JPH0253335B2 - - Google Patents

Info

Publication number
JPH0253335B2
JPH0253335B2 JP58074099A JP7409983A JPH0253335B2 JP H0253335 B2 JPH0253335 B2 JP H0253335B2 JP 58074099 A JP58074099 A JP 58074099A JP 7409983 A JP7409983 A JP 7409983A JP H0253335 B2 JPH0253335 B2 JP H0253335B2
Authority
JP
Japan
Prior art keywords
main body
pipe
pressure receiving
receiving cup
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58074099A
Other languages
Japanese (ja)
Other versions
JPS59200959A (en
Inventor
Yoshikuni Uchida
Nobutada Sugaya
Yoshihiro Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP58074099A priority Critical patent/JPS59200959A/en
Publication of JPS59200959A publication Critical patent/JPS59200959A/en
Publication of JPH0253335B2 publication Critical patent/JPH0253335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Description

【発明の詳細な説明】 本発明はパイプラインの腐食を探査する等の目
的で管内を走行せしめるための管内走行体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an in-pipe traveling body for running inside a pipe for the purpose of detecting corrosion in the pipeline.

パイプラインの腐食等を探査する目的でインス
ペクシヨンピグ(管内探査装置)が実用化されて
いる。この種の装置は圧送等により管内を移動せ
しめられ、その途中で腐食による減肉状況等を探
査するものである。ところで、原油荷揚用の海底
パイプラインでは荷揚停止時に管内に海水が入れ
られるが、その管体の腐食は沈澱物が溜る管体下
部にほぼ限定されるという特徴があり、従つてこ
の種のパイプラインでは、管体下部の減肉探査を
行うだけで探査の目的が十分果たされることにな
る。しかしながら従来の装置は、走行中における
本体そのものの周方向での位置、姿勢が一定せ
ず、必然的に測定器(センサー)の位置も周方向
で一定しないという問題があり、結局、周方向を
カバーし得る多数台の測定器(センサー)を設
け、本体の変位にかかわらず管体下部を探査でき
るようにする必要がある。しかし、この種の非破
壌検査を目的とした測定器はそれ自体高価なもの
であるため、これを多数台搭載する必要がある従
来の装置では全体として極めて高価なものとなつ
てしまい、加えて電力も多量に消費するため大量
の電池を搭載する必要があり、また多数台の測定
器からの出力を記録するための大容量のデータレ
コーダを搭載する必要がある。また、このような
多数台の測定器及びこれに要する大量の電池や大
容量のデータレコーダ等のため走行体の容積その
ものが大きくなり、このため通過できるパイプラ
インベンド部の範囲が比較的小さい曲率のものに
限られてしまうという欠点がある。
Inspection pigs (pipe exploration devices) have been put into practical use for the purpose of detecting corrosion in pipelines. This type of device is moved inside a pipe by pressure feeding or the like, and along the way, it is used to check for thinning due to corrosion. By the way, in submarine pipelines for unloading crude oil, seawater is introduced into the pipe when unloading is stopped, but corrosion of the pipe body is almost limited to the lower part of the pipe body where sediment accumulates. In the line, the purpose of exploration can be fulfilled simply by investigating the thinning of the lower part of the pipe body. However, with conventional devices, there is a problem that the position and posture of the main body itself in the circumferential direction are not constant while driving, and the position of the measuring device (sensor) is also not constant in the circumferential direction. It is necessary to install a large number of measuring instruments (sensors) that can cover the area and to be able to explore the lower part of the pipe body regardless of the displacement of the main body. However, measuring instruments for the purpose of this type of non-destructive inspection are themselves expensive, so conventional equipment that requires a large number of them is extremely expensive overall. Since the system consumes a large amount of power, it is necessary to install a large number of batteries, and it is also necessary to install a large-capacity data recorder to record the output from a large number of measuring instruments. In addition, because of the large number of measuring instruments and the large number of batteries and large-capacity data recorders required for these, the volume of the traveling body itself becomes large, and as a result, the range of pipeline bends that can be passed through has a relatively small curvature. The disadvantage is that it is limited to certain things.

本発明はこのような従来の欠点に鑑み発明され
たもので、少ない測定器で管体周方向の所望の箇
所の安定した探査を可能ならしめる管内走行体を
提供せんとするものであり、このため本発明は、
測定器が取付けられた本体、該本体の外周に軸受
を介して回転可能に取付けられた受圧カツプ、前
記本体に取付けられた偏心ウエイトとから構成
し、測定器が取付けられた本体の周方向における
姿勢が、受圧カツプの周方向で変位にかかわらず
常に一定に維持されるようにしたものである。
The present invention was devised in view of these conventional drawbacks, and it is an object of the present invention to provide an in-pipe running body that enables stable exploration of a desired location in the circumferential direction of a pipe with a small number of measuring instruments. Therefore, the present invention
Consisting of a main body to which a measuring instrument is attached, a pressure receiving cup rotatably attached to the outer periphery of the main body via a bearing, and an eccentric weight attached to the main body, The posture is always maintained constant regardless of displacement in the circumferential direction of the pressure receiving cup.

