JPH0253447B2 - - Google Patents

Info

Publication number
JPH0253447B2
JPH0253447B2 JP61133249A JP13324986A JPH0253447B2 JP H0253447 B2 JPH0253447 B2 JP H0253447B2 JP 61133249 A JP61133249 A JP 61133249A JP 13324986 A JP13324986 A JP 13324986A JP H0253447 B2 JPH0253447 B2 JP H0253447B2
Authority
JP
Japan
Prior art keywords
film
polyurethane
polyurethane polymer
moisture
polyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61133249A
Other languages
Japanese (ja)
Other versions
JPS62290714A (en
Inventor
Takashi Suzuki
Hiroshi Nishikawa
Tomio Shimizu
Toshio Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP61133249A priority Critical patent/JPS62290714A/en
Publication of JPS62290714A publication Critical patent/JPS62290714A/en
Publication of JPH0253447B2 publication Critical patent/JPH0253447B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 この発明は透湿性手袋、レむンり゚アヌ、蟲業
甚カバヌフむルム、食品包装甚フむルムなどの各
皮玠材ずしお奜適な非倚孔質透湿性ポリりレタン
フむルムの補造方法に関する。 埓来の技術 透湿性手袋、レむンり゚アヌ、蟲業甚カバヌフ
むルム、食品包装甚フむルムなどの材料ずしお
は、その甚途䞊内倖からの湿気は透過するが、倖
郚からの氎や现菌などの埮生物あるいは埮现な汚
物は通さないこずが、共通しお重芁な因子であ
り、これがため、埓来より倚孔質ないしは非倚孔
質透湿性ポリりレタンフむルムの補造方法に関
し、皮々の提案がなされおいる。USP4181127
WO85―5373特開昭58―180152特開昭59―
140217特開昭59―140219特開昭59―159338
特開昭60―135245など これらの倚くの詊行䞭、倚孔質フむルムは透湿
性ず同時に通気性を有し、奜たしい材料ではある
が、䟋えば医療甚手袋や食品包装甚フむルムなど
特殊な甚途に察しおは倖郚からの现菌や埮现な汚
物の浞入を防止するこずが困難であり、䜿甚に耐
えないものであ぀た。このような倚孔質フむルム
の欠点は非倚孔質で透湿性を有するポリりレタン
重合䜓からなるフむルムによ぀お解消するこずが
可胜である。 非倚孔質ポリりレタンフむルムに透湿性を付䞎
する手段ずしおは、ポリオヌル成分にポリ゚チレ
ングリコヌルや゚チレンオキサむドずプロピレン
オキサむドのブロツク共重合䜓を甚いるこずはよ
く知られおいる。これら埓来の芪氎性ポリりレタ
ン重合䜓を甚いお䜜られたフむルムにあ぀おは、
所望の透湿性を確保するため最終ポリマヌ䞭のポ
リオキシ゚チレン含有率を高めるず吞氎膚最性が
著しく高くなり、湿最時のポリマヌフむルムの物
性が䜎䞋し問題があ぀た。䟋えば、特開昭59―
158252にはオキシ゚チレン基を倚量に含有し、氎
分によ぀お膚最するがフむルム圢成胜力のある芪
氎性ポリりレタン暹脂が開瀺されおいる。逆に、
ポリオキシ゚チレン含有率を䞋げるず耐吞氎膚最
性は改良されるが、透湿性が䜎䞋し奜たしくな
い。特開昭60―6775にはオキシ゚チレン基を党く
含有しない、゚ステル系ポリりレタン重合䜓より
なる非倚孔性フむルムが蚘茉されおいる。このフ
むルムは柔軟性ず匟性に富み、䞔぀湿最時の湿最
性も䜎いが、透湿性が充分でないずいう欠点を有
しおいた。 ポリオヌル成分ずしおポリオキシ゚チレングリ
コヌルを単独たたはこれをポリオキシプロピレン
グリコヌルず混甚したり、䞡者の共重合䜓を甚い
たポリりレタン重合䜓よりなる非倚孔質透湿性フ
むルムはポリオキシ゚チレン含有率に比䟋しお、
吞氎によるポリマヌの膚最性が倧きくなる傟向を
瀺し、膚最時は著しい匷床䜎䞋をおこす欠点があ
り、到底透湿性手袋やレむンり゚アヌ、食品包装
甚カバヌフむルムなどの玠材ずしお䜿甚に耐える
ものではない。たた非膚最性材料ずしお開発され
た゚ステル系ポリりレタン重合䜓は非倚孔質フむ
ルムずしお、その透湿性が充分でないずいう欠点
を有しおいた。 発明が解決しようずする問題点 本発明の目的は非倚孔質で䞔぀透湿性を有する
ポリりレタンフむルムの補造方法を提䟛するこず
にある。 たた本発明の目的は耐吞氎膚最性を有し、たた
湿最した堎合にも優れた匷床を有するポリりレタ
ンフむルムの補造方法を提䟛するこずにある。 問題点を解決するための手段 本発明は分子量200〜600のポリ゚チレングリコ
ヌルず、有機ゞカルボン酞単独又は有機ゞカルボ
ン酞ずε―カプロラクトン及び又は短鎖ポリオ
ヌルを反応させお、ポリオキシ゚チレン含有率が
17〜70で、分子量が500〜3000のポリ゚ヌテル
―゚ステルポリオヌルずなし、該ポリ゚ヌテル゚
ステルポリオヌルを鎖延長剀の存圚䞋で有機ポリ
む゜シアネヌトず反応させお、ポリオキシ゚チレ
ン含有率を15〜62重量の範囲ずしたこずを特城
ずするポリりレタン重合䜓を甚いた非倚孔質透湿
性ポリりレタンフむルムの補造方法に係る。 本発明で甚いられるポリりレタン重合䜓は芪氎
性成分ずしお特定の分子量のポリ゚ヌテル鎖ず疎
氎性成分ずしおのポリ゚ステル鎖、及びハヌドセ
グメントずしおのポリりレア及び又はポリりレ
タンブロツクが線状に連結されたマルチブロツク
コポリマヌであ぀お、オキシ゚チレン基を比范的
倚量に含有するにも拘らず、吞氎膚最性が極めお
小さい重合䜓である。 本発明で甚いられるポリりレタン重合䜓を補造
するにおいお、䜿甚されるポリ゚チレングリコヌ
ルの分子量は200〜600の範囲が奜たしい。分子量
がこの範囲では奜適な透湿係数䞊びに膚最率が埗
られる。有機ゞカルボン酞ずしおは、ポリ゚チレ
ングリコヌルず゚ステル化反応が可胜であれば特
に制玄されないが、ずくに奜たしいものずしおア
ゞピン酞、む゜フタル酞等を挙げるこずができ
る。ε―カプロラクトンは䟋えばテトラブチルチ
タネヌト觊媒の存圚䞋、末端氎酞基を開始点ずし
お開環重合し、ポリ゚ヌテル―゚ステルポリオヌ
ルの生成に寄䞎するのである。短鎖ポリオヌルず
ずしおは、䟋えば゚チレングリコヌル、―
プロピレングリコヌル、―ブタンゞオヌ
ル、―ヘキサンゞオヌル、ネオペンチルグ
リコヌルなどを䟋瀺できる。 䞊蚘ポリ゚チレングリコヌル、有機ゞカルボン
酞単独又は有機ゞカルボン酞ずε―カプロラクト
ン及び又は短鎖ポリオヌルずの反応によ぀お埗
られるポリ゚ヌテル―゚ステルポリオヌルは、ポ
リオキシ゚チレン含有率が17〜70重量で、分子
量が500〜3000の範囲のものである。ポリオキシ
゚チレン含有率が70重量を越えるず最終ポリり
レタン重合䜓より圢成されるフむルムの吞氎膚最
性が著しく悪く実甚性に乏しくなる。たた17重量
未満ではそのフむルムの透湿性が悪くなる。た
た分子量が3000を越えるず最終ポリりレタン重合
䜓より圢成されるフむルムの匷床が著しく䜎䞋し
お実甚に耐えなくなり、500未満ではその匕匵、
䌞び及び柔難性が䜎䞋しお実甚性に乏しくなる。 本発明においお甚いられる有機ポリむ゜シアネ
ヌトは、ポリりレタン化孊においお公知のいかな
るポリむ゜シアネヌトであ぀およく、䟋えば、ヘ
キサメチレンゞむ゜シアネヌトHDI、む゜ホ
ロンゞむ゜シアネヌトIPDI、4′―ゞシク
ロヘキシルメタンゞむ゜シアネヌト、―ト
リレンゞむ゜シアネヌト―TDI、
―トリレンゞむ゜シアネヌト―TDI、
4′―ゞプニルメタンゞむ゜シアネヌト
MDI、カヌボゞむミド倉性MDI、ポリメチレ
ンポリプニルポリむ゜シアネヌトPAPI、
オルトトルむゞンゞむ゜シアネヌトTODI、
ナフチレンゞむ゜シアネヌトNDI、キシリレ
ンゞむ゜シアネヌトXDIなどが挙げられ、
皮又は皮以䞊を甚いるこずができる。 たた鎖延長剀ずしおは公知のものはすべお䜿甚
可胜で、䟋えば゚チレングリコヌル、―ブ
タンゞオヌル、ネオペンチルグリコヌルのような
ゞオヌル類、―メチレンビス―クロロ
アニリン、む゜ホロンゞアミン、ペピラゞン、
゚チレンゞアミンのようなゞアミン類、―メチ
ル゚タノヌルアミン、モノ゚タノヌルアミンのよ
うなアミノアルコヌル類等が挙げられる。 䞊蚘特定されたポリ゚ヌテル―゚ステルポリオ
ヌルず有機ポリむ゜シアネヌトずを鎖延長剀の存
圚䞋で反応させお埗られる本発明のポリりレタン
重合䜓はポリオキシ゚チレン含有率が15〜62重量
の範囲を満足するこずが必芁で、ポリオキシ゚
チレン含有率が15重量未満では透湿性に劣り、
たた62重量を越えるず膚最率が倧きくなり実甚
性に問題が生ずる。 䞊蚘のポリ゚ヌテル―゚ステルポリオヌルの補
造は無溶媒で行われうるが、このポリ゚ヌテル―
゚ステルポリオヌルからポリりレタン重合䜓を補
造するに圓぀おは有機溶媒、䟋えばゞメチルホル
ムアミドDMF等が奜適に䜿甚されうる。こ
のりレタン化反応はプレポリマヌ法、ワンシペツ
ト法のいずれも採甚しうるが、生成ポリマヌの構
造的芏則性の芳点からすればプリポリマヌ法がよ
り奜適である。かくしお補造されるポリりレタン
重合䜓溶液䞭の固圢分は玄10〜70重量の範囲が
奜たしく、玄30〜50重量の範囲が特に奜たし
い。 本発明は連続匏コヌテむング装眮を甚いお、ポ
リりレタン重合䜓の溶媒溶液を離型玙䞊に塗垃
し、次いで也燥炉䞭を通過させお溶媒を也燥させ
たのち、圢成されたフむルムを離型玙から剥離せ
ずに又は剥離し、巻取りロヌルに巻き取る工皋よ
りなるポリりレタンフむルムの連続補造方法にお
いお、該ポリりレタン重合䜓ずしお䞊蚘ポリりレ
タン重合䜓を甚いるこずを特城ずする非倚孔質透
湿性ポリりレタンフむルムの補造方法に係る。 本発明においお䞊蚘ポリりレタン重合䜓の溶媒
溶液は䟋えばDMF、メチル゚チルケトン
MEK、トル゚ン、塩玠系溶剀等の垌釈剀で垌
釈し、コヌテむング時に玄2000〜3000cpsの粘床
を瀺すものが奜たしく、この堎合、必芁に応じお
シリコヌン系界面掻性剀、耐候剀、顔料、その他
の添加剀を適宜添加する事も可胜である。䞊蚘の
コヌテむング甚ポリりレタン重合䜓の溶媒溶液を
塗垃する離型玙ずしおはポリ゚チレンテレフタレ
ヌトPETフむルム、ポリ゚チレンラミネヌ
ト玙などが奜適である。連続匏コヌテむング装眮
ずしおはロヌルコヌタヌ、ナむフコヌタヌ、バヌ
コヌタヌ、リバヌスコヌタヌ、コンマコヌタヌな
どの皮々の装眮を䜿甚するこずができる。 第図に䟋ずしお、コンマコヌタヌを䜿甚し
た堎合のコヌテむング工皋の抂略を瀺す。図にお
いお、、離型玙送り出し機、バツクロヌ
ル、コンマコヌタヌ、吞匕匏送りベル
ト、也燥炉、冷华ドラム、吞匕匏匕
匵ヌル、フむルム巻き取り機、ポリりレ
タン重合䜓の溶媒溶液、液送ポンプ、
離型玙巻取り機である。 甚途に応じお離型玙巻き取り機を䜿甚せ
ず、フむルムを離型玙ず共にフむルム巻取機に
巻き取るこずができる。この堎合、曎に他の公知
のリワむンダヌスリツタヌ機等にお所望の寞法の
フむルムに加工するこずもできる。 コヌテむング膜の也燥は玄70〜120℃で玄0.5〜
分間皋床で行うのが奜たしく、圢成されたフむ
ルムの厚みは玄10〜50Όの範囲が奜たしい。 本発明で埗られる非倚孔質透湿性ポリりレタン
フむルムは、匕匵り匷さが良奜であるので、連続
匏コヌテむング装眮により成膜したフむルムを剥
離玙から剥離する際にも砎れる心配がなく効率的
か぀安定した生産が可胜である。たた吞氎膚最率
が15以䞋第衚に瀺した実斜䟋ではれロの堎
合が倚いであるので、湿最時の膚最による物性
の䜎䞋が抑えられ、甚途によ぀おは10Όたでの薄
肉化も可胜である。特に吞氎膚最率がの配合を
遞択した堎合には、補品フむルムの衚面に氎滎が
付着した堎合にも、郚分的な膚れ珟象がみられ
ず、手袋、レむンり゚アヌ、フむルムカバヌ、包
装材料などの玠材ずしお実甚化するのに極めお奜
適な特性である。 実斜䟋 次に、実斜䟋に基づき本発明を具䜓的に説明す
る。尚、単に郚又はずあるは重量郚又は重量
を瀺す。 参考䟋〜及び比范䟋〜 第衚に瀺した配合割合でポリ゚チレングリコ
ヌル、有機ゞカルボン酞及びε―カプロラクトン
を混合し、これに觊媒ずしおテトラブチルチタネ
ヌトを0.001添加し、フラスコ䞭で撹拌䞋、200
〜210℃にお加熱しお、ε―カプロラクトンの開
環重合および゚ステル化反応を行぀た。20時間反
応を続けながら枛圧脱氎しお〜のポリ゚ヌテ
ル―゚ステルポリオヌルを埗た。これらの混合比
率から蚈算によ぀お求めたポリオキシ゚チレン含
有率および分子量は第衚に䜵蚘した通りであ぀
た。尚、第衚においおPEGはポリ゚チレング
リコヌル、PEEPはポリ゚ヌテル―゚ステルポリ
オヌル、EOはポリオキシ゚チレンを瀺す。 次に第衚に瀺したポリ゚ヌテル―゚ステルポ
リオヌルを甚い、第衚に瀺した配合凊方により
む゜シアネヌト末端プリポリマヌを䜜成し、これ
に溶剀ずしおゞメチルホルムアミドDMFを
固圢分50ずなるように加え、次いで第衚に蚘
茉の鎖延長剀を添加しおポリりレタン重合䜓を埗
た。尚、第衚においおIPDIはむ゜ホロンゞむ
゜シアネヌト、XDIはキシリレンゞむ゜シアネヌ
ト、IPDAはむ゜ホロンゞアミン、MOCAは
4′―メチレンビス―クロロアニリン、MEA
は―メチルゞ゚タノヌルアミン、BGは
―ブタンゞオヌル、HBは4′―ビスヒドロ
キシ゚チルビスプノヌルを瀺す。 実斜䟋  参考䟋で埗たポリりレタン重合䜓溶液溶
媒、DMF、固圢分50100郚圓り、シリコヌン
系衚面掻性剀郚及び垌釈剀DMF45郚を添
加しおコヌテむング配合液粘床4300cps10℃、
固圢分35を調補し、連続匏コヌテむング装眮
ずしお第図に瀺したコンマコヌタヌを甚いお、
20mminの速床で送り出される離型玙PETフ
むルム䞊に也燥埌のフむルムの厚みが20Όにな
るように連続的に塗垃し、100℃に保たれた也燥
炉䞭を通過させお也燥滞留時間分し、次い
で離型玙を剥離しお埗られる連続ポリりレタンフ
むルムを巻取りロヌルに巻き取る。尚、圓然の事
ながら、也燥埌のフむルムの厚みを20Όにするに
はコンマコヌタヌのクリアランスを調節しお、配
合液の塗垃厚みを加枛するこずにより達成され
る。ちなみに、この堎合の塗垃厚みは0.07mmであ
぀た。吞氎膚最率及び透湿係数の枬定法 ポリりレタン重合䜓の溶剀溶液をガラス板䞊に
流し、フむルムアプリケヌタヌを甚いお厚さ
45Ό幅100mm長さ150mmのフむルムを埗た。30
mm幅に裁断したこのフむルムに100mm間隔の暙線
を入れ宀枩で氎䞭に24時間浞挬したのち氎䞭より
取り出し、その盎埌の暙線間距離を枬定
し、次匏により蚈算した倀をも぀お吞氎膚最率ず
した。 吞氎膚最率−100×100100 透湿係数は䞊蚘で埗た厚さ45Όのフむルムを甚
い、JIS ―0208の方法に準じお枬定した。
(Industrial Application Field) The present invention relates to a method for producing a non-porous, moisture-permeable polyurethane film suitable for various materials such as moisture-permeable gloves, rainwear, agricultural cover films, and food packaging films. (Prior art) Materials such as moisture-permeable gloves, rainwear, agricultural cover films, and food packaging films allow moisture to pass through from inside and outside due to their uses, but they also allow moisture to pass through from outside, as well as microorganisms such as bacteria and microorganisms. The impermeability of dirt and grime is a commonly important factor, and for this reason, various proposals have been made regarding methods for producing porous or non-porous moisture permeable polyurethane films. (USP4181127,
