JPH025328B2 - - Google Patents

Info

Publication number
JPH025328B2
JPH025328B2 JP2013981A JP2013981A JPH025328B2 JP H025328 B2 JPH025328 B2 JP H025328B2 JP 2013981 A JP2013981 A JP 2013981A JP 2013981 A JP2013981 A JP 2013981A JP H025328 B2 JPH025328 B2 JP H025328B2
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
wave device
piezoelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2013981A
Other languages
Japanese (ja)
Other versions
JPS57135518A (en
Inventor
Takeshi Okamoto
Shoichi Minagawa
Seiji Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP2013981A priority Critical patent/JPS57135518A/en
Publication of JPS57135518A publication Critical patent/JPS57135518A/en
Publication of JPH025328B2 publication Critical patent/JPH025328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14502Surface acoustic wave [SAW] transducers for a particular purpose
    • H03H9/14505Unidirectional SAW transducers

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は弾性表面波装置、特に良好な特性を有
し、製作が容易な広帯域の弾性表面波用一方向性
トランスジユーサを得るための改良に関する。 従来の弾性表面波用一方向性トランスジユーサ
には一方向性とするために(イ)反射器を用いるも
の、(ロ)120゜移相器を用いるもの、(ハ)90゜移相器を
用いるもの等がある。 しかし(イ)の反射器を用いた一方向性トランスジ
ユーサはその反射器の特性がトランスジユーサの
特性に大きく寄与しているため、所定周波数の時
のみしか一方向性にならず狭帯域のものとなる。
また反射器の部分はかなり大きな面積を必要とす
るために、圧電体基板が大型となつてコスト高で
しかも製作を複雑にする欠点がある。 次に(ロ)の120゜移相器を用いる一方向性トランス
ジユーサは第1図に示す如く夫々0゜、120゜及び
240゜の位相を有する電極P1,P2及びP3を交叉させ
るために交叉部分に空隙Sを設けなければならな
い。 またこの空隙部を絶縁膜に置換したものもある
が、何れの場合でも製作が非常に複雑になり、歩
留りも悪くコスト高になる欠点がある。 更に(ハ)の90゜移相器を用いた一方向性トランス
ジユーサは所定周波数の時のみしか一方向性にな
らないため狭帯域である。しかも広帯域の90゜移
相器を実現することは非常に難しい欠点がある。 本発明は上述した従来技術の欠点を改良するた
めになされたもので、一対もしくは複数対の互い
に交叉する電極片から成る少くとも2組の電極部
を配設した弾性表面波装置において、上記電極部
を中心周波数における弾性表面波の波長の1/4だ
け弾性表面波伝播方向にずらすと共に上記電極部
の夫々一方の電極片が電極交叉巾に沿つて接触し
共通に接地せしめられかつ他方の電極片を所定の
周波数特性を有する位相差を与える移相器に接続
することにより、一方向性でしかも広帯域の弾性
表面波用トランスジユーサを提供することを目的
とする。 以下図面に示す実施例を参照して本発明を説明
すると、第2図において、1は圧電体基板、2及
び3は該圧電体基板上に配設された電極部、4は
移相器、5は信号源である。 電極部2,3は圧電体基板上に、例えばアルミ
ニウム等の金属を蒸着した互いに交叉する複数対
の電極片6〜9から成り、各電極部の一方の電極
片6,7はその電極交叉巾bに沿つて接触させて
共通に接地すると共に両電極部は中心周波数にお
ける弾性表面波の波長の1/4(λp/4)だけ弾性表面 波伝播方向にずらして配置してある。 また他方の電極片8,9の間には移相器4が接
続されて、所定の周波数特性を有する位相差、例
えば下記φ()の位相差を与えるようになつて
いる。 φ()=−2π(N+1/4)/p+2nπ 但しNは電極部2,3の電極片対数で、上述の
実施例の場合はN=2である。pは中心周波数
は信号周波数、nは整数である。 而して電極部2,3に周波数の入力信号を印
加することによつて発生した弾性表面波は圧電体
基板1上の左右の方向へ伝播するが、例えば右へ
伝播する弾性表面波は電極部2,3からの波の合
成したものとなる。従つて、この場合、電極部2
からの波と電極部3からの波の位相差が0゜である
か、又は180゜であるかによつて合成される波が強
め合うか、或いは打ち消し合うかが決まる。 そして電極部2,3は前述したようにλp/4(90゜ の位相差に相当する)ずれて配設してあるが、λp
は中心周波数における波長であるために、入力信
号の周波数が中心周波数pからずれていると、
このままでは電極部2,3のずれはλ/4、従つて
90゜の位相差に相当したものとはならない。 即ち、第2図に示すトランスジユーサにおい
て、電極部2,3間の距離lは l=(Nλ0+λ0/4) この距離lに対応する位相角(トランスジツト
角)θは θ=kl=2π/λl (kは弾性表面波の波数、λはその波長) 上記θ及びlの式から θ(f)=2πλ0/λ(N+1/4)=2π(N+1/4)
f/f0 上記θ(f)の式より電極部2,3間の位相角は周
波数特性を示すこと明らかである。 しかるに前記移相器により入力信号の周波数に
対応して前記φ()に従うように電気的位相条
件を変化させるようにすれば、上記θ(f)は移相器
4の位相差φ(f)の式の第1項−2π(N+1/4)f/
f0 で相殺されることになるので、広帯域にわたつて
一方向に進む夫夫の弾性表面波の位相差を0゜に、
また他方向へ進む各弾性表面波の位相差を180゜に
することができる。従つて広帯域の一方向性トラ
ンスジユーサを実現できる。 第3図はφ()の式においてN=2、n=2
とした場合の/pに対する位相差φのグラフで、 このような周波数特性を有する移相器は一般に設
計が容易である。 第13図は移相器4の一構成例を示す。同図に
おいてL、C1及びC2は該移相器を構成するイン
ダクタンスコイル及びコンデンサで、C1、L、
C2に夫々対応するサセプタンスを g3(=ω0C1)、g2(=1/ω0L)、g1(=ω0C2)とし
て、 このg1、g2、g3を決定するための条件として、信
号源5から移相器4を見たインピーダンスZinが
中心周波数f0において整合がとれているとすれ
ば、 Zin=g1+g2+BT−jGT/(g2+g3)GT+j{(
g2+g3)BT+g1g2+g2g3+g3g1}=Rg(1) (1)式より次の条件が得られる。 g1+g2+BT=0 (2) (g2+g3)GT=0 (3) GT=−Rg[(g2+g3)BT+g1g2+g2g3+g3g1] (4) ただし YT=GT+jBT (5) (1)〜(5)より g1=±√T−BT (6) g2=±√T (7) g3=±√T (8) (8)より
The present invention relates to a surface acoustic wave device, and in particular to an improvement for obtaining a broadband unidirectional transducer for surface acoustic waves that has good characteristics and is easy to manufacture. Conventional surface acoustic wave unidirectional transducers include (a) those that use a reflector, (b) those that use a 120° phase shifter, and (c) those that use a 90° phase shifter to achieve unidirectionality. There are some that use However, in a unidirectional transducer using a reflector (b), the characteristics of the reflector greatly contribute to the characteristics of the transducer, so it becomes unidirectional only at a predetermined frequency and has a narrow band. Becomes the property of
Furthermore, since the reflector portion requires a fairly large area, the piezoelectric substrate becomes large, resulting in high cost and complicated manufacturing. Next, (b) a unidirectional transducer using a 120° phase shifter has a phase shifter of 0°, 120°, and
In order to intersect the electrodes P 1 , P 2 and P 3 having a phase of 240°, a gap S must be provided at the intersection. There are also devices in which the void portion is replaced with an insulating film, but in either case, the manufacturing is very complicated, and the yield is low and the cost is high. Furthermore, the unidirectional transducer (c) using a 90° phase shifter has a narrow band because it becomes unidirectional only at a predetermined frequency. Moreover, it has the disadvantage that it is extremely difficult to realize a broadband 90° phase shifter. The present invention has been made in order to improve the above-mentioned drawbacks of the prior art, and provides a surface acoustic wave device having at least two sets of electrode sections each consisting of one or more pairs of electrode pieces that intersect with each other. is shifted in the surface acoustic wave propagation direction by 1/4 of the wavelength of the surface acoustic wave at the center frequency, and one electrode piece of each of the electrode parts contacts along the electrode cross width and is commonly grounded, and the other electrode It is an object of the present invention to provide a unidirectional and broadband surface acoustic wave transducer by connecting one piece to a phase shifter that provides a phase difference having predetermined frequency characteristics. The present invention will be described below with reference to embodiments shown in the drawings. In FIG. 2, 1 is a piezoelectric substrate, 2 and 3 are electrode parts disposed on the piezoelectric substrate, 4 is a phase shifter, 5 is a signal source. The electrode parts 2 and 3 are composed of a plurality of pairs of electrode pieces 6 to 9 that intersect with each other and are made by vapor-depositing metal such as aluminum on a piezoelectric substrate, and one electrode piece 6 and 7 of each electrode part has the electrode crossing width. b and are commonly grounded, and both electrodes are shifted in the surface acoustic wave propagation direction by 1/4 (λ p /4) of the wavelength of the surface acoustic wave at the center frequency. A phase shifter 4 is connected between the other electrode pieces 8 and 9 to provide a phase difference having predetermined frequency characteristics, for example, a phase difference of φ( ) below. φ()=−2π(N+1/4)/ p +2nπ where N is the number of pairs of electrode pieces of the electrode portions 2 and 3, and in the above embodiment, N=2. p is the center frequency of the signal frequency, and n is an integer. Surface acoustic waves generated by applying frequency input signals to the electrode parts 2 and 3 propagate in the left and right directions on the piezoelectric substrate 1. For example, surface acoustic waves propagating to the right are It is a combination of waves from parts 2 and 3. Therefore, in this case, the electrode part 2
Whether the combined waves strengthen each other or cancel each other is determined depending on whether the phase difference between the waves from the electrode section 3 and the waves from the electrode section 3 is 0° or 180°. As mentioned above, the electrode parts 2 and 3 are arranged with a shift of λ p /4 (corresponding to a phase difference of 90°).
is the wavelength at the center frequency, so if the frequency of the input signal deviates from the center frequency p ,
As it is, the deviation between electrode parts 2 and 3 is λ/4, so
This does not correspond to a phase difference of 90°. That is, in the transducer shown in FIG. 2, the distance l between the electrode parts 2 and 3 is: l=(Nλ 00 /4) The phase angle (transition angle) θ corresponding to this distance l is: θ=kl= 2π/λl (k is the wave number of the surface acoustic wave, λ is its wavelength) From the above equations for θ and l, θ(f) = 2πλ 0 /λ (N + 1/4) = 2π (N + 1/4)
f/f 0 It is clear from the above equation of θ(f) that the phase angle between the electrode parts 2 and 3 shows frequency characteristics. However, if the electrical phase condition is changed by the phase shifter so as to follow the above φ() according to the frequency of the input signal, the above θ(f) becomes the phase difference φ(f) of the phase shifter 4. The first term in the equation -2π(N+1/4)f/
Since it is canceled out by f 0 , the phase difference of the husband's surface acoustic waves traveling in one direction over a wide band is set to 0°.
Furthermore, the phase difference between each surface acoustic wave traveling in the other direction can be set to 180°. Therefore, a broadband unidirectional transducer can be realized. Figure 3 shows N=2 and n=2 in the equation of φ().
This is a graph of the phase difference φ versus / p when: A phase shifter with such frequency characteristics is generally easy to design. FIG. 13 shows an example of the configuration of the phase shifter 4. In the same figure, L, C 1 and C 2 are inductance coils and capacitors that constitute the phase shifter, and C 1 , L,
Assuming that the susceptances corresponding to C 2 are g 3 (=ω 0 C 1 ), g 2 (=1/ω 0 L), and g 1 (=ω 0 C 2 ), these g 1 , g 2 , and g 3 are As a condition for determination, if the impedance Zin seen from the signal source 5 to the phase shifter 4 is matched at the center frequency f 0 , then Zin=g 1 +g 2 +B T −jG T /(g 2 +g 3 )G T +j{(
g 2 +g 3 )B T +g 1 g 2 +g 2 g 3 +g 3 g 1 }=Rg(1) From equation (1), the following condition is obtained. g 1 +g 2 +B T =0 (2) (g 2 +g 3 )G T =0 (3) G T =−Rg [(g 2 +g 3 )B T +g 1 g 2 +g 2 g 3 +g 3 g 1 ] (4) However, Y T = G T + jB T (5) From (1) to (5), g 1 = ±√ T −B T (6) g 2 = ±√ T (7) g 3 = ±√ T (8) From (8)

【式】従つて[Formula] Therefore

【式】 (7)より【formula】 From (7)

【式】従つて[Formula] Therefore

【式】 (6)より【formula】 From (6)

【式】従つて かくして(9)〜(11)より前記コンデンサ及びインダ
クタンスの値は下記のように定めればよい。 但し、pは中心周波数、YTはトランスジユー
サ2,3の等価アドミツタンスで、GT及びBT
夫々中心周波数pにおける等価コンダクタンス及
び等価サセプタンス、Rgは信号源5の内部抵抗
である。 なお、インターデイジタルトランスジユーサを
構成する前記2個の電極部は同等の形状のもので
なくてもよく、或いは第11図に示す如く電極片
交叉巾bを位置xに応じて変化させたアポタイズ
電極構造、第12図に示す如く電極片間隔aを位
置xに応じて変化させたチヤープ電極構造等のも
のとしてもよい。 更に第4図乃至第10図は本発明の他の実施例
を示す。 第4図の実施例は圧電体基板10上に圧電膜1
1を堆積させ、上記した電極部12,13を配設
してある。 第5図の実施例は圧電体基板10上に上記した
電極部12,13を配設し、その上に圧電膜又は
非圧電膜14を堆積したものである。 第6図の実施例は半導体基板14、絶縁膜15
及び圧電膜16から成る積層体上に前記した電極
部12,13を配設してある。 第7図の実施例は前記積層体において電極部1
2,13を絶縁膜15上に配設し、その上に圧電
膜16を堆積したものである。 第8図の実施例は半導体基板14、絶縁膜1
8、金属膜19及び圧電膜20から成る積層体上
に前記した電極部12,13を配設してある。 第9図の実施例は上記積層体において、電極部
12,13を絶縁膜18上に配設し、その上に圧
電膜20及び金属膜19を堆積したものである。 第10図の実施例は圧電体基板21上に前記し
た電極部12,13を配設し、その上に圧電膜又
は非圧電膜22及び金属膜23を堆積したもので
ある。 以上説明した所から明らかなように本発明によ
れば一方向性でしかも広帯域のトランスジユーサ
を提供することができ実用上の効果は多大であ
る。
[Formula] Therefore Thus, from (9) to (11), the values of the capacitor and inductance may be determined as follows. However, p is the center frequency, Y T is the equivalent admittance of the transducers 2 and 3, G T and B T are the equivalent conductance and equivalent susceptance at the center frequency p , respectively, and R g is the internal resistance of the signal source 5. Note that the two electrode parts constituting the interdigital transducer do not have to be of the same shape, or they can be apotized with the cross width b of the electrode pieces changed according to the position x, as shown in FIG. The electrode structure may be a chirp electrode structure in which the electrode spacing a is varied depending on the position x as shown in FIG. 12. Furthermore, FIGS. 4 to 10 show other embodiments of the present invention. The embodiment shown in FIG. 4 has a piezoelectric film 1 on a piezoelectric substrate 10.
1 is deposited, and the electrode portions 12 and 13 described above are provided. In the embodiment shown in FIG. 5, the above-mentioned electrode parts 12 and 13 are arranged on a piezoelectric substrate 10, and a piezoelectric film or a non-piezoelectric film 14 is deposited thereon. The embodiment shown in FIG. 6 includes a semiconductor substrate 14, an insulating film 15,
The above-mentioned electrode parts 12 and 13 are arranged on a laminate consisting of a piezoelectric film 16 and a piezoelectric film 16. In the embodiment shown in FIG. 7, the electrode portion 1 is
2 and 13 are disposed on an insulating film 15, and a piezoelectric film 16 is deposited thereon. The embodiment shown in FIG. 8 includes a semiconductor substrate 14, an insulating film 1
8. The above-mentioned electrode parts 12 and 13 are arranged on a laminate consisting of a metal film 19 and a piezoelectric film 20. In the embodiment shown in FIG. 9, the electrode parts 12 and 13 are arranged on the insulating film 18, and the piezoelectric film 20 and the metal film 19 are deposited thereon. In the embodiment shown in FIG. 10, the electrode parts 12 and 13 described above are arranged on a piezoelectric substrate 21, and a piezoelectric film or a non-piezoelectric film 22 and a metal film 23 are deposited thereon. As is clear from the above description, according to the present invention, a unidirectional and broadband transducer can be provided, and the practical effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の弾性表面波一方向性トランスジ
ユーサを示す概略図、第2図は本発明の一実施例
を示す概略図、第3図は該実施例における移相器
の周波数特性を示すグラフ、第4図乃至第10図
は夫々本発明の他の実施例を示す概略断面図、第
11図はアポタイズ電極を示す略線図、第12図
はチヤープ電極を示す略線図、第13図は移相器
の一構成例を示す回路図である。 1……圧電体基板、2,3……電極部、4……
移相器、5……信号源、6〜9……電極片。
Fig. 1 is a schematic diagram showing a conventional surface acoustic wave unidirectional transducer, Fig. 2 is a schematic diagram showing an embodiment of the present invention, and Fig. 3 shows the frequency characteristics of a phase shifter in the embodiment. 4 to 10 are schematic sectional views showing other embodiments of the present invention, FIG. 11 is a schematic diagram showing an apotizing electrode, and FIG. 12 is a schematic diagram showing a chirp electrode. FIG. 13 is a circuit diagram showing an example of the configuration of a phase shifter. 1... Piezoelectric substrate, 2, 3... Electrode part, 4...
Phase shifter, 5...signal source, 6-9...electrode pieces.

Claims (1)

【特許請求の範囲】 1 一対もしくは複数対の互いに交叉する電極片
から成る少なくとも2組の電極部を配設した弾性
表面波装置において、上記電極部を中心周波数に
おける弾性表面波の波長の1/4だけ弾性表面波伝
播方向にずらすと共に上記電極部の夫々一方の電
極片が電極交叉幅に沿つて接触し、共通に接地せ
しめられ、かつ他方の電極片を所定の周波数特性
を有する位相差を与える移相器に接続し、該移相
器がφ(f)=−2π(N+1/4)f/f0+2nπ(N:電
極片 対数、f:入力信号周波数、f0:中心周波数、
n:整数)の位相差を与えるようになつているこ
とを特徴とする弾性表面波装置。 2 圧電体基板上に圧電膜が堆積され、該圧電膜
上に前記電極部が配設されていることを特徴とす
る特許請求の範囲第1項記載の弾性表面波装置。 3 圧電体基板上に前記電極部が配設され、その
上に圧電膜又は非圧電膜が堆積されたことを特徴
とする特許請求の範囲第1項記載の弾性表面波装
置。 4 半導体基板、絶縁膜及び圧電膜を順次積層
し、該圧電膜上に前記電極部を配設したことを特
徴とする特許請求の範囲第1項記載の弾性表面波
装置。 5 半導体基板上に絶縁膜を積層し、該絶縁膜上
に前記電極部を配設して、その上に圧電膜を堆積
したことを特徴とする特許請求の範囲第1項記載
の弾性表面波装置。 6 半導体基板上に、絶縁膜、金属膜及び圧電膜
を順次積層し、該圧電膜上に前記電極部を配設し
たことを特徴とする特許請求の範囲第1項記載の
弾性表面波装置。 7 半導体基板上に絶縁膜を積層し、該絶縁膜上
に前記電極部を配設して、その上に圧電膜、金属
膜を順次堆積したことを特徴とする特許請求の範
囲第1項記載の弾性表面波装置。 8 圧電体基板上に前記電極部を配設し、その上
に圧電膜又は非圧電膜、金属膜を順次堆積したこ
とを特徴とする特許請求の範囲第1項記載の弾性
表面波装置。 9 前記両電極部が同等の形状をなしていること
を特徴とする特許請求の範囲第1項乃至第8項の
何れか一項に記載の弾性表面波装置。 10 前記両電極部が異なる形状をなしているこ
とを特徴とする特許請求の範囲第1項乃至第8項
の何れか一項に記載の弾性表面波装置。 11 前記電極片の交叉幅を変化させたことを特
徴とする特許請求の範囲第1項乃至第8項の何れ
か一項に記載の弾性表面波装置。 12 前記電極片の間隔を変化させたことを特徴
とする特許請求の範囲第1項乃至第8項の何れか
一項に記載の弾性表面波装置。
[Scope of Claims] 1. In a surface acoustic wave device in which at least two sets of electrode sections each consisting of one or more pairs of intersecting electrode pieces are disposed, the electrode sections are set at 1/1/2 of the wavelength of the surface acoustic wave at a center frequency. 4 in the surface acoustic wave propagation direction, one electrode piece of each of the electrode parts contacts along the electrode crossing width, is commonly grounded, and the other electrode piece is connected to a phase difference having a predetermined frequency characteristic. φ(f)=-2π(N+1/4)f/ f0 +2nπ(N: number of electrode pieces, f: input signal frequency, f0 : center frequency,
A surface acoustic wave device characterized in that it provides a phase difference (n: an integer). 2. The surface acoustic wave device according to claim 1, wherein a piezoelectric film is deposited on a piezoelectric substrate, and the electrode portion is disposed on the piezoelectric film. 3. The surface acoustic wave device according to claim 1, wherein the electrode portion is disposed on a piezoelectric substrate, and a piezoelectric film or a non-piezoelectric film is deposited thereon. 4. The surface acoustic wave device according to claim 1, wherein a semiconductor substrate, an insulating film, and a piezoelectric film are sequentially laminated, and the electrode portion is disposed on the piezoelectric film. 5. The surface acoustic wave according to claim 1, characterized in that an insulating film is laminated on a semiconductor substrate, the electrode portion is disposed on the insulating film, and a piezoelectric film is deposited thereon. Device. 6. The surface acoustic wave device according to claim 1, wherein an insulating film, a metal film, and a piezoelectric film are sequentially laminated on a semiconductor substrate, and the electrode portion is disposed on the piezoelectric film. 7. Claim 1, characterized in that an insulating film is laminated on a semiconductor substrate, the electrode portion is disposed on the insulating film, and a piezoelectric film and a metal film are sequentially deposited thereon. surface acoustic wave device. 8. The surface acoustic wave device according to claim 1, wherein the electrode portion is disposed on a piezoelectric substrate, and a piezoelectric film, a non-piezoelectric film, and a metal film are sequentially deposited thereon. 9. The surface acoustic wave device according to any one of claims 1 to 8, wherein both electrode portions have the same shape. 10. The surface acoustic wave device according to any one of claims 1 to 8, wherein both the electrode portions have different shapes. 11. The surface acoustic wave device according to any one of claims 1 to 8, characterized in that the crossing width of the electrode pieces is changed. 12. The surface acoustic wave device according to any one of claims 1 to 8, characterized in that the spacing between the electrode pieces is changed.
JP2013981A 1981-02-16 1981-02-16 Surface acoustic wave device Granted JPS57135518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013981A JPS57135518A (en) 1981-02-16 1981-02-16 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013981A JPS57135518A (en) 1981-02-16 1981-02-16 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPS57135518A JPS57135518A (en) 1982-08-21
JPH025328B2 true JPH025328B2 (en) 1990-02-01

Family

ID=12018797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013981A Granted JPS57135518A (en) 1981-02-16 1981-02-16 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPS57135518A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670681A (en) * 1986-07-29 1987-06-02 R. F. Monolithics, Inc. Singly rotated orientation of quartz crystals for novel surface acoustic wave devices
US4670680A (en) * 1986-07-29 1987-06-02 R. F. Monolithics, Inc. Doubly rotated orientations of cut angles for quartz crystal for novel surface acoustic wave devices
US10700661B2 (en) * 2018-01-19 2020-06-30 Huawei Technologie Co., Ltd. Surface acoustic wave device with unidirectional transducer

Also Published As

Publication number Publication date
JPS57135518A (en) 1982-08-21

Similar Documents

Publication Publication Date Title
WO2021060523A1 (en) Elastic wave device and filter device
US4023124A (en) Acoustic surface wave devices
US3686518A (en) Unidirectional surface wave transducers
JP3606944B2 (en) SAW filter
US4307356A (en) Surface acoustic wave device
US4066985A (en) Television IF filter constructed in accordance with the surface wave principle
JPH027207B2 (en)
US4491811A (en) Surface acoustic wave device
JPS607850B2 (en) acoustic surface wave transducer
US3955159A (en) Acoustic surface wave devices
US4353043A (en) Surface acoustic wave devices and systems including such devices
US4575696A (en) Method for using interdigital surface wave transducer to generate unidirectionally propagating surface wave
EP0637872B1 (en) Surface acoustic wave device
JPH025328B2 (en)
JPS598417A (en) Surface acoustic wave device
JPH0261806B2 (en)
US4539502A (en) Magnetic feedthrough cancelling surface acoustic wave device
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
US3909753A (en) Acoustic surface wave device
JPS6142891B2 (en)
JPH0218561Y2 (en)
JPS6150536B2 (en)
JPS6130338Y2 (en)
JPH0247887B2 (en)
JPH0460367B2 (en)