以下本発明の一実施例を図面に示すものについ
て説明する。
An embodiment of the present invention will be described below with reference to the drawings.

本発明の走行体は、測定器が搭載される本体
1、該本体の外周に回転可能に設けられる受圧カ
ツプ2及び前記本体に取付けられた偏心ウエイト
3から構成されている。
The traveling body of the present invention comprises a main body 1 on which a measuring instrument is mounted, a pressure receiving cup 2 rotatably provided on the outer periphery of the main body, and an eccentric weight 3 attached to the main body.

前記本体1は筒状に構成され、通常はその外周
に測定器(図示せず)が取付けられる。
The main body 1 has a cylindrical shape, and a measuring device (not shown) is usually attached to its outer periphery.

前記受圧カツプ2は環状をなし、本体長手方向
2箇所の外周に、軸受4を介して回転可能に取付
けられている。受圧カツプ2はゴム等の可撓性部
材により構成され、その外周縁が管内面Pに密着
当接するようになつており、走行体はこの受圧カ
ツプ2及び前記本体1により管内の流体圧を受け
走行するようになつている。
The pressure receiving cup 2 has an annular shape and is rotatably attached via bearings 4 to the outer periphery of the main body at two locations in the longitudinal direction. The pressure receiving cup 2 is made of a flexible member such as rubber, and its outer periphery is in close contact with the inner surface P of the pipe, and the traveling body receives fluid pressure in the pipe by this pressure receiving cup 2 and the main body 1. It's starting to run.

前記偏心ウエイト3は、受圧カツプ2に対して
回転可能な本体1を、受圧カツプの周方向での変
位にかかわらず偏心ウエイト取付側を下にして常
に一定の姿勢に維持せしめるものである。本実施
例では筒状本体の一側長手方向に沿つて取付けら
れている。
The eccentric weight 3 allows the main body 1, which is rotatable with respect to the pressure receiving cup 2, to always maintain a constant posture with the eccentric weight mounting side facing down, regardless of displacement of the pressure receiving cup in the circumferential direction. In this embodiment, it is attached along the longitudinal direction of one side of the cylindrical body.

前記測定器は管周方向の所望の方向を測定する
よう本体1に取付けられる。この測定器として
は、水浸超音波探触子、渦流センサーコイル、漏
洩磁束センサー等がある。
The measuring device is attached to the main body 1 so as to measure a desired circumferential direction of the pipe. Examples of this measuring device include a water immersion ultrasonic probe, an eddy current sensor coil, and a leakage magnetic flux sensor.

このような装置は図示するように管内に位置せ
しめられ、図中矢印方向からの流体圧をその受圧
カツプ2及び本体1で受け、管内を圧送される。
この走行中、偏心ウエイト3の作用により、本体
1は常にウエイト取付側を下にした姿勢に維持さ
れ、これにより例えば偏心ウエイト取付側に測定
器に取付けておくことにより、管体下側の減肉状
況を的確に測定することができる。また、このよ
うな管体の下側の測定に限らず、例えば管体上側
やその他の方向の測定も、測定器の取付位置を適
当に選択することにより的確に行うことができ
る。
As shown in the figure, such a device is positioned within a pipe, receives fluid pressure in the direction of the arrow in the figure with its pressure receiving cup 2 and main body 1, and is pumped through the pipe.
During this traveling, the action of the eccentric weight 3 keeps the main body 1 in a position with the weight attachment side facing down. Meat status can be measured accurately. Furthermore, not only measurements on the lower side of the tube, but also measurements on the upper side of the tube or in other directions can be performed accurately by appropriately selecting the mounting position of the measuring instrument.

また、周方向の全域を測定したいような場合に
は、測定器の取付範囲を本体周方向の数分の1
(例えば1/3)程度にし、管周方向を数回に分けて
探査することができる。
In addition, if you want to measure the entire circumferential area, the installation range of the measuring device should be set to a fraction of the circumferential direction of the main body.
(for example, about 1/3), and the circumferential direction of the tube can be divided into several sections.

以上述べた本発明によれば、走行中、測定器を
搭載した本体を受圧カツプの周方向での変位にか
かわらず周方向で常に一定の姿勢に維持すること
ができるので、管内周方向の特定方位の測定を行
うような場合でも、その方位に対応した本体箇所
に測定器を設けるだけで精密な測定を行うことが
でき、これにより装置自体を安価に提供すること
ができるとともに、消費電力も従来装置に較べ大
幅に低減せしめることができるため測定器用の電
池も少量で済み、またデータレーダも小容量のも
ので済むという利点がある。加えて、このように
測定器、電池等の搭載数量が少なくて済むことか
ら、走行体そのものを小型化することができ、大
きい曲率のパイプラインベンド部であつても容易
に通過することができるなど、従来にない優れた
効果を有するものである。
According to the present invention described above, the main body carrying the measuring device can be maintained in a constant position in the circumferential direction regardless of the displacement of the pressure receiving cup in the circumferential direction while traveling, so that the inner circumferential direction of the pipe can be determined. Even when measuring a direction, precise measurements can be made simply by installing a measuring device at the location of the main body corresponding to the direction.This allows the device itself to be provided at a low cost and reduces power consumption. This has the advantage that the amount of energy required can be reduced significantly compared to conventional devices, so only a small amount of batteries are needed for the measuring device, and the data radar can also be of small capacity. In addition, since only a small number of measuring instruments, batteries, etc. are required, the traveling body itself can be made smaller and can easily pass through pipeline bends with large curvatures. It has excellent effects not seen before.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を概略的に示す縦断面
図である。 図において、1は本体、2は受圧カツプ、3は
偏心ウエイト、4は軸受を各示す。
The drawing is a vertical sectional view schematically showing an embodiment of the present invention. In the figure, 1 is a main body, 2 is a pressure receiving cup, 3 is an eccentric weight, and 4 is a bearing.

Claims (1)

【特許請求の範囲】[Claims] 1 測定器が取付けられた本体、該本体の外周に
軸受を介して回転可能に取付けられた受圧カツ
プ、前記本体に取付けられた偏心ウエイトとから
なる管内走行体。
1. An in-tube running body consisting of a main body to which a measuring device is attached, a pressure receiving cup rotatably attached to the outer periphery of the main body via a bearing, and an eccentric weight attached to the main body.
JP58074099A 1983-04-28 1983-04-28 Traveling body in pipe Granted JPS59200959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58074099A JPS59200959A (en) 1983-04-28 1983-04-28 Traveling body in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58074099A JPS59200959A (en) 1983-04-28 1983-04-28 Traveling body in pipe

Publications (2)

Publication Number Publication Date
JPS59200959A JPS59200959A (en) 1984-11-14
JPH0253335B2 true JPH0253335B2 (en) 1990-11-16

Family

ID=13537395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58074099A Granted JPS59200959A (en) 1983-04-28 1983-04-28 Traveling body in pipe

Country Status (1)

Country Link
JP (1) JPS59200959A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137545A (en) * 1985-12-12 1987-06-20 Shinichi Matsuda Tv camera for inspection of inside of pipe
JPS63305242A (en) * 1987-06-05 1988-12-13 Tokyo Gas Co Ltd Apparatus for inspecting corrosion in outer surface of pipe body
JP5940921B2 (en) * 2012-07-12 2016-06-29 トヨタ自動車九州株式会社 Transport device
JP2018203455A (en) * 2017-06-05 2018-12-27 株式会社ディスコ Pneumatic carrier
JP2019014555A (en) * 2017-07-04 2019-01-31 株式会社ディスコ Pneumatic carrier
JP2019048684A (en) * 2017-09-08 2019-03-28 株式会社ディスコ Pneumatic tube device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129183A (en) * 1976-04-21 1977-10-29 Vni I Pk I Torubopurobuodonimu Device of transporting cargo in conduit line by means of current of fluid
JPS549880A (en) * 1977-06-22 1979-01-25 Sudo Shizuo Safety travelling capsule car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129183A (en) * 1976-04-21 1977-10-29 Vni I Pk I Torubopurobuodonimu Device of transporting cargo in conduit line by means of current of fluid
JPS549880A (en) * 1977-06-22 1979-01-25 Sudo Shizuo Safety travelling capsule car

Also Published As

Publication number Publication date
JPS59200959A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
US4945775A (en) Inertial based pipeline monitoring system
US6172940B1 (en) Two geophone underwater acoustic intensity probe
CN206930619U (en) Detection means in a kind of pipe-line
WO2023015675A1 (en) Pipeline nondestructive testing device
US20140130577A1 (en) Leak Detection Apparatus
US20110095752A1 (en) Pipeline monitoring apparatus and method
US8085622B2 (en) Ultra low frequency acoustic vector sensor
JPS61181983A (en) Receiver for acoustic wave in water
JP2001515587A (en) Mooring type water quality inspection device
KR101749519B1 (en) Leakage detecting apparatus
CA2913939A1 (en) Device for testing ducts
JPH0253335B2 (en)
US11674630B2 (en) Method and apparatus to detect flaws in metallic pipe
CA1081941A (en) Probing device for the interior of pipelines
CN108343802A (en) Detection device in a kind of pipe electromagnetic
KR20120077109A (en) Leakage inspecting apparatus
GB2327759A (en) Pipeline leak detector system
JPS6225229A (en) Inspection pig for pipeline
JPH0253334B2 (en)
RU2139468C1 (en) Device for measuring and nondestructive testing of pipe line material
US3442349A (en) Acoustic pipeline leak detector
WO2009001022A1 (en) Profiling pig for detecting and quantifying internal corrosion in pipes
CN117366388B (en) Detector in foam ball pipeline
RU2606205C1 (en) Pig-flaw detector
JP3154948B2 (en) Flaw detection sensor unit