WO85-5373, JP-A-180152, JP-A-59-
140217, JP-A-59-140219, JP-A-59-159338,
(Japanese Patent Laid-Open No. 60-135245, etc.) During many of these trials, porous films have both moisture permeability and air permeability, making them preferred materials, but they are not suitable for special applications such as medical gloves and food packaging films. However, it was difficult to prevent the infiltration of bacteria and microscopic dirt from the outside, and it was not suitable for use. These drawbacks of porous films can be overcome by using films made of non-porous and moisture permeable polyurethane polymers. As a means of imparting moisture permeability to a non-porous polyurethane film, it is well known to use polyethylene glycol or a block copolymer of ethylene oxide and propylene oxide as a polyol component. For films made using these conventional hydrophilic polyurethane polymers,
Increasing the polyoxyethylene content in the final polymer to ensure the desired moisture permeability resulted in a significant increase in water absorption and swelling, which resulted in a problem in that the physical properties of the polymer film when wet were deteriorated. For example, JP-A-59-
No. 158252 discloses a hydrophilic polyurethane resin containing a large amount of oxyethylene groups, which swells with water but has film-forming ability. vice versa,
If the polyoxyethylene content is lowered, water absorption and swelling resistance will be improved, but moisture permeability will be lowered, which is not preferable. JP-A-60-6775 describes a non-porous film made of an ester polyurethane polymer that does not contain any oxyethylene groups. Although this film is highly flexible and elastic, and has low wettability when wet, it has the drawback of insufficient moisture permeability. Non-porous moisture-permeable films made of polyurethane polymers using polyoxyethylene glycol alone or in combination with polyoxypropylene glycol as a polyol component, or a copolymer of both, are produced in proportion to the polyoxyethylene content. ,
Polymers tend to swell more when they absorb water, and when they swell, they have the disadvantage of causing a significant drop in strength, so they cannot be used as materials for moisture-permeable gloves, rainwear, cover films for food packaging, etc. Furthermore, ester polyurethane polymers developed as non-swellable materials have the drawback of insufficient moisture permeability as non-porous films. (Problems to be Solved by the Invention) An object of the present invention is to provide a method for producing a polyurethane film that is non-porous and has moisture permeability. Another object of the present invention is to provide a method for producing a polyurethane film that has water absorption and swelling resistance and also has excellent strength even when wet. (Means for Solving the Problems) The present invention involves reacting polyethylene glycol with a molecular weight of 200 to 600 with an organic dicarboxylic acid alone or an organic dicarboxylic acid with ε-caprolactone and/or a short chain polyol to reduce the polyoxyethylene content. but
17-70% to form a polyether-ester polyol with a molecular weight of 500-3000, and the polyether-ester polyol is reacted with an organic polyisocyanate in the presence of a chain extender to give a polyoxyethylene content of 15-62%. The present invention relates to a method for producing a non-porous moisture permeable polyurethane film using a polyurethane polymer, characterized in that the weight % range is within the range of % by weight. The polyurethane polymer used in the present invention is a multi-block copolymer in which a polyether chain with a specific molecular weight as a hydrophilic component, a polyester chain as a hydrophobic component, and polyurea and/or polyurethane blocks as hard segments are linearly connected. Although it contains a relatively large amount of oxyethylene groups, it is a polymer that has extremely low water absorption swelling properties. In producing the polyurethane polymer used in the present invention, the molecular weight of the polyethylene glycol used is preferably in the range of 200 to 600. When the molecular weight is within this range, a suitable moisture permeability coefficient and swelling rate can be obtained. The organic dicarboxylic acid is not particularly limited as long as it can undergo an esterification reaction with polyethylene glycol, but particularly preferred examples include adipic acid and isophthalic acid. For example, ε-caprolactone undergoes ring-opening polymerization in the presence of a tetrabutyl titanate catalyst, starting from the terminal hydroxyl group, and contributes to the production of polyether-ester polyol. Examples of short chain polyols include ethylene glycol, 1,3-
Examples include propylene glycol, 1,4-butanediol, 1,6-hexanediol, and neopentyl glycol. The polyether-ester polyol obtained by the reaction of the above polyethylene glycol, organic dicarboxylic acid alone or organic dicarboxylic acid with ε-caprolactone and/or short chain polyol has a polyoxyethylene content of 17 to 70% by weight, The molecular weight is in the range of 500 to 3000. If the polyoxyethylene content exceeds 70% by weight, the film formed from the final polyurethane polymer will have extremely poor water absorption and swelling properties, making it impractical. Moreover, if it is less than 17% by weight, the moisture permeability of the film will be poor. Furthermore, if the molecular weight exceeds 3,000, the strength of the film formed from the final polyurethane polymer will drop significantly and become unusable, while if it is less than 500, the tensile strength
The elongation and flexibility decrease, making it impractical. The organic polyisocyanate used in the present invention may be any polyisocyanate known in polyurethane chemistry, for example hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate, 2,4 -Tolylene diisocyanate (2,4-TDI), 2,
6-tolylene diisocyanate (2,6-TDI),
4,4'-diphenylmethane diisocyanate (MDI), carbodiimide modified MDI, polymethylene polyphenyl polyisocyanate (PAPI),
Ortho-toluidine diisocyanate (TODI),
Examples include naphthylene diisocyanate (NDI), xylylene diisocyanate (XDI), etc.
A species or two or more species can be used. All known chain extenders can be used, such as diols such as ethylene glycol, 1,4-butanediol, and neopentyl glycol, 4,4-methylenebis(2-chloroaniline), isophoronediamine, Pepyrazine,
Examples include diamines such as ethylenediamine, amino alcohols such as N-methylethanolamine, and monoethanolamine. The polyurethane polymer of the present invention obtained by reacting the above-specified polyether-ester polyol with an organic polyisocyanate in the presence of a chain extender has a polyoxyethylene content in the range of 15 to 62% by weight. If the polyoxyethylene content is less than 15% by weight, the moisture permeability will be poor.
Moreover, if it exceeds 62% by weight, the swelling ratio will increase, causing problems in practical use. The above polyether-ester polyol can be produced without a solvent;
In producing a polyurethane polymer from an ester polyol, an organic solvent such as dimethylformamide (DMF) can be suitably used. Although either a prepolymer method or a one-shot method can be employed for this urethanization reaction, the prepolymer method is more suitable from the viewpoint of structural regularity of the produced polymer. The solids content in the polyurethane polymer solution thus produced is preferably in the range of about 10 to 70% by weight, particularly preferably in the range of about 30 to 50% by weight. The present invention uses a continuous coating device to apply a solvent solution of a polyurethane polymer onto a release paper, then passes it through a drying oven to dry the solvent, and then peels the formed film from the release paper. A continuous method for producing a polyurethane film comprising the steps of peeling or peeling and winding up on a take-up roll, the method comprising using the above polyurethane polymer as the polyurethane polymer. Related. In the present invention, the solvent solution of the polyurethane polymer is preferably diluted with a diluent such as DMF, methyl ethyl ketone (MEK), toluene, or a chlorinated solvent, and exhibits a viscosity of about 2000 to 3000 cps during coating. It is also possible to add silicone surfactants, weathering agents, pigments, and other additives as appropriate. As the release paper on which the solvent solution of the polyurethane polymer for coating is applied, polyethylene terephthalate (PET) film, polyethylene laminate paper, etc. are suitable. As a continuous coating device, various devices such as a roll coater, knife coater, bar coater, reverse coater, comma coater, etc. can be used. As an example, FIG. 1 schematically shows a coating process using a comma coater. In the figure, 1. release paper feeder; 2. Back crawl, 3. Comma coater, 4. Suction type feed belt, 5. Drying oven, 6. cooling drum, 7. Suction type tension rule, 8. Film winder, 9. Solvent solution of polyurethane polymer, 10. Liquid feed pump, 1
1. This is a release paper winder. Depending on the application, the film can be wound up on the film winder 8 together with the release paper without using the release paper winder 11. In this case, it is also possible to process the film into a film of desired dimensions using other known rewinder/slitter machines. Drying of the coating film is approximately 0.5 to 70 to 120℃.
It is preferable to carry out the process for about 2 minutes, and the thickness of the formed film is preferably in the range of about 10 to 50 Όm. The non-porous moisture-permeable polyurethane film obtained by the present invention has good tensile strength, so there is no fear of tearing when peeling the film formed by a continuous coating device from a release paper, making it efficient and stable. Production is possible. In addition, since the water absorption swelling rate is 15% or less (in the examples shown in Table 2, it is often zero), the decline in physical properties due to swelling during wetness can be suppressed, and depending on the application, it can be made as thin as 10Ό. is also possible. In particular, when a formulation with a water absorption swelling rate of 0 is selected, even when water droplets adhere to the surface of the product film, no local blistering phenomenon is observed, making it suitable for use in gloves, rainwear, film covers, packaging materials, etc. This property is extremely suitable for practical use as a material. (Example) Next, the present invention will be specifically described based on Examples. In addition, parts or % simply refer to parts by weight or weight %.
shows. Reference Examples 1 to 7 and Comparative Examples 1 to 4 Polyethylene glycol, organic dicarboxylic acid, and ε-caprolactone were mixed in the proportions shown in Table 1, 0.001% of tetrabutyl titanate was added as a catalyst, and the mixture was mixed in a flask. under stirring, 200
Ring-opening polymerization and esterification of ε-caprolactone were performed by heating at ~210°C. The reaction was continued for 20 hours and dehydration was performed under reduced pressure to obtain polyether-ester polyols A to J. The polyoxyethylene content and molecular weight calculated from these mixing ratios were as shown in Table 1. In Table 1, PEG represents polyethylene glycol, PEEP represents polyether-ester polyol, and EO represents polyoxyethylene. Next, using the polyether-ester polyol shown in Table 1, an isocyanate-terminated prepolymer was prepared according to the formulation shown in Table 2, and dimethylformamide (DMF) was added as a solvent to this to give a solid content of 50%. In addition, a chain extender listed in Table 2 was then added to obtain a polyurethane polymer. In Table 2, IPDI is isophorone diisocyanate, XDI is xylylene diisocyanate, IPDA is isophorone diamine, MOCA is 4,
4′-methylenebis(2-chloroaniline), MEA
is N-methyldiethanolamine, BG is 1,4
-Butanediol, HB represents 4,4'-bis(hydroxyethyl)bisphenol A. Example 1 To 100 parts of the polyurethane polymer solution (solvent, DMF, solid content 50%) obtained in Reference Example 1, 1 part of silicone surfactant and 45 parts of diluent (DMF) were added to prepare a coating mixture ( Viscosity 4300cps/10℃,
35% solids) and using the comma coater shown in Figure 1 as a continuous coating device,
It is continuously coated onto a release paper (PET film) that is fed out at a speed of 20 m/min so that the film thickness after drying is 20ÎŒ, and then passed through a drying oven maintained at 100℃ to dry (remain). 1 minute), then peel off the release paper and wind up the resulting continuous polyurethane film onto a winding roll. As a matter of course, the thickness of the film after drying can be set to 20ÎŒ by adjusting the clearance of the comma coater and adjusting the coating thickness of the compounded liquid. Incidentally, the coating thickness in this case was 0.07 mm. Method for measuring water absorption swelling rate and moisture permeability coefficient A solvent solution of polyurethane polymer is poured onto a glass plate, and the thickness is measured using a film applicator.
A film of 45Ό, width 100mm, and length 150mm was obtained. 30
This film cut to mm width is marked with marked lines at 100 mm intervals, immersed in water at room temperature for 24 hours, then taken out of the water, the distance between the marked lines (l) is measured immediately after, and the value is calculated using the following formula. The water absorption swelling rate was calculated as the water absorption swelling rate. Water absorption swelling rate (%) = (l-100) x 100/100 The moisture permeability coefficient was measured according to the method of JIS Z-0208 using the film with a thickness of 45 ÎŒm obtained above.

【衚】【table】

【衚】【table】

【衚】 第衚の比范䟋にみられるごずく、最終ポリ
りレタン重合䜓䞭のEOが15以䞋ず少なくな
るずフむルムの透湿床が枛少しお奜たしくない。
たた比范䟋にみられるごずくPEGずしお分子
量200未満のものを䜿甚した堎合には、吞氎膚最
率はであ぀おもフむルムの透湿床が枛少しお奜
たしくない、 たた比范䟋に芋られる劂くPEGずしお分子
量が600を越えるものを䜿甚した堎合には、透湿
床は優れおいるけれども吞氎膚最率が著しく倧き
くなり実甚に耐えない。 発明の効果 本発明の透湿性ポリりレタンフむルムは非倚孔
性であり、優れた物性倀を有するため、連続匏補
造工皋で離型玙からフむルムを剥離する際にも砎
れる恐れはなく、効率的で安定な運転が保蚌さ
れ、か぀甚途によ぀おは非垞な薄肉化が可胜であ
り、たた吞氎膚最率が15以䞋実質䞊れロの配
合䟋が倚いであり、湿最時の膚最による物性の
䜎䞋も抑制され、䟋えば20Ό厚みのフむルムであ
぀おも充分実甚に耐えるものが埗られる。このよ
うに薄肉化できるこずは透湿性に぀いおも奜適で
ある。たたフむルム衚面の䞀郚に氎滎が付着した
堎合にも郚分的な膚れ珟象がみられず、倖芳的品
質の点でも優れた性質を有しおいる。特に20Ό品
に぀いお枬定した透湿係数は4500gm2・24Hの
ような極めお良奜な透湿床を発揮するので透湿性
手袋、食品包装甚フむルムなどの玠材ずしお真に
奜適な玠材を提䟛しうるものである。
[Table] As seen in Comparative Example 1 in Table 2, when the EO% in the final polyurethane polymer is as low as 15% or less, the moisture permeability of the film decreases, which is undesirable.
Furthermore, as seen in Comparative Example 2, when a PEG with a molecular weight of less than 200 is used, even if the water absorption swelling rate is 0, the moisture permeability of the film decreases, which is undesirable. If a PEG with a molecular weight exceeding 600 is used, although it has excellent moisture permeability, the water absorption swelling rate becomes extremely large, making it unsuitable for practical use. (Effects of the Invention) The moisture-permeable polyurethane film of the present invention is non-porous and has excellent physical properties, so there is no fear of tearing the film when peeling it from the release paper in the continuous manufacturing process, making it efficient. Stable operation is guaranteed, and depending on the application, it is possible to make the wall extremely thin, and the water absorption swelling rate is less than 15% (in many formulations it is virtually zero), which reduces the physical properties due to swelling when wet. This also suppresses deterioration, and even a film with a thickness of 20 ÎŒm, for example, can be obtained that is sufficiently durable for practical use. The ability to reduce the thickness in this manner is also favorable for moisture permeability. Further, even when water droplets adhere to a part of the film surface, no local blistering phenomenon is observed, and the film has excellent properties in terms of appearance quality. In particular, the moisture permeability coefficient measured for the 20ÎŒ product is 4500g/ m2・24H, which shows extremely good moisture permeability, making it a truly suitable material for materials such as moisture-permeable gloves and food packaging films. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明のポリりレタンフむルムを補造
するのに奜適な連続匏コヌテむング装眮の䟋の
抂略図を瀺す。
FIG. 1 shows a schematic diagram of an example of a continuous coating apparatus suitable for producing the polyurethane film of the present invention.

Claims (1)

【特蚱請求の範囲】[Claims]  連続匏コヌテむング装眮を甚いお、ポリりレ
タン重合䜓の溶媒溶液を離型玙䞊に塗垃し、次い
で也燥炉䞭を通過させお溶媒を也燥させたのち、
圢成されたフむルムを離型玙から剥離せずに又は
剥離し、巻取りロヌルに巻き取る工皋よりなるポ
リりレタンフむルムの連続補造方法においお、該
ポリりレタン重合䜓ずしお分子量200〜600のポリ
゚チレングリコヌルず、有機ゞカルボン酞単独又
は有機ゞカルボン酞ずε―カプロラクトン及び
又は短鎖ポリオヌルを反応させお、ポリオキシ゚
チレン含有率が17〜70で、分子量が500〜3000
のポリ゚ヌテル―゚ステルポリオヌルずなし、該
ポリ゚ヌテル―゚ステルポリオヌルを鎖延長剀の
存圚䞋で有機ポリむ゜シアネヌトず反応させお、
ポリオキシ゚チレン含有率を15〜62重量の範囲
ずしたポリりレタン重合䜓を甚いるこずを特城ず
する非倚孔質透湿性ポリりレタンフむルムの補造
方法。
1 Using a continuous coating device, apply a solvent solution of polyurethane polymer onto a release paper, then pass it through a drying oven to dry the solvent, and then
A continuous method for producing a polyurethane film comprising the step of winding up the formed film on a take-up roll without or without peeling it off from a release paper, the polyurethane polymer being polyethylene glycol with a molecular weight of 200 to 600 and an organic dicarboxylic acid. Alone or with an organic dicarboxylic acid and ε-caprolactone and/or
Or by reacting a short chain polyol, the polyoxyethylene content is 17-70% and the molecular weight is 500-3000.
a polyether-ester polyol, reacting the polyether-ester polyol with an organic polyisocyanate in the presence of a chain extender,
1. A method for producing a non-porous, moisture-permeable polyurethane film, comprising using a polyurethane polymer having a polyoxyethylene content in the range of 15 to 62% by weight.
JP61133249A 1986-06-09 1986-06-09 Polyurethane polymer and production of nonporous moisture-permeable polyurethane film using same Granted JPS62290714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133249A JPS62290714A (en) 1986-06-09 1986-06-09 Polyurethane polymer and production of nonporous moisture-permeable polyurethane film using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133249A JPS62290714A (en) 1986-06-09 1986-06-09 Polyurethane polymer and production of nonporous moisture-permeable polyurethane film using same

Publications (2)

Publication Number Publication Date
JPS62290714A JPS62290714A (en) 1987-12-17
JPH0253447B2 true JPH0253447B2 (en) 1990-11-16

Family

ID=15100193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133249A Granted JPS62290714A (en) 1986-06-09 1986-06-09 Polyurethane polymer and production of nonporous moisture-permeable polyurethane film using same

Country Status (1)

Country Link
JP (1) JPS62290714A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709049B1 (en) 1999-09-30 2007-04-18 섞킀슀읎가가쿠 고교가부시킀가읎샀 Thermoplastic elastomer, use thereof, and process for producing the same
JP2004299080A (en) * 2003-03-28 2004-10-28 Sekisui Film Kk Waterproof sheet

Also Published As

Publication number Publication date
JPS62290714A (en) 1987-12-17

Similar Documents

Publication Publication Date Title
EP2181133B1 (en) Microporous coating based on polyurethane polyurea
EP2389400B1 (en) USE OF DISPERSED TWO-COMPONENT POLYURETHANE FOAMS AS wound dressing
JP3201532B2 (en) Polyurethane emulsion
US20110171277A1 (en) Wound dressing having a polyurethane foam layer and a cover layer made of thermoplastic polymer
US20090054542A1 (en) Eo/po block copolymers useful as stabilizers for pur foams
KR20090018608A (en) Polyurethane foams for treating wounds
EP2016145A1 (en) Microporous coating based on polyurethane-polyurea
JPH02242868A (en) Polyurethane or polyurethane-urea paint
JP5260834B2 (en) Thermoplastic polyurethane resin composition and moisture-permeable film
JP4283577B2 (en) Non-porous membrane-type moisture-permeable waterproof fabric, aqueous polyurethane resin composition for the non-porous membrane-type moisture-permeable waterproof fabric, and coating agent containing the composition
JPH03190981A (en) Thermosetting coating material
CN113165317B (en) Porous layer structure and method for producing same
WO2014030452A1 (en) Urethane resin composition, leather-like sheet, and laminate
WO2013000910A1 (en) Composite foam for wound dressings
JP2003277459A (en) Polyurethaneurea foam sheet and synthetic leather using the same
CA2403195C (en) Rotational casting method for coating a flexible substrate and resulting coated flexible article
JPH0253447B2 (en)
JPH0126607B2 (en)
JP4672862B2 (en) Two-component water-dispersed urethane adhesive and laminate
JP3952526B2 (en) Polyurethane resin composition for waterproof cloth and waterproof cloth using the same
JPS62271740A (en) Moisture-permeable waterproof cloth
TW202023808A (en) Porous layer structure and method for producing same
JPH02104771A (en) Production of coated cloth
JPH01131228A (en) Composition for forming moisture-permeable polyurethane polymer
JPH0524934B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees