JPH0247887B2 - - Google Patents

Info

Publication number
JPH0247887B2
JPH0247887B2 JP57015980A JP1598082A JPH0247887B2 JP H0247887 B2 JPH0247887 B2 JP H0247887B2 JP 57015980 A JP57015980 A JP 57015980A JP 1598082 A JP1598082 A JP 1598082A JP H0247887 B2 JPH0247887 B2 JP H0247887B2
Authority
JP
Japan
Prior art keywords
electrode
chirp
surface acoustic
acoustic wave
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57015980A
Other languages
Japanese (ja)
Other versions
JPS58145214A (en
Inventor
Takeshi Okamoto
Shoichi Minagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP1598082A priority Critical patent/JPS58145214A/en
Publication of JPS58145214A publication Critical patent/JPS58145214A/en
Publication of JPH0247887B2 publication Critical patent/JPH0247887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14502Surface acoustic wave [SAW] transducers for a particular purpose
    • H03H9/14508Polyphase SAW transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14502Surface acoustic wave [SAW] transducers for a particular purpose
    • H03H9/14505Unidirectional SAW transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14502Surface acoustic wave [SAW] transducers for a particular purpose
    • H03H9/14514Broad band transducers

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、広帯域特性の実現を可能ならしめる
一方向性トランスジユーサを備えた弾性表面波装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave device equipped with a unidirectional transducer that makes it possible to realize broadband characteristics.

弾性体の平らな表面に沿つてエネルギーが集中
した形で伝搬する波いわゆる弾性表面波は、従来
用いられているバルク波に比較して種々の点で優
れているのでこの性質を利用してフイルタを初め
とする各種の電子部品に対して弾性表面波デバイ
スとして適用されつつある。第1図はその一例と
してフイルタを示すもので、1は圧電体基板、2
は一対のすだれ状電極3A,3Bからなる入力用
トランスジユーサ、4は一対のすだれ状電極5
A,5Bからなる出力用トランスジユーサで、入
力端子INから加えられた信号は上記入力用トラ
ンスジユーサ2により弾性表面波に変換され、矢
印で示すように圧電体基板1表面を伝搬して上記
出力用トランスジユーサ4に到達した後、電気信
号に変換されて出力端子OUTから取り出される
ように構成される。
Waves that propagate with concentrated energy along the flat surface of an elastic body, so-called surface acoustic waves, are superior in various respects to the conventionally used bulk waves, and this property can be used to create filters. It is being applied as a surface acoustic wave device to various electronic components including. Figure 1 shows a filter as an example, where 1 is a piezoelectric substrate, 2 is a filter, and 2 is a piezoelectric substrate.
4 is an input transducer consisting of a pair of interdigital electrodes 3A and 3B, and 4 is a pair of interdigital electrodes 5.
The output transducer consists of A and 5B, and the signal applied from the input terminal IN is converted into a surface acoustic wave by the input transducer 2, which propagates on the surface of the piezoelectric substrate 1 as shown by the arrow. After reaching the output transducer 4, the signal is converted into an electrical signal and taken out from the output terminal OUT.

ところで第1図の構造の表面波デバイスのよう
に、各々一対のすだれ状電極3A,3Bおよび5
A,5Bを含む2個のトランスジユーサ2,4を
配置したフイルムにあつては、これらトランスジ
ユーサ2,4が各々左右の双方向に表面波を伝搬
させるように働くために電気−機械変換損失が避
けられずフイルタとして損失が大きくなる欠点が
ある。
By the way, as in the surface wave device having the structure shown in FIG.
In the case of a film in which two transducers 2 and 4 including A and 5B are arranged, an electric-mechanical system is used in order for these transducers 2 and 4 to work to propagate surface waves in both left and right directions. The disadvantage is that conversion loss is unavoidable and the loss becomes large as a filter.

この欠点を除くために圧電体基板表面の一方向
のみに表面波を伝搬させるように工夫されたいわ
ゆる一方向性トランスジユーサが提案された。こ
の一方向性トランスジユーサの具体的構成として
は第2図のように120゜移相器を用いる方法、ある
いは90゜移相器を用いる方法、さらには第3図の
ように反射器を用いる方法が知られている。
In order to eliminate this drawback, a so-called unidirectional transducer has been proposed, which is designed to propagate surface waves only in one direction on the surface of a piezoelectric substrate. The specific configuration of this unidirectional transducer includes a method using a 120° phase shifter as shown in Figure 2, a method using a 90° phase shifter, and a method using a reflector as shown in Figure 3. method is known.

第2図において6,6A,6Bは互いに120゜の
位相差をもつた電極でそして6は他の電極6Aと
の間に空隙7あるいは絶縁膜が介在されるように
構成されて表面波を一方向のみに伝搬させるよう
に働く。
In FIG. 2, 6, 6A, and 6B are electrodes having a phase difference of 120° from each other, and 6 is constructed such that a gap 7 or an insulating film is interposed between it and another electrode 6A, so that the surface waves are unified. It works to propagate only in one direction.

しかしながらこのように移相器を用いる方法
は、上記のように電極に交叉部分を設ける必要が
あるために製造工程が複雑となる欠点がある。ま
た所望特性を得るために移相器自体の設計も非常
に複雑となるので調整が困難となり、広帯域特性
の実現が難かしいという問題がある。
However, this method of using a phase shifter has the disadvantage that the manufacturing process is complicated because it is necessary to provide the crossing portions in the electrodes as described above. Further, in order to obtain desired characteristics, the design of the phase shifter itself becomes very complicated, making adjustment difficult and making it difficult to realize broadband characteristics.

一方、第3図において、8Aおよび8Bはすだ
れ状電極の一部を構成するように設けられた給電
部および反射部でともに正規形電極からなつてお
り、9は上記電極8A,8Bに対する共通電極、
10は信号源、11は整合回路、12はリアクタ
ンス回路である。以上において信号源10から整
合回路11を経て加えられた信号は上記給電部8
Aから弾性表面波とされて左右の双方向に伝搬さ
れる。この時左方向に伝搬された表面波はリアク
タンス回路12を接続した反射部8Bにより反射
されて右方向へ戻され、給電部8Aにおいて右方
向へ向かう表面波と反射された表面波との合成が
行われる。この結果表面波において中心周波数同
士の場合は両波は重ね合わさるが、中心周波数か
らずれている場合は両波は打ち消し合うように作
用するために目的とする一方向と逆方向に表面波
が伝搬してしまうことになる。したがつて表面波
の伝搬特性が狭帯域特性に制限される欠点があ
る。
On the other hand, in FIG. 3, 8A and 8B are a power feeding part and a reflecting part which are provided to constitute a part of the interdigital electrode, and are both regular electrodes, and 9 is a common electrode for the electrodes 8A and 8B. ,
10 is a signal source, 11 is a matching circuit, and 12 is a reactance circuit. In the above, the signal applied from the signal source 10 via the matching circuit 11 is
From A, it becomes a surface acoustic wave and propagates in both left and right directions. At this time, the surface wave propagated to the left is reflected by the reflection section 8B connected to the reactance circuit 12 and returned to the right, and the surface wave propagated to the right and the reflected surface wave are combined in the power feeding section 8A. It will be done. As a result, when the center frequencies of surface waves are the same, the two waves overlap, but when the center frequencies deviate from each other, the waves act to cancel each other out, so the surface waves propagate in the opposite direction to the intended direction. You end up doing it. Therefore, there is a drawback that the propagation characteristics of the surface waves are limited to narrow band characteristics.

本発明は以上の問題に対処してなされたもの
で、正規型電極とチヤープ電極とが並設され、一
方の電極が給電部として用いられると共に他方の
電極が反射部として用いられるように構成された
トランスジユーサを備える弾性表面波装置を提供
することを目的とするものである。以下図面を参
照して本発明実施例を説明する。
The present invention has been made in response to the above problems, and is configured such that a regular type electrode and a chirp electrode are arranged side by side, and one electrode is used as a power feeding part and the other electrode is used as a reflecting part. An object of the present invention is to provide a surface acoustic wave device including a transducer. Embodiments of the present invention will be described below with reference to the drawings.

第4図a,bは本発明実施例による弾性表面波
装置を示す概略上面図および概略断面図で、圧電
体からなる弾性体基板13表面には電極周期が同
等に形成された正規形電極14および電極周期が
弾性表面波の伝搬方向xに対して変化するように
形成されたチヤープ電極15が上記伝搬方向xに
垂直となるように設けられ、これら両電極14,
15は共通電極16上の垂直線Y−Y′で接触す
るように配置される。なお上記垂直線(接触)Y
−Y′は正規形電極14とチヤープ電極15とが
別体の場合は、正規形電極端となる。またここで
今、上記正規形電極14を給電部としてまたチヤ
ープ電極15を反射部として用いるとすると、給
電部電極14には整合回路11を介して信号源1
0が接続され、また反射部電極15にはリアクタ
ンス回路12が接続される。
FIGS. 4a and 4b are a schematic top view and a schematic cross-sectional view showing a surface acoustic wave device according to an embodiment of the present invention, in which regular electrodes 14 having the same electrode period are formed on the surface of an elastic substrate 13 made of a piezoelectric material. A chirp electrode 15 formed so that the electrode period changes with respect to the propagation direction x of the surface acoustic wave is provided perpendicular to the propagation direction x, and these electrodes 14,
15 are arranged so as to be in contact with the common electrode 16 at a vertical line Y-Y'. Note that the above vertical line (contact) Y
-Y' becomes the normal electrode end when the normal electrode 14 and the chirp electrode 15 are separate bodies. Also, if the normal electrode 14 is used as a power supply section and the chirp electrode 15 is used as a reflection section, the signal source 1 is connected to the power supply section electrode 14 via a matching circuit 11.
0 is connected, and the reactance circuit 12 is connected to the reflective part electrode 15.

以上において、上記給電部電極14から発生さ
れて弾性体基板13表面の左右方向に伝搬された
弾性表面波のうち、左方向に伝搬された表面波は
リアクタンス回路12によつて終端されている反
射部電極15が存在しているためにこの反射部電
極15により反射されて再び右方向に戻らされ
る。この時給電部電極14において表面波が発生
するとみなせる点(等価的表面波発生点)をCと
して、この点Cから前記両電極14,15の接触
線Y−Y′までの距離をlとすると、この距離l
に対応したトランジツト角θ0は以下のように表わ
せる。
In the above, among the surface acoustic waves generated from the power feeding part electrode 14 and propagated in the left-right direction on the surface of the elastic substrate 13, the surface waves propagated in the left direction are reflected and terminated by the reactance circuit 12. Since the part electrode 15 is present, the light is reflected by the reflection part electrode 15 and returned to the right again. At this time, let C be the point at which surface waves are generated on the power supply electrode 14 (equivalent surface wave generation point), and let l be the distance from this point C to the contact line Y-Y' between the electrodes 14 and 15. , this distance l
The transition angle θ 0 corresponding to can be expressed as follows.

θ0=2π×l/0・λ0 =2π・N・λ0/2・+λ0/8/0λ0 =2π/0(N/2+1/8) …(1) ここで0:表面波の中心周波数 λ0:中心周波数の波長 N:給電部電極の対数 :動作周波数 またチヤープ電極からなる反射部電極15は、
その形状的性質から表面波の反射点は動作周波数
によつて異なつてくる。今動作周波数における
その反射点(等価的表面波反射点)をDとして、
この点Dから上記接触線Y−Y′までの距離をl1
すると、この距離l1に対応したトランジツト角θ1
は以下のように表わせる。
θ 0 =2π×l/ 0・λ 0 =2π・N・λ 0 /2・+λ 0 /8/ 0 λ 0 =2π/ 0 (N/2+1/8) …(1) where 0 : surface wave Center frequency λ 0 : Wavelength of center frequency N: Logarithm of feeder electrode: Operating frequency In addition, the reflector electrode 15 consisting of a chirp electrode is
Due to its geometrical properties, the reflection point of the surface wave differs depending on the operating frequency. Let the reflection point (equivalent surface wave reflection point) at the current operating frequency be D,
If the distance from this point D to the contact line Y-Y' is l 1 , then the transition angle θ 1 corresponding to this distance l 1
can be expressed as follows.

θ1=2π×l/1・λ0 …(2) ここで上記給電部電極14および反射部電極1
5を含むトランスジユーサを一方向性として動作
させるには、給電部電極14から右方向に伝搬す
る表面波と左方向に伝搬して反射部電極15によ
り反射されて右方向に戻つてきた表面波との位相
を合わせる必要がある。このためには反射して戻
つてきた表面波のトランジツト角θが以下の式を
満足するように反射部電極15(チヤープ電極)
を形成することが条件となる。
θ 1 =2π×l/ 1・λ 0 …(2) Here, the above-mentioned power feeding section electrode 14 and reflecting section electrode 1
In order to operate the transducer including 5 in a unidirectional manner, a surface wave propagating to the right from the feed electrode 14 and a surface wave propagating to the left, reflected by the reflection electrode 15, and returning to the right. It is necessary to match the phase with the wave. For this purpose, the reflection part electrode 15 (chirp electrode) must be adjusted so that the transit angle θ of the surface wave reflected and returned satisfies the following formula.
The condition is to form.

θ=(θ0+θ1)×2=2π(2N+1/2) …(3) 以上の(1)〜(3)式を総合することにより以下の式
が導かれる。
θ=(θ 01 )×2=2π(2N+1/2) (3) The following equation is derived by integrating the above equations (1) to (3).

l1/λ0=(N/2+1/8)20−/…(4) このように上記式(3)および(4)を満足するように
反射部電極として動作するチヤープ電極を設計す
ることにより、広い動作周波数範囲にわたつて前
記したような両表面波の位相を合わせることがで
きるので一方向性トランスジユーサとして動作さ
せることができる。また以上の条件を満足するた
めのトランスジユーサの電極形状は周知のフオト
エツチング技術を利用することにより容易に製造
することができる。さらにこのようにして形成さ
れた反射部電極をリアクタンス回路により終端す
ることでその調整も容易に行うことができるよう
になる。
l 10 = (N/2+1/8) 2 0 −/…(4) In this way, the chirp electrode that operates as the reflective part electrode can be designed to satisfy the above equations (3) and (4). As a result, the phases of both surface waves as described above can be matched over a wide operating frequency range, so that the transducer can be operated as a unidirectional transducer. Furthermore, the electrode shape of the transducer that satisfies the above conditions can be easily manufactured using well-known photoetching techniques. Further, by terminating the reflective part electrode formed in this way with a reactance circuit, it becomes possible to easily adjust the reflective part electrode.

第5図は本発明の他の実施例を示す概略上面図
で、チヤープ電極15を給電部としてまた正規形
電極14を反射部として動作させる場合の構成を
示すもので、給電部電極15には整合回路11を
介して信号源10が接続され、また反射部電極1
4にはリアクタンス回路12が接続される。この
場合チヤープ電極からなる給電部電極15はその
形状的性質からその表面波発生点は動作周波数に
より異なつてくるが、正規形電極からなる反射部
電極14においてはすべての動作周波数に対して
表面波反射点は同一となる。そして前記実施例と
同じ理由で、給電部電極15から右方向に伝搬し
て反射部電極14により反射されて左方向に戻さ
れた表面波は、発生点と同一の給電部電極15位
置に戻つてきて最初から左方向に伝搬された表面
波と位相が合わせられる。よつてトランスジユー
サは左方向の一方向のみに表面波を伝搬するよう
に動作するので、同様な効果を得ることができ
る。
FIG. 5 is a schematic top view showing another embodiment of the present invention, showing a configuration in which the chirp electrode 15 is operated as a power feeding section and the regular electrode 14 is operated as a reflecting section. A signal source 10 is connected via a matching circuit 11, and a reflection section electrode 1
A reactance circuit 12 is connected to 4. In this case, the surface wave generation point of the feeder electrode 15, which is a chirp electrode, differs depending on the operating frequency due to its shape, but in the reflector electrode 14, which is a regular electrode, the surface wave generation point is generated at all operating frequencies. The reflection points will be the same. For the same reason as in the above embodiment, the surface wave propagating rightward from the power feeding part electrode 15, being reflected by the reflecting part electrode 14 and returning to the left, returns to the same position of the power feeding part electrode 15 as the generation point. Then, the phase is matched with the surface wave that propagated to the left from the beginning. Therefore, the transducer operates so as to propagate the surface wave only in one direction, to the left, so that a similar effect can be obtained.

以上の各実施例ではチヤープ電極15と正規形
電極14とが垂直線(接触線)Y−Y′で接触し
ている構成の場合について述べたが、両電極が離
れた場合でