている。こ
の原成形品の比重は、少くとも90%、通常95〜99
%でなければならない。これは、依然として存在
する気孔がこれ以上互に結合しないことを意味し
ている。このことは、熱せられた状態にある部分
を、鍛造、プレスまたは押出しプレスによつてさ
らに加工する必要があり、気孔内への酸素の侵入
は不都合な内部酸化を起させ、その結果、機械的
な特性が劣化するようになるため、重大な問題で
ある。
b. Prior art and its problems It is already known to produce porosity-free or nearly porosity-free raw molded parts by spraying a metal melt and immediately collecting the particles in a mold. .
Such a method is described, for example, in DE-A-2537103. The specific gravity of this original molded product is at least 90%, usually 95-99
%Must. This means that the pores that are still present no longer connect with each other. This means that the part in the heated state has to be further processed by forging, pressing or extrusion presses, and the ingress of oxygen into the pores causes undesirable internal oxidation, resulting in mechanical This is a serious problem because the characteristics of the

さらに、反応気体または真空の中で熱処理を行
なう必要のある有孔性の製品または半製品を粉末
冶金の方法によつて製造することが一般に行われ
ている。この方法は少くとも下記の工程、即ち粉
末の製造、粉末の凝縮、成形体の焼結を必要とす
る。特に、大きな製品を製造する場合、高い経費
を必要とする。
Furthermore, it is common practice to produce porous products or semi-finished products by powder metallurgy methods, which require heat treatment in a reactive gas or vacuum. This method requires at least the following steps: production of the powder, condensation of the powder, and sintering of the compact. Especially when manufacturing large products, high costs are required.

さらに、耐摩耗性の成形体を製造するため、プ
レス前に金属粉末に補強物質(例えばAl2O3)を
添加することが知られている。この場合に、しば
しば、プレス工具がひどく摩耗することが欠点で
ある。
Furthermore, it is known to add reinforcing substances (for example Al 2 O 3 ) to the metal powder before pressing in order to produce wear-resistant molded bodies. In this case, it is often a disadvantage that the press tools are subject to severe wear.

c 目的 本発明の目的は、噴霧された金属融成物からな
り70〜90%の比重をもつた熱間加工工具を製造す
ることが可能な簡素化された方法、およびこの方
法を実施するための装置を提供することにある。
c. Object The object of the invention is a simplified method with which it is possible to produce hot working tools made of atomized metal melt and having a specific gravity of 70-90%, and for carrying out this method. The goal is to provide equipment for

d 問題点を解決するための手段 この目的は、特許請求の範囲第1項記載の方法
によつて達成される。この方法の好適な実施態様
は、特許請求の範囲第2項ないし第8項に示され
ている。本発明方法を実施するための装置は、特
許請求の範囲第9項に記載されている。この装置
の好適な実施態様は、特許請求の範囲第10項な
いし第12項に示されている。
d. Means for solving the problem This object is achieved by the method recited in claim 1. Preferred embodiments of this method are set out in claims 2 to 8. An apparatus for carrying out the method according to the invention is defined in claim 9. Preferred embodiments of this device are set out in claims 10 to 12.

e 発明の要点 本発明によれば、金属融成物を噴霧し融成物粒
子を1つの型に集めることによつて、大きな有孔
性の熱間加工工具を直接製造することができる。
その場合、処理条件、すなわち融成物の過熱、単
位時間当りの融成物の流れ(これは融成物噴射直
径によつて決定される)、噴霧気体の量、温度、
速度および噴霧ノズルから型までの距離を、融成
物粒子が噴霧ノズルの下にある型または型に既に
集められた融成物粒子に衝突した際に、融成物粒
子が練り粉のような硬さをもつ程度に冷却されて
いるよう選定することができる。この場合、“練
り粉のような”とは、粒子が少しの圧力によつて
まだ変形可能な状態を意味しており、即ち、この
状態では、粒子は完全に凝固しているが、まだ液
状の核をもち、この核は極めて小さいため、核を
包囲する殻体は、型に衝突した場合に割れること
はない。製造された工具が70ないし90%特に80な
いし85%の比重をもつようにするには、上記事項
が必要である。そのほか、融成物粒子が互に溶接
(焼結)するためには、充分な熱エネルギーをも
つ必要がある。
e Summary of the Invention According to the present invention, large porous hot working tools can be manufactured directly by spraying the metal melt and collecting the melt particles in a mold.
In that case, the process conditions, i.e. superheating of the melt, flow of melt per unit time (which is determined by the melt injection diameter), amount of atomizing gas, temperature,
The velocity and the distance from the spray nozzle to the mold are such that when the melt particles collide with the mold below the spray nozzle or melt particles already collected in the mold, the melt particles become like dough. It can be selected to be cooled to the extent that it has hardness. In this case, "dough-like" means a state in which the particles are still deformable by slight pressure, i.e. in this state the particles are fully solidified but still liquid. This nucleus is so small that the shell surrounding it will not break when it hits the mold. This is necessary in order for the produced tool to have a specific gravity of 70 to 90%, especially 80 to 85%. In addition, it is necessary to have sufficient thermal energy to weld (sinter) the melt particles together.

粒子硬度の調整は、固体の粒子特性が必要であ
ると共に粒子が付着することを防止するため可及
的に少い熱エネルギーをもつことが必要な金属粉
末を製造するための粒子硬度とは根本的に相違す
る。
Adjustment of particle hardness is fundamental to the production of metal powders that require solid particle characteristics and require as little thermal energy as possible to prevent particles from adhering. differ in terms of

これとは逆に、ドイツ連邦共和国特許出願公開
第2537103号公報による方法の場合には、可及的
に高い比重に調整するため、特に軟らかい粒子が
製造され、型に集められた粒子の堆積の表面に生
じた窪みおよび非平面部は、互に結合された気孔
が生じないよう後続の粒子によつて完全に充填す
る必要がある。
On the contrary, in the case of the method according to DE 25 37 103 A1, particularly soft particles are produced in order to set the specific gravity as high as possible, and the accumulation of particles collected in the mold is The depressions and irregularities created in the surface must be completely filled by subsequent particles so that no interconnected pores occur.

本発明によれば、融成物の噴霧の際、従来の技
術ではそれぞれの場合に回避する必要のあつた処
理条件の組合せが調整される。
According to the invention, during the atomization of the melt, combinations of processing conditions are set, which in the prior art had to be avoided in each case.

適当な条件の組合せは、例えば試験において、
その他は一定な条件で、型と噴霧ノズルとの間隔
を変化させることによつて見出すことができる。
その場合、傾向として、融成物の一層高い過熱、
単位時間の融成物流量の増加、気体温度の上昇お
よび単位時間に供給される噴霧気体量の減少が、
その他は一定な条件において、粒子の硬さを軟ら
かくさせるか、又は比重を高くさせることに注意
する必要がある。
An appropriate combination of conditions is, for example, in a test,
Others can be found under constant conditions by varying the distance between the mold and the spray nozzle.
In that case, the tendency is to a higher superheating of the melt,
An increase in the melt flow rate per unit time, an increase in the gas temperature, and a decrease in the amount of atomized gas supplied per unit time,
It is necessary to pay attention to softening the hardness of the particles or increasing the specific gravity under other conditions.

最高90%特に80ないし85%の比重は、気孔が互
に結合された有孔性の成形体を保証する。これ
は、造形にプレス工程を必要としない成形体に反
応焼鈍処理を行なうことを可能にし、この処理に
おいては、行われた反応(例えば脱炭、酸化、還
元、窒化など)が、深部の狭く限られた表面部分
だけでなく、開放された気孔構造であるため、全
体的に、又は少くとも容積の大きな部分において
行われる。従つて、徹底的な深部効果によつて所
望の材料特性(例えば耐熱性)にすることができ
る。ここで工具の比重が90%を越えると、気孔が
不足し、反応ガスが工具内に深く入り込むことが
できず、したがつて前記の反応焼鈍処理による効
果が充分に得られない。一方、工具の比重が70%
未満であると、工具として必要な強さが不足する
ことが実験から判明した。
A specific gravity of up to 90%, in particular 80 to 85%, guarantees a porous shaped body in which the pores are interconnected. This makes it possible to perform a reactive annealing treatment on compacts that do not require a pressing step for shaping, in which the reactions carried out (e.g. decarburization, oxidation, reduction, nitridation, etc.) This is done not only in a limited surface area, but also in the entire area, or at least in a large volume area, due to the open pore structure. Therefore, the desired material properties (for example heat resistance) can be achieved through thorough depth effects. If the specific gravity of the tool exceeds 90%, there will be insufficient pores, and the reaction gas will not be able to penetrate deeply into the tool, so that the effect of the reactive annealing process will not be sufficiently achieved. On the other hand, the specific gravity of the tool is 70%
It has been found through experiments that if the strength is less than that, the strength necessary for the tool is insufficient.

また、本発明による方法によつて、成形体容積
内に所望の異なる特性を備えた工具を製造するこ
ともできる。これは、例えば、噴霧工程中に補強
物質(例えば炭化物、窒化物、酸化物など)を時
間制御を行なつて噴霧ノズルに供給し、融成物粒
子の流れて共に成形体に混入させることによつて
可能になる。
The method according to the invention also makes it possible to produce tools with desired different properties within the shaped body volume. This can be done, for example, by time-controlled feeding of reinforcing substances (e.g. carbides, nitrides, oxides, etc.) into the spray nozzle during the spraying process, and mixing them into the compact with the flow of melt particles. It becomes possible.

このようにすることによつて、所定の範囲だけ
補強物質を混入させることができる。例えば耐摩
耗性の物体の場合、後で加工を容易にするため、
締付け部材を収容する役割をなし機械的に加工す
る必要のある容積部分(例えばねじ孔)は補強物
質が混入しないようにすることができる。また、
全体の成形体に均一に補強物質を混入することが
可能であることは勿論である。
By doing so, it is possible to mix the reinforcing substance only within a predetermined range. For example, in the case of wear-resistant objects, to facilitate later machining,
Volumes which serve to accommodate the clamping element and which must be mechanically processed (for example screw holes) can be kept free of reinforcing substances. Also,
Of course, it is possible to uniformly mix the reinforcing substance into the entire molded body.

金属融成物の噴霧の場合および/または反応焼
鈍処理中に(即ち成形体自体内で)補強物質が発
生するよう作用させることが多くの場合において
好ましい。そのためには、融成物を、噴霧前に、
噴霧および/または反応焼鈍に際して使用される
気体(例えば窒素、二酸化炭素、空気の酸素成分
など)と反応することが可能で、その際に補強物
質(例えばAl2O3)を生成する一種または多種の
金属(例えばAl、Ti、Nb)と合金化させること
ができる。焼鈍処理を行なうためには、成形体は
約80ないし85%の比重をもつことが必要である。
In many cases it is preferred to cause the reinforcing material to be generated during the spraying of the metal melt and/or during the reactive annealing process (ie within the shaped body itself). For this purpose, the melt must be sprayed before spraying.
One or more gases capable of reacting with the gases used during spraying and/or reactive annealing (e.g. nitrogen, carbon dioxide, oxygen components of air, etc.) and producing reinforcing substances (e.g. Al 2 O 3 ) in the process. metals (e.g. Al, Ti, Nb). In order to carry out the annealing treatment, the compact needs to have a specific gravity of about 80 to 85%.

例えば空気中の酸素と反応させないようにする
には、金属融成物の噴霧および型内への集積を、
外気から遮断された容器内で行なうことが好まし
い。
For example, to prevent the metal melt from reacting with oxygen in the air, spraying the metal melt and accumulating it in the mold should be
It is preferable to carry out the reaction in a container isolated from the outside air.

噴霧気体としては、アルゴンまたは窒素のよう
な不活性気体を使用することができる。不活性雰
囲気の純度に対する要求はあまり大きくなく、例
えば噴霧気体として窒素を使用することが可能で
あり、その場合、噴霧を、開放された容器内で行
なうようにすることもできるが、この場合には、
噴霧の際に連続して新しく容器に供給される窒素
の排除作用による外気の完全な遮蔽が必要であ
る。
Inert gases such as argon or nitrogen can be used as atomizing gas. The requirements for the purity of the inert atmosphere are not too great; it is possible, for example, to use nitrogen as the atomizing gas, in which case the atomization can also take place in an open container; teeth,
A complete shielding of the outside air is required during the spraying, with the exclusion of nitrogen which is continuously freshly supplied to the container.

工具内部における異なつた材料特性の調整は、
噴霧ノズルから受型までの距離を時間の経過によ
つて変化させ、成形体の中に密度および多孔性の
相違する層を生成させることによつて実現するこ
とができる。これは、例えば場合によつて続いて
行なわれる反応焼鈍処理にも影響がある。一般
に、高い密度は、工具への締付部材を取付ける必
要のある場所に望ましい。
Adjustment of different material properties inside the tool
This can be achieved by varying the distance from the spray nozzle to the mold over time, producing layers with different densities and porosity in the molded body. This also has an effect, for example, on the optional subsequent reactive annealing treatment. Generally, high density is desirable where it is necessary to attach a clamping member to a tool.

場合によつてはノズルから型までの距離の変化
に関連した、均一または故意に不均一な型の充填
は、型をノズルの下で略水平方向に移動させるこ
とによつて行われる。原理的には、前述とは逆
に、融成物粒子の衝突場所が型の所望範囲になる
ようノズルの噴射方向を変化させることもでき
る。この方法で、場合によつては時間に応じて配
合される補強物質の添加とも関連し、成形体の内
部に著しく異なる材料特性を備えた工具が製造さ
れる。
A uniform or deliberately non-uniform filling of the mold, possibly associated with a change in the distance from the nozzle to the mold, is carried out by moving the mold approximately horizontally under the nozzle. In principle, contrary to the above, it is also possible to change the injection direction of the nozzle so that the impact location of the melt particles falls within the desired range of the mold. In this way, tools are produced which have significantly different material properties inside the shaped body, possibly also in connection with the addition of reinforcing substances which are incorporated over time.

本発明方法によつて製造された工具は、一般に
直接製品として使用されるか、又は比較的簡単な
加工(例えば座、孔)が必要である。
Tools produced by the method of the invention are generally used directly as products or require relatively simple machining (eg seats, holes).

本発明方法を実施するための装置は、融成物容
器を備え、この底部に注出口が取付けられ、この
注出口の下方には、リング状の噴霧ノズルが注出
口と同軸に設けられる。
The device for carrying out the method of the invention comprises a melt container, at the bottom of which a spout is attached, below which a ring-shaped spray nozzle is arranged coaxially with the spout.

このノズルは噴霧気体用の接続部を備えてい
る。長さが型の長さまたは幅とほぼ等しい、例え
ば断面が狭いがやや長い噴霧放射を発生するた
め、ノズルに他の断面形状(例えば矩形)を選択
することが多くの場合好ましい。融成物粒子を集
めるための型は、ノズルまでの距離を変化させる
ことができるよう高さの調整が可能(例えば電動
機駆動により)な収容装置上のノズルの下方に変
換可能に設けられる。特に、型の内部における噴
霧放射の衝突領域を任意に変化することができる
(例えば電動機駆動により)よう、ノズルの下方
の収容装置を旋回可能または移動可能に構成する
ことが好ましい。さらに、外気から遮断された噴
霧気体の排気用の排出口を備え融成物容器に密接
した噴霧容器の中に、ノズルおよび収容装置を型
と共に設けることが好ましい。噴霧によつて発生
する融成物粒子の凝縮に至るまでの冷却は、先ず
第一に熱放射によつて行われ、若干は噴霧気体の
熱放散によつて行われるため、凝縮条件の制御を
目的として噴霧容器に、その壁部の中または壁部
に接して補助冷却装置を設けることが好ましい。
This nozzle is equipped with a connection for the atomizing gas. It is often preferred to choose other cross-sectional shapes for the nozzle (eg rectangular), for example to produce a narrow but slightly longer spray radiation with a length approximately equal to the length or width of the mold. The mold for collecting the melt particles is convertible below the nozzle on a receiving device whose height is adjustable (for example by motor drive) so that the distance to the nozzle can be varied. In particular, it is preferred to design the receiving device below the nozzle to be pivotable or movable, so that the impingement area of the spray radiation inside the mold can be varied at will (for example by motor drive). Furthermore, it is preferred to provide the nozzle and the receiving device together with the mold in a spray container in close contact with the melt container, which is provided with an outlet for exhausting the atomization gas and is isolated from the outside atmosphere. Since the cooling of the melt particles generated by spraying up to condensation is carried out primarily by thermal radiation and to some extent by heat dissipation of the atomized gas, it is important to control the condensation conditions. For this purpose, the spray container is preferably provided with an auxiliary cooling device in or on its wall.

f 実施例 次に、本発明による方法を例示して一層詳細に
説明する。
f Example Next, the method according to the present invention will be explained in more detail by way of example.

熱間加工工具として著しい摩耗を受ける成形体
を製造する。この製品は約420mm×120mm×40mmの
寸法を有する。適当な内側寸法を有する金型が、
空気を遮断した密閉容器内に、噴霧ノズルの下方
で動くことができるように取付けられる。リング
状ノズル(直径80mm)から型までの距離は600mm
である。
To produce a molded body that undergoes significant wear as a hot working tool. This product has dimensions of approximately 420mm x 120mm x 40mm. A mold with appropriate internal dimensions is
It is mounted movably below the atomizing nozzle in a closed container sealed from air. The distance from the ring nozzle (diameter 80mm) to the mold is 600mm
It is.

成形体の密度は約6.3g/cmであり、これは使
用されたCrNi鋼の場合、約80%の比重に相当す
ることが検査によつて判明した。約1540℃に熱せ
られた溶融鋼の噴射と同時に、溶融鋼の約5%の
割合に相当する量の微粒酸化物(Al2O3)が補強
物質としてノズルの吸込み部に連続的に供給され
る。この融成物は約0.5Kg/秒の割合でノズルを
流れる。噴霧気体としては、室温の窒素が使用さ
れる。噴霧中、型が均一に充填されるよう融成物
粒子の噴射の下で型が移動される。成形体が約30
mmの高さに達した際に、補強物質の供給が中断さ
れ、ノズルからの距離が短縮される。このように
して、成形体の上部に約90%の適当な大きさの密
度が生じる。型が充填(成形体重量約12.7Kg)さ
れた後に融成物の噴射も中止される。成形体は、
酸素を遮断した状態で約400℃以下に保たれる。
次に、この成形体は密閉された炉に入れ換えら
れ、先ず真空にして焼鈍され、その後、耐熱組織
を形成するため、低い窒素圧力(1バール以下)
で窒化される。続いて、補強物質が被覆されてい
ない上層面の機械加工、例えば面削り、中ぐり、
ねじ切りが行なわれる。
Tests have shown that the density of the compact is approximately 6.3 g/cm, which corresponds to a specific gravity of approximately 80% for the CrNi steel used. Simultaneously with the injection of molten steel heated to approximately 1540°C, an amount of fine grain oxide (Al 2 O 3 ) corresponding to approximately 5% of the molten steel is continuously supplied as a reinforcing material to the suction part of the nozzle. Ru. This melt flows through the nozzle at a rate of approximately 0.5 Kg/sec. Room temperature nitrogen is used as the atomizing gas. During spraying, the mold is moved under the jet of melt particles so that the mold is evenly filled. Approximately 30 molded objects
When a height of mm is reached, the supply of reinforcing material is interrupted and the distance from the nozzle is reduced. In this way, a suitable size density of about 90% is created in the upper part of the molded body. The injection of melt is also stopped after the mold is filled (molding weight approximately 12.7 kg). The molded body is
It is maintained at a temperature below approximately 400°C with oxygen cut off.
Next, this compact is transferred to a closed furnace, where it is first annealed under vacuum and then under low nitrogen pressure (less than 1 bar) to form a heat-resistant structure.
is nitrided. Subsequently, machining of the upper layer surface, which is not coated with reinforcing material, e.g. facing, boring,
Thread cutting is performed.

Claims (1)

【特許請求の範囲】 1 鋼またはNi、Coをベースにした特殊合金の
融成物が気体を媒体として噴霧され融成物粒子が
型に集められるようにされた熱間加工工具の製造
方法において、工具の比重を70ないし90%にする
ため、噴霧の際に生じる融成物粒子が型または型
に既に集められた融成物粒子に衝突する場合に、
練り粉のような硬さをもつよう噴霧条件(融成物
の過熱、単位時間当りの融成物の流量、気体量、
気体速度、気体温度、噴霧ノズルからの型の距
離)を調整し、噴霧工程中に噴霧ノズルに補強物
質を付加的に供給し、工具に反応焼鈍を施すこと
を特徴とする方法。 2 添加する補強物質の流量を時間によつて変化
させることを特徴とする特許請求の範囲第1項記
載の方法。 3 融成物は、反応焼鈍の際に気体と補強物質を
生成する少なくとも1つの金属が噴霧前に添加さ
れることを特徴とする特許請求の範囲第1項記載
の方法。 4 融成物は、噴霧気体と反応し、その際に補強
物質を生成する少なくとも1つの金属が噴霧前に
添加させることを特徴とする特許請求の範囲第1
項ないし第3項のいずれかに記載の方法。 5 噴霧は、密閉された容器内で行われることを
特徴とする特許請求の範囲第1項ないし第4項の
いずれかに記載の方法。 6 噴霧気体としてルゴン、または窒素を使用す
ることを特徴とする特許請求の範囲第5項記載の
方法。 7 工具の内部を場所によつて異なる密度にする
ため、噴霧ノズルと受け型との間の距離を噴霧中
に変化させることを特徴とする特許請求の範囲第
1項ないし第6項のいずれかに記載の方法。 8 融成物粒子の型内における衝突場所を、時間
の経過によつて変化させることを特徴とする特許
請求の範囲第1項ないし第7項のいずれかに記載
の方法。 9 鋼またはNi、Coをベースにした特殊合金の
融成物が気体を媒体として噴霧され、融成物粒子
が型に集められるようにされた熱間加工工具の製
造装置であつて、調整可能な気体導管に接続され
融成物容器の注出口の下に取り付けられた噴霧ノ
ズルと、このノズルの下に交換可能に設けられた
型とを備え、工具の比重を70ないし90%にするた
め噴霧の際に生じる融成物粒子が型または型に既
に集められた融成物粒子に衝突する場合に、練り
粉のような硬さをもつよう噴霧条件(融成物の過
熱、単位時間当りの融成物の流量、気体量、気体
速度、気体温度、噴霧ノズルからの型の距離)を
調整し、噴霧工程中に噴霧ノズルに補強物質を付
加的に供給する装置において、前記型と前記ノズ
ルとの間隔を変化させる装置を備えることを特徴
とする装置。 10 ノズルの下方に移動可能な支持装置の上
に、型を取り付けることを特徴とする特許請求の
範囲第9項記載の装置。 11 ノズルおよび型は、外気から遮断された容
器内に設けることを特徴とする特許請求の範囲第
9項又は第10項記載の装置。 12 容器の壁に冷却装置を備えることを特徴と
する特許請求の範囲第11項記載の装置。
[Claims] 1. A method for manufacturing a hot working tool in which a melt of steel or a special alloy based on Ni or Co is sprayed using a gas as a medium and the melt particles are collected in a mold. , when the melt particles produced during spraying collide with the mold or the melt particles already collected in the mold, in order to bring the specific gravity of the tool to 70 to 90%.
The spray conditions (superheating of the melt, flow rate of the melt per unit time, amount of gas,
A method characterized by adjusting the gas velocity, gas temperature, distance of the mold from the spray nozzle), additionally feeding the spray nozzle with reinforcing material during the spraying process, and subjecting the tool to a reactive annealing. 2. The method according to claim 1, characterized in that the flow rate of the reinforcing substance to be added is varied over time. 3. Process according to claim 1, characterized in that the melt is doped with at least one metal, which forms a gas and a reinforcing substance during reactive annealing, before spraying. 4. The melt is characterized in that at least one metal which reacts with the atomizing gas and thereby forms a reinforcing substance is added to the melt before the atomizing.
The method described in any one of Items 1 to 3. 5. The method according to any one of claims 1 to 4, wherein the spraying is performed in a sealed container. 6. The method according to claim 5, characterized in that rougon or nitrogen is used as the atomizing gas. 7. Any one of claims 1 to 6, characterized in that the distance between the spray nozzle and the receiving mold is changed during spraying in order to make the inside of the tool have a different density depending on the location. The method described in. 8. The method according to any one of claims 1 to 7, characterized in that the collision location of the melt particles within the mold is changed over time. 9. An adjustable hot-working tool manufacturing device in which a melt of steel or a special alloy based on Ni or Co is sprayed using a gas as a medium, and the melt particles are collected in a mold. a spray nozzle connected to a gas conduit and mounted below the spout of the melt container, and a mold replaceably provided below this nozzle, for increasing the specific gravity of the tool from 70 to 90%. Spraying conditions (superheating of the melt, In an apparatus for adjusting the melt flow rate, gas amount, gas velocity, gas temperature, distance of the mold from the spray nozzle) and additionally supplying reinforcing material to the spray nozzle during the spraying process, said mold and said A device characterized by comprising a device that changes the distance between the nozzle and the nozzle. 10. Device according to claim 9, characterized in that the mold is mounted on a support device movable below the nozzle. 11. The device according to claim 9 or 10, wherein the nozzle and mold are provided in a container that is shielded from outside air. 12. The device according to claim 11, characterized in that a cooling device is provided on the wall of the container.
JP60048097A 1984-03-12 1985-03-11 Method and apparatus for producing hot processing tool Granted JPS60211001A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843409366 DE3409366A1 (en) 1984-03-12 1984-03-12 METHOD AND DEVICE FOR PRODUCING A MOLDED BODY
DE3409366.4 1984-03-12

Publications (2)

Publication Number Publication Date
JPS60211001A JPS60211001A (en) 1985-10-23
JPH0253481B2 true JPH0253481B2 (en) 1990-11-16

Family

ID=6230492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048097A Granted JPS60211001A (en) 1984-03-12 1985-03-11 Method and apparatus for producing hot processing tool

Country Status (3)

Country Link
EP (1) EP0156760B1 (en)
JP (1) JPS60211001A (en)
DE (2) DE3409366A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057888U (en) * 1991-07-18 1993-02-02 ミサワホーム株式会社 Bay window

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200349B1 (en) * 1985-03-25 1989-12-13 Osprey Metals Limited Improved method of manufacture of metal products
GB8507674D0 (en) * 1985-03-25 1985-05-01 Atomic Energy Authority Uk Metal matrix composite
GB8507675D0 (en) * 1985-03-25 1985-05-01 Atomic Energy Authority Uk Metal product fabrication
DE3683610D1 (en) * 1985-11-12 1992-03-05 Osprey Metals Ltd PRODUCING LAYERS BY SPRAYING LIQUID METALS.
AU590363B2 (en) * 1985-11-12 1989-11-02 Osprey Metals Limited Production of metal or ceramic deposits
EP0289116A1 (en) * 1987-03-04 1988-11-02 Westinghouse Electric Corporation Method and device for casting powdered materials
DE3721258A1 (en) * 1987-06-27 1988-04-28 Krupp Gmbh Method for the production of dispersion materials
DE3730753A1 (en) * 1987-09-12 1989-03-23 Spraytec Oberflaechentech POWDER FOR PRODUCING HARD MATERIALS WITH SHORT REACTION HOURS, ESPECIALLY FOR FILLING HOLLOW WIRE FOR ARC SPRAYING
WO1989005870A1 (en) * 1987-12-14 1989-06-29 Osprey Metals Limited Spray deposition
JP3170269B2 (en) * 1988-06-06 2001-05-28 オスピレイ.メタルス.リミテッド Spray deposition
DE3905873C1 (en) * 1989-02-03 1990-02-08 Mannesmann Ag, 4000 Duesseldorf, De
AT392929B (en) * 1989-03-06 1991-07-10 Boehler Gmbh METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF WORKPIECES OR TOOLS
AT395230B (en) * 1989-11-16 1992-10-27 Boehler Gmbh METHOD FOR PRODUCING PRE-MATERIAL FOR WORKPIECES WITH A HIGH PROPORTION OF METAL CONNECTIONS
US5213848A (en) * 1990-02-06 1993-05-25 Air Products And Chemicals, Inc. Method of producing titanium nitride coatings by electric arc thermal spray
DE4105420A1 (en) * 1990-03-02 1991-09-05 Gen Electric METHOD FOR PRODUCING AN OBJECT WITH A VARIOUS ALLOY COMPOSITION
GB9200880D0 (en) * 1992-01-16 1992-03-11 Atomic Energy Authority Uk A method of producing a surface coating upon a substrate
AU3269097A (en) 1996-06-28 1998-01-21 Metalplus (Proprietary) Limited Thermal spraying method and apparatus
GB2315441B (en) * 1996-07-20 2000-07-12 Special Melted Products Limite Production of metal billets
CN105057669B (en) * 2015-08-17 2017-05-03 王海英 Three-dimensional printing device and composite spraying head thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923989A (en) * 1972-06-30 1974-03-02
JPS5429985A (en) * 1977-08-10 1979-03-06 Fujitsu Ltd Semiconductor nonvolatile memory device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1016539B (en) * 1955-07-22 1957-09-26 Metallgesellschaft Ag Process for the production of pre-bodies for the powder-metallurgical production of workpieces
BE790453A (en) * 1971-10-26 1973-02-15 Brooks Reginald G MANUFACTURE OF METAL ARTICLES
GB1472939A (en) * 1974-08-21 1977-05-11 Osprey Metals Ltd Method for making shaped articles from sprayed molten metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923989A (en) * 1972-06-30 1974-03-02
JPS5429985A (en) * 1977-08-10 1979-03-06 Fujitsu Ltd Semiconductor nonvolatile memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057888U (en) * 1991-07-18 1993-02-02 ミサワホーム株式会社 Bay window

Also Published As

Publication number Publication date
EP0156760A2 (en) 1985-10-02
EP0156760A3 (en) 1987-09-16
JPS60211001A (en) 1985-10-23
DE3409366A1 (en) 1985-09-12
DE3578391D1 (en) 1990-08-02
EP0156760B1 (en) 1990-06-27

Similar Documents

Publication Publication Date Title
JPH0253481B2 (en)
US11203067B2 (en) Reactive additive manufacturing
CN108136501B (en) Three-dimensional printing device
US10273567B2 (en) Centrifugal atomization of iron-based alloys
US3826301A (en) Method and apparatus for manufacturing precision articles from molten articles
KR20180087305A (en) Systems and methods for forming a layer on the surface of a solid substrate and products formed thereby
US4194900A (en) Hard alloyed powder and method of making the same
WO2008032359A1 (en) Process for producing electrode for electric discharge surface treatment and electrode for electric discharge surface treatment
CA2503834A1 (en) Metal powder injection molding material and metal powder injection molding method
JPH0593213A (en) Production of titanium and titanium alloy powder
CN111822711B (en) High-density titanium or titanium alloy part and powder metallurgy mold filling manufacturing method thereof
EP0198607B1 (en) Metal matrix composite manufacture
US4683118A (en) Process and apparatus for manufacturing a pressed powder body
EP0260812A2 (en) Production of water atomized powder metallurgy products
EP0162549A1 (en) Method of producing high speed, tool and die steel articles
JP4631494B2 (en) Method for manufacturing thermoelectric material
RU2193948C2 (en) Method for making porous metal and articles of such metal
CN109047766B (en) Foamed metal manufacturing device using meltallizing method
Hamill et al. Water atomized fine powder technology
JP2006269871A (en) Method of manufacturing thermoelectric material
JPH05105918A (en) Method and device for producing finely dispersed composite powder
JP4496687B2 (en) Method for manufacturing thermoelectric element chip manufacturing material
JPS60141807A (en) Production of metallic powder
JPH055104A (en) Extruded body of high-speed steel alloy powder and sintered product thereof
JPH089724B2 (en) Nitride-containing amorphous alloy powder and method for producing the same