JPH025346Y2 - - Google Patents

Info

Publication number
JPH025346Y2
JPH025346Y2 JP6128381U JP6128381U JPH025346Y2 JP H025346 Y2 JPH025346 Y2 JP H025346Y2 JP 6128381 U JP6128381 U JP 6128381U JP 6128381 U JP6128381 U JP 6128381U JP H025346 Y2 JPH025346 Y2 JP H025346Y2
Authority
JP
Japan
Prior art keywords
bellows
heat
refrigerant
temperature
sensitive tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6128381U
Other languages
Japanese (ja)
Other versions
JPS57175980U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6128381U priority Critical patent/JPH025346Y2/ja
Publication of JPS57175980U publication Critical patent/JPS57175980U/ja
Application granted granted Critical
Publication of JPH025346Y2 publication Critical patent/JPH025346Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Temperature-Responsive Valves (AREA)
  • Control Of Temperature (AREA)

Description

【考案の詳細な説明】 本考案は冷凍冷蔵庫等に用いられている、冷蔵
室側への冷気流量を自動的に調節できるダンパー
式温度調節器に関するものである。
[Detailed Description of the Invention] The present invention relates to a damper-type temperature regulator used in refrigerators, freezers, etc., which can automatically adjust the flow rate of cold air to the refrigerator compartment side.

従来のダンパー式温度調節器は感熱管、キヤピ
ラリチユーブ、ベロー内に冷媒ガスを封入し、ガ
ス体の膨張、収縮によりベローを変位させてこの
変位量を押棒により冷気通路を形成するダクト内
に振り動くように設けたフラツパーに伝達し、冷
蔵室への冷気流量を調節して冷蔵室内を一定の温
度に保持できるようにしてある。このため感熱管
の部分とベロー部の温度が近づくとベロー部の温
度変化の影響を受けて感熱管温度によるフラツパ
ーの開閉温度が変化するので、ベロー部に小容量
のヒータを付け、ベロー部の温度を感熱管温度よ
り一定の高さに保持し、感熱管の温度変化のみで
フラツパーの開度を調節できるようになつてい
る。通常冷蔵室温度はプラス3℃前後に調節する
が、このときベロー部の温度はプラス10℃程度に
保持され、冷蔵室内に設けた感熱管により冷蔵室
内温度を検出し、冷蔵室内温度が高くなるとベロ
ーを膨張させ押棒を押し出しフラツパー開度を大
きくし冷蔵室への冷気量を増して冷蔵室温度を下
げる。逆に冷蔵室内温度が低くなるとベローが収
縮し押棒が引き込まれフラツパー開度が小さくな
り冷気量が減少し冷蔵室温度を上げる作用をな
す。この従来のダンパー式温度調節器はベロー部
にヒータを設置して、感熱管の温度変化に対し安
定したダンパー開閉動作を行なわせているが、ベ
ロー部のヒータは冷蔵室内に設置されるのでヒー
タの発熱量および発熱相当分を冷却するために、
冷蔵庫の消費電力が増加するという欠点がある。
Conventional damper-type temperature regulators seal refrigerant gas in a heat-sensitive tube, capillary tube, and bellows, displace the bellows by the expansion and contraction of the gas, and use a push rod to transfer this displacement into a duct that forms a cold air passage. The air is transmitted to a swinging flapper, which adjusts the flow rate of cold air into the refrigerator compartment to maintain a constant temperature inside the refrigerator compartment. For this reason, when the temperatures of the heat-sensitive tube and the bellows become close to each other, the temperature at which the flapper opens and closes due to the temperature of the heat-sensitive tube changes due to the influence of temperature changes in the bellows. Therefore, a small-capacity heater is attached to the bellows. The temperature is maintained at a constant level above the temperature of the heat-sensitive tube, and the degree of opening of the flapper can be adjusted simply by changing the temperature of the heat-sensitive tube. Normally, the temperature of the refrigerator compartment is adjusted to around +3°C, but at this time, the temperature of the bellows part is maintained at around +10°C, and the temperature in the refrigerator compartment is detected by a heat-sensitive tube installed inside the refrigerator compartment. The bellows are expanded, the push rod is pushed out, the flapper opening degree is increased, the amount of cold air to the refrigerator compartment is increased, and the temperature of the refrigerator compartment is lowered. Conversely, when the temperature in the refrigerator room becomes low, the bellows contract, the push rod is retracted, the opening degree of the flapper becomes smaller, the amount of cold air decreases, and the temperature in the refrigerator room increases. This conventional damper-type temperature controller has a heater installed in the bellows section to ensure stable damper opening/closing operation in response to temperature changes in the heat-sensitive tube.However, since the bellows heater is installed inside the refrigerator compartment, In order to cool down the amount of heat generated and the equivalent amount of heat generated,
The disadvantage is that the power consumption of the refrigerator increases.

本考案の目的は、上記ベローを加熱するヒータ
を設けなくても冷蔵室内の温度変化に応じて安定
した動作を行なう冷蔵庫用温度調節器を提供する
ことにある。感熱管、キヤピラリチユーブおよび
ベロー内に液冷媒を封入した場合のベローの伸縮
は、上記液冷媒がどこにあろうと液冷媒とガス冷
媒の共存する境界面(以下、共存面と称す)、す
なわち液冷媒・ガス冷媒の置換(液冷媒→ガス冷
媒への気化若しくはガス冷媒→液冷媒への凝縮)
が容易に行われる液冷媒とガス冷媒との共存面に
よつて決まることに着目し、この液冷媒とガス冷
媒との共存面を冷蔵室内に設けられた感熱管内の
みに作り、冷蔵室内温度にほぼ等しい感熱管の温
度変化に敏感に反応するようにしたものである。
これによつて、ベローの伸縮を冷蔵室内の温度変
化に対応して確実に行なうようにして、ベローに
付けていたヒータを排除したのである。即ち、ベ
ローを温度調節器の本体によつて形成せる密閉空
間内に収納し、上記温度調節器の本体を冷却器か
らの冷気が流れる冷気吐出口に隣接して設置し、
これによつてベローの温度を感熱管の温度より低
温に保持して上記キヤピラリチユーブ内およびベ
ロー内を凝縮した液冷媒で満たすとともに上記感
熱管内に液冷媒とガス冷媒とが共存する冷蔵庫用
温度調節器としたものである。
An object of the present invention is to provide a refrigerator temperature regulator that operates stably in response to temperature changes within the refrigerator compartment without the need for a heater for heating the bellows. When liquid refrigerant is sealed in heat-sensitive tubes, capillary tubes, and bellows, expansion and contraction of the bellows occurs at the interface where liquid refrigerant and gas refrigerant coexist (hereinafter referred to as coexistence surface), no matter where the liquid refrigerant is located. Replacement of refrigerant/gas refrigerant (vaporization from liquid refrigerant to gas refrigerant or condensation from gas refrigerant to liquid refrigerant)
Focusing on the fact that the coexistence of liquid refrigerant and gas refrigerant is determined by the coexistence of liquid refrigerant and gas refrigerant, the coexistence of liquid refrigerant and gas refrigerant is created only in the heat-sensitive tube installed in the refrigerator compartment, and the temperature inside the refrigerator is controlled. It is designed to respond sensitively to almost equal temperature changes in the heat-sensitive tube.
This allows the bellows to expand and contract reliably in response to temperature changes within the refrigerator compartment, and eliminates the need for a heater attached to the bellows. That is, the bellows is housed in a closed space formed by the main body of the temperature regulator, and the main body of the temperature regulator is installed adjacent to a cold air outlet through which cool air from the cooler flows;
This keeps the temperature of the bellows lower than the temperature of the heat-sensitive tube, filling the inside of the capillary tube and the inside of the bellows with condensed liquid refrigerant, and also maintains the temperature for a refrigerator where liquid refrigerant and gas refrigerant coexist in the heat-sensitive tube. It is used as a regulator.

本考案を第1図〜第3図に示す一実施例により
説明する。1は冷蔵庫上部に設けた冷凍室であ
り、2は冷蔵室である。3は冷蔵室内の奥に設け
た冷蔵室用温度調節器である。冷凍室内の冷気は
実線矢印のように循環し、また冷蔵室内への冷気
は冷凍室吹出口から一部バイパスし、温度調節器
3内のダクトを通つてから破線矢印のように循環
し、冷凍室内を−18℃冷蔵室内を1〜5℃に保持
する。4は温度調節器3の本体構成部材であり、
5は冷気通路に設けたフラツパーである。フラツ
パー5は5cを軸に冷気降下口をふさぐように動
かせる。6はバネでありその一端はフラツパー5
に掛け、他端は本体3に固定する。7は押棒であ
り下部に配設したベロー8の伸縮する変位をフラ
ツパー5に伝えるため、摺動できるようになつて
いる。9はキヤピラリチユーブであり、10は感
熱管である。キヤピラリチユーブ9はベロー8と
感熱管10を連結している。9cはキヤピラリチ
ユーブに設けた切欠部であり、この切欠部9cを
通して感熱管10内とベロー8内は連通し、感熱
管に封入した冷媒はベロー側に移動できる。11
は温度調節器3を囲んだ断熱材であり本体4の庫
内側に冷気通路を構成する。12は温度調節器3
を取付ける冷蔵室内、内箱表面に貼つたシール材
であり、このシール材12と断熱材11および温
度調節器本体4で囲んだ空間13を密閉できる。
以上のように構成した本実施例の作用を説明す
る。冷蔵室内に設けた感熱管10は冷蔵室内の温
度を検出する。冷蔵室内温度が高くなると感熱管
内のガス冷媒が膨張し、ベロー8の上部に摺動で
きるように設けた押棒7を押し上げることにより
押棒7の先端に設けたフラツパー5はバネ6を引
張るようにして開き、冷気通路が拡がり、冷却器
からの冷気は温度調節器の本体4と断熱材11と
の間に設けた冷気通路を通り、冷蔵室内に流入す
る。冷蔵室内の温度が低くなると感熱管内のガス
冷媒が収縮しベロー8の上部に設けた押棒7を押
し上げている力が小さくなり、フラツパー5はバ
ネ6により冷気通路を閉じる方向に引張られ、こ
のバネ6の圧縮力により押棒7はベロー8が縮む
方向に押し下げられ、冷却器からの冷気量は減少
する。このフラツパーの開閉動作を繰返し、冷蔵
室は一定温度に保持できる。次に感熱管10、キ
ヤピラリチユーブ9、ベロー8内に封入する冷媒
の挙動ついて述べる。封入する冷媒の液容積を
VLとし、ベロー8およびキヤピラリチユーブ9
の内容積をVB、感熱管内容積をVSとすれば、冷
媒の液容積VLは次式を満足するように選定した。
The present invention will be explained with reference to an embodiment shown in FIGS. 1 to 3. 1 is a freezer compartment provided at the top of the refrigerator, and 2 is a refrigerator compartment. 3 is a temperature controller for the refrigerator compartment installed at the back of the refrigerator compartment. The cold air in the freezer compartment circulates as shown by the solid line arrow, and the cold air in the refrigerator compartment partially bypasses the freezer compartment outlet, passes through the duct in the temperature controller 3, and then circulates as the broken line arrow. Keep the room temperature at -18°C and the inside of the refrigerator at 1-5°C. 4 is a main body component of the temperature regulator 3;
5 is a flapper provided in the cold air passage. The flapper 5 can be moved around 5c to block the cold air outlet. 6 is a spring, one end of which is a flapper 5
and the other end is fixed to the main body 3. Reference numeral 7 denotes a push rod which is slidable in order to transmit the expansion and contraction displacement of the bellows 8 disposed at the bottom to the flapper 5. 9 is a capillary tube, and 10 is a heat-sensitive tube. The capillary tube 9 connects the bellows 8 and the heat-sensitive tube 10. 9c is a notch provided in the capillary tube, and through this notch 9c, the inside of the heat-sensitive tube 10 and the inside of the bellows 8 are communicated, and the refrigerant sealed in the heat-sensitive tube can move to the bellows side. 11
is a heat insulating material that surrounds the temperature regulator 3 and forms a cold air passage inside the main body 4. 12 is a temperature controller 3
This is a sealing material that is attached to the surface of the inner box in the refrigerator compartment in which the temperature controller is installed, and can seal the space 13 surrounded by this sealing material 12, the heat insulating material 11, and the temperature controller body 4.
The operation of this embodiment configured as above will be explained. A heat-sensitive tube 10 provided inside the refrigerator compartment detects the temperature inside the refrigerator compartment. When the temperature inside the refrigerator rises, the gas refrigerant inside the heat-sensitive tube expands, pushing up the push rod 7 that can slide on the top of the bellows 8, and the flapper 5 provided at the tip of the push rod 7 pulls the spring 6. It opens, the cold air passage expands, and the cold air from the cooler passes through the cold air passage provided between the main body 4 of the temperature controller and the heat insulating material 11, and flows into the refrigerator compartment. When the temperature in the refrigerator compartment decreases, the gas refrigerant in the heat-sensitive tube contracts, and the force pushing up the push rod 7 provided at the top of the bellows 8 becomes smaller, and the flapper 5 is pulled in the direction of closing the cold air passage by the spring 6, and this spring The compression force of 6 pushes the push rod 7 down in the direction in which the bellows 8 contract, and the amount of cold air from the cooler decreases. By repeatedly opening and closing this flapper, the refrigerator compartment can be maintained at a constant temperature. Next, the behavior of the refrigerant sealed in the heat-sensitive tube 10, capillary tube 9, and bellows 8 will be described. The liquid volume of the refrigerant to be sealed
V L , bellows 8 and capillary tube 9
The liquid volume of the refrigerant, V L , was selected to satisfy the following equation, where V B is the internal volume of the tube, and V S is the internal volume of the heat-sensitive tube.

VS>VL>VB 封入した冷媒は感熱管10、キヤピラリチユー
ブ9、ベロー8のうち、一番温度の低いところに
存在するガス冷媒から凝縮して液化する。冷蔵庫
の運転初めはベロー8、感熱管10とも高温状態
にあるので、押棒7は上部に押し上げられフラツ
パー5は冷気通路を開く位置にある。このため、
冷却器からの冷気は温度調節器の本体4にあた
り、その後冷蔵室内2へ流れ出る。ここで、冷蔵
庫を据付た後の運転初期における温度調節器3内
に封入された冷媒の状態を説明する。ベロー8、
キヤピラリチユーブ9および感熱管10内に封入
された液冷媒は、温度調節器3を冷蔵庫内に取付
ける前の姿勢によつてベロー8側に存在している
のか、感熱管10側に存在しているのか判らな
い。すなわち冷蔵庫内に取付ける前において、温
度調節器3のベロー8が感熱管より低い位置に放
置されていた場合の液冷媒はベロー8側に存在
し、その逆にベロー8が感熱管10より高い位置
に放置されていた場合の液冷媒は感熱管10内に
存在しているのである。そして、ベロー8と感熱
管10とに温度差が生じた場合は、液冷媒がどこ
にあつても冷媒の性質上、液冷媒とガス冷媒が共
存する面で、液冷媒とガス冷媒は絶え間なく置換
し、ベロー8を作動させる。したがつて、ベロー
8の作動は、液冷媒とガス冷媒が共存する部分の
温度によつて決定される。液冷媒の容積は先に記
したようにベロー8の内容積より多くされている
ので、ベローが低い位置に放置された場合、ベロ
ー8内を液冷媒で満たし、液冷媒・ガス冷媒の共
存面は感熱管10の中に存在することになる。ま
たベロー8が高い位置に放置されていた場合は、
上記式のように液冷媒の容積が感熱管10の内容
積より小さいので、感熱管10内に液冷媒の全部
とガス冷媒が共存しベロー8内はガス冷媒のみが
存在することとなる。冷蔵庫の据付後の運転初期
状態を先に説明すると、冷却器からの冷気は温度
調節器の本体4にあたり、その後冷蔵室内2へ流
れ出る。本体4が冷されるとその背面部の密閉空
間13内の空気が次第に冷却される。この冷却速
度は、密閉空間13内の内容積が冷蔵室2の内容
積に比べて約1/200〜1/300と非常に小さいので、
冷蔵室2内の冷却速度よりも速く、この冷蔵室2
内に設置した感熱管10よりも密閉空間13内に
収納したベロー8の方が先に冷される。従つて、
運転初期、即ち運転開始直後においては、液冷媒
が感熱管10側にあつてもベロー8が先に冷され
るので、封入した冷媒はキヤピラリチユーブ9の
切欠部9cを通りベロー8側に凝縮して液冷媒と
なりベロー8内にたまる。この液冷媒の動きは過
渡的なものであり、ベロー8内に一時的に液冷
媒・ガス冷媒の共存面が生じる。このベロー8内
に共存面があるときにはベロー8の伸縮は起きな
い。これは、感熱管10側にもガス冷媒・液冷媒
の置換がしやすい液冷媒・ガス冷媒の共存面があ
るので、ベロー8内が液冷媒で満たされるまで、
すなわち、ガス冷媒が凝縮して液冷媒となり、ベ
ロー8内にたまるまでは圧力の変動を生じないか
らである。液冷媒容積はベローおよびキヤピラリ
チユーブの内容積より大きいので、液冷媒は感熱
管10内に残り、感熱管10内には液冷媒とガス
冷媒が混在する。よつてベローの伸縮は液冷媒と
ガス冷媒が混在する感熱管の温度によつて行なわ
せることができる。本実施例の如くベロー8の周
囲を断熱材11で囲んだことにより、冷蔵庫運転
中は常に冷蔵室内2の温度よりベロー周囲の密変
空間温度を低く保持し、ベロー8内に液冷媒があ
るようにすることにより、安定したベローの伸縮
動作を行なわせる。またベロー8の位置を感熱管
10の底部より低い位置に設置することにより、
一層液冷媒をベロー内に保持できる。ベロー8の
位置を感熱管より高い位置に設置するようなとき
は、第4図に示すように感熱管から出るキヤピラ
リチユーブ9の一部にトラツプを設けることによ
り、ベロー8内に凝縮した液冷媒が自重で感熱管
へ戻るのを防ぎ、感熱管10の検出温度精度を高
めることができる。低温側のベロー内に凝縮した
液冷媒が自重でトラツプ9tの位置まで落下して
くると高温側にある感熱管の内圧でトラツプ内の
液冷媒はその位置におさえ込まれ、トラツプ内の
液冷媒を通つた高圧、高温のガス冷媒は次々にベ
ロー内で凝縮して液冷媒となり、トラツプより高
い位置に液冷媒を満してゆき、ついにはベロー内
を液冷媒で満たし、感熱管内に液、ガスが混在す
るようになる。冷媒を例えばR−142bにとれば
液冷媒を1m程度まで押し上げることが可能であ
る。
V S > V L > V B The enclosed refrigerant is condensed and liquefied starting from the gas refrigerant present in the lowest temperature part of the heat sensitive tube 10, capillary tube 9, and bellows 8. At the beginning of operation of the refrigerator, both the bellows 8 and the heat-sensitive tube 10 are in a high temperature state, so the push rod 7 is pushed upward and the flapper 5 is in a position to open the cold air passage. For this reason,
The cold air from the cooler hits the body 4 of the temperature controller and then flows out into the refrigerator compartment 2. Here, the state of the refrigerant sealed in the temperature regulator 3 at the initial stage of operation after the refrigerator is installed will be described. Bellow 8,
The liquid refrigerant sealed in the capillary tube 9 and the heat-sensitive tube 10 may exist on the bellows 8 side or on the heat-sensitive tube 10 side depending on the attitude of the temperature regulator 3 before it is installed in the refrigerator. I don't know if there are any. In other words, if the bellows 8 of the temperature regulator 3 is left at a lower position than the heat-sensitive tube before being installed in the refrigerator, the liquid refrigerant will be present on the bellows 8 side, and conversely, if the bellows 8 is placed at a position higher than the heat-sensitive tube 10. The liquid refrigerant that has been left in the heat-sensitive tube 10 is present in the heat-sensitive tube 10. If a temperature difference occurs between the bellows 8 and the heat-sensitive tube 10, due to the nature of the refrigerant, the liquid refrigerant and the gas refrigerant coexist, no matter where the liquid refrigerant is located, so the liquid refrigerant and the gas refrigerant are constantly replaced. and activate bellows 8. Therefore, the operation of the bellows 8 is determined by the temperature of the portion where the liquid refrigerant and the gas refrigerant coexist. As mentioned earlier, the volume of the liquid refrigerant is larger than the internal volume of the bellows 8, so if the bellows is left in a low position, the inside of the bellows 8 will be filled with liquid refrigerant, and the coexistence surface of the liquid refrigerant and gas refrigerant will be exists inside the heat-sensitive tube 10. Also, if bellows 8 is left in a high position,
As shown in the above equation, since the volume of the liquid refrigerant is smaller than the internal volume of the heat-sensitive tube 10, all of the liquid refrigerant and the gas refrigerant coexist within the heat-sensitive tube 10, and only the gas refrigerant exists within the bellows 8. First, the initial operating state of the refrigerator after installation will be explained. Cold air from the cooler hits the main body 4 of the temperature controller, and then flows out into the refrigerator compartment 2. When the main body 4 is cooled, the air in the sealed space 13 on the back side of the main body 4 is gradually cooled. This cooling rate is very small, as the internal volume of the closed space 13 is approximately 1/200 to 1/300 of the internal volume of the refrigerator compartment 2.
The cooling rate in this refrigerator compartment 2 is faster than the cooling rate in the refrigerator compartment 2.
The bellows 8 housed in the closed space 13 is cooled down earlier than the heat-sensitive tube 10 placed inside. Therefore,
At the beginning of operation, that is, immediately after the start of operation, even if the liquid refrigerant is on the heat-sensitive tube 10 side, the bellows 8 is cooled first, so the enclosed refrigerant passes through the notch 9c of the capillary tube 9 and condenses on the bellows 8 side. The refrigerant becomes a liquid refrigerant and accumulates inside the bellows 8. This movement of the liquid refrigerant is transient, and a surface where the liquid refrigerant and gas refrigerant coexist temporarily occurs within the bellows 8. When there is a coexistence surface within the bellows 8, the bellows 8 does not expand or contract. This is because there is a coexistence surface of liquid refrigerant and gas refrigerant on the heat-sensitive tube 10 side as well, which makes it easy to replace the gas refrigerant and liquid refrigerant.
That is, the pressure does not fluctuate until the gas refrigerant condenses into liquid refrigerant and accumulates in the bellows 8. Since the liquid refrigerant volume is larger than the internal volume of the bellows and capillary tube, the liquid refrigerant remains in the heat-sensitive tube 10, and the liquid refrigerant and gas refrigerant are mixed in the heat-sensitive tube 10. Therefore, the bellows can be expanded and contracted depending on the temperature of the heat-sensitive tube in which liquid refrigerant and gas refrigerant are mixed. By surrounding the bellows 8 with the heat insulating material 11 as in this embodiment, the temperature of the dense space around the bellows is always maintained lower than the temperature of the refrigerator compartment 2 during refrigerator operation, and the liquid refrigerant is inside the bellows 8. By doing so, the bellows can be stably extended and contracted. Furthermore, by placing the bellows 8 at a position lower than the bottom of the heat-sensitive tube 10,
More liquid refrigerant can be held within the bellows. When the bellows 8 is installed at a higher position than the heat-sensitive tube, a trap is provided in a part of the capillary tube 9 coming out from the heat-sensitive tube as shown in FIG. It is possible to prevent the refrigerant from returning to the heat-sensitive tube due to its own weight, and improve the accuracy of temperature detection by the heat-sensitive tube 10. When the liquid refrigerant condensed in the bellows on the low-temperature side falls to the trap 9t position due to its own weight, the liquid refrigerant in the trap is held down to that position by the internal pressure of the heat-sensitive tube on the high-temperature side, and the liquid refrigerant in the trap The high-pressure, high-temperature gas refrigerant passing through the tube condenses into liquid refrigerant one after another in the bellows, filling the area higher than the trap with liquid refrigerant, and finally filling the bellows with liquid refrigerant, causing liquid to flow inside the heat-sensitive tube. Gas becomes mixed. If the refrigerant is R-142b, for example, it is possible to push the liquid refrigerant up to about 1 meter.

本考案は冷却器からの冷気があたる温度調節器
本体内側にベローを設置しベロー周囲を断熱材で
覆い、ベロー部周囲の密閉空間を、感熱管を設置
した冷蔵室内温度より常に低温にするように構成
したので、ベロー内およびキヤピラリー内部を液
冷媒で満し感熱管内に液、ガス冷媒を混在させる
ことができ、したがつて、液冷媒とガス冷媒の共
存面の温度の変化に応じて液冷媒とガス冷媒とは
絶え間なく置換し、これによつてベロー8が伸縮
してフラツパー5が動作する。ベロー8側を液冷
媒で満たすことによりベロー8側の冷媒熱容量を
感熱管10側より大きくしてベロー8側の温度変
化によるベロー8の動きを鈍化させるとともに、
感熱管10側のガス冷媒と液冷媒の共存面で温度
変化を敏感に感知できる。よつて、従来のように
ベロー部にヒータを設置してベロー部を一定の温
度に保たなくても、冷蔵室内の温度の変化に対応
する感熱管10の温度変化に応じて安定したフラ
ツパー5の開閉動作を行なわせる効果があるとと
もに、冷蔵室より低温になるベロー周囲を密閉空
間としたことによりベロー部周辺の霜付などをな
くし、実用的な冷蔵室用ダンパー式温度調節器を
提供できる。また本実施例によればベロー部を感
熱管より低い位置に設けたことによりベロー部へ
の液溜りを速くして安定なフラツパーの開閉動作
を行なわせる効果があるとともに、ベロー部が感
熱管より高い位置に設定された場合、キヤピラリ
チユーブの一部にトラツプを設けるように構成し
たことにより液冷媒を感熱管より高い位置に押し
上げ、感熱管の温度変化のみでフラツパーの開閉
動作を行なわせることができ、いずれも実用性を
向上できる。
This invention installs a bellow inside the temperature controller body that is exposed to cold air from the cooler, and covers the area around the bellow with an insulating material, so that the sealed space around the bellows is always lower than the temperature inside the refrigerator where the heat-sensitive tube is installed. With this configuration, the inside of the bellows and the capillary can be filled with liquid refrigerant, and liquid and gas refrigerants can be mixed in the heat-sensitive tube. The refrigerant and the gas refrigerant are constantly replaced, whereby the bellows 8 expands and contracts and the flapper 5 operates. By filling the bellows 8 side with liquid refrigerant, the heat capacity of the refrigerant on the bellows 8 side is made larger than that on the heat-sensitive tube 10 side, thereby slowing down the movement of the bellows 8 due to temperature changes on the bellows 8 side.
Temperature changes can be sensitively sensed due to the coexistence of gas refrigerant and liquid refrigerant on the heat-sensitive tube 10 side. Therefore, without having to install a heater in the bellows part to maintain the bellows part at a constant temperature as in the past, the flapper 5 can be stabilized in response to temperature changes in the heat-sensitive tube 10 corresponding to changes in temperature in the refrigerator compartment. In addition to having the effect of opening and closing the bellows, the area around the bellows, which is colder than the refrigerator compartment, is a sealed space, thereby eliminating frost build-up around the bellows, making it possible to provide a practical damper-type temperature controller for refrigerators. . In addition, according to this embodiment, by providing the bellows section at a lower position than the heat-sensitive tube, liquid accumulates in the bellows section faster and the flapper opens and closes more stably. When the capillary tube is set at a high position, a trap is provided in a part of the capillary tube to push the liquid refrigerant to a higher position than the heat-sensitive tube, and the flapper is opened and closed only by temperature changes in the heat-sensitive tube. Both can improve practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷凍冷蔵庫の縦断面図、第2図は本考
案の冷蔵庫用温度調節器の本体外形図、第3図は
本考案による温度調節器を冷蔵庫の冷蔵室に組付
けた部分的断面図、第4図は本考案による他の実
施例を示す動作説明図である。 1……冷凍室、2……冷蔵室、3……冷蔵庫用
温度調節器、4……温度調節器本体部材、5……
フラツパー、6……バネ、7……押棒、8……ベ
ロー、9……キヤピラリチユーブ、10……感熱
管、11……断熱材、12……シール材、13…
…密閉空間。
Fig. 1 is a vertical cross-sectional view of a refrigerator-freezer, Fig. 2 is an external view of the temperature controller for a refrigerator according to the present invention, and Fig. 3 is a partial cross-section of the temperature regulator according to the present invention assembled into the cold room of the refrigerator. 4 are operation explanatory diagrams showing another embodiment according to the present invention. 1... Freezer room, 2... Refrigerator room, 3... Refrigerator temperature controller, 4... Temperature regulator main body member, 5...
Flapper, 6... Spring, 7... Push rod, 8... Bellow, 9... Capillary tube, 10... Heat sensitive tube, 11... Heat insulating material, 12... Sealing material, 13...
...closed space.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] それぞれに冷媒が封入された感熱管、ベロー及
び上記両部材間を連通せしめるキヤピラリチユー
ブと、上記冷媒の膨張収縮によるベローの変位を
冷蔵室への冷気通路の開閉部材に伝達する伝達手
段とを具えた冷蔵庫用温度調節器において、上記
ベローを収納する密閉空間を形成せる温度調節器
の本体を備え、上記温度調節器の本体は冷却器か
らの冷気が流れる冷気吐出口に隣接して設置さ
れ、上記感熱管は冷蔵室内に設置され、上記キヤ
ピラリチユーブ内およびベロー内に液冷媒が満た
されるとともに上記感熱管内に液冷媒とガス冷媒
とが存在して成ることを特徴とする冷蔵庫用温度
調節器。
A heat-sensitive tube, a bellows, each of which is filled with a refrigerant, and a capillary tube that communicates between the above two members, and a transmission means that transmits the displacement of the bellows due to expansion and contraction of the refrigerant to an opening/closing member of a cold air passage to a refrigerator compartment. The temperature controller for a refrigerator is equipped with a temperature controller body that forms a sealed space for accommodating the bellows, and the temperature controller body is installed adjacent to a cold air outlet through which cold air from the cooler flows. , wherein the heat-sensitive tube is installed in a refrigerator compartment, the capillary tube and the bellows are filled with a liquid refrigerant, and a liquid refrigerant and a gas refrigerant are present in the heat-sensitive tube. vessel.
JP6128381U 1981-04-30 1981-04-30 Expired JPH025346Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6128381U JPH025346Y2 (en) 1981-04-30 1981-04-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6128381U JPH025346Y2 (en) 1981-04-30 1981-04-30

Publications (2)

Publication Number Publication Date
JPS57175980U JPS57175980U (en) 1982-11-06
JPH025346Y2 true JPH025346Y2 (en) 1990-02-08

Family

ID=29857533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6128381U Expired JPH025346Y2 (en) 1981-04-30 1981-04-30

Country Status (1)

Country Link
JP (1) JPH025346Y2 (en)

Also Published As

Publication number Publication date
JPS57175980U (en) 1982-11-06

Similar Documents

Publication Publication Date Title
KR100352103B1 (en) Refrigerant flow control according to evaporator dryness
US3659783A (en) Temperature regulated flow control element for automotive air-conditioners
CN109791026A (en) Thermal siphon for the storage device that temperature is adjusted
US3798921A (en) Air conditioning system with freeze throttling valve
TW200825349A (en) Refrigerant vapor compression system with flash tank receiver
US3817053A (en) Refrigerating system including flow control valve
JPS6262073A (en) Device for controlling temperature of poppet valve
US3824802A (en) Control means for accumulator throttling device
US4008579A (en) Apparatus for heat control of a refrigeration system
US3785554A (en) Temperature responsive throttling valve
JPH025346Y2 (en)
US3388558A (en) Refrigeration systems employing subcooling control means
US2363010A (en) Refrigerant control system
US5205131A (en) Refrigerator system with subcooling flow control
JP2001280721A (en) High pressure control valve for supercritical steam compression refrigerating cycle device
US2719674A (en) Refrigeration expansion valves
US7478538B2 (en) Refrigerant containment vessel with thermal inertia and method of use
US2712731A (en) Air circulation controlling arrangement
JP2808514B2 (en) Subcooling control valve, oil separator for refrigeration system, and refrigeration system
US2742766A (en) Thermostatic actuator for refrigerator controls
JPS63158372A (en) Expansion valve of refrigerating cycle for air conductor
US1890531A (en) Automatic weak liquor control
CN117515237B (en) Balancing valve, refrigerating device and control method
US2058908A (en) Refrigerating apparatus
US2572501A (en) Refrigerant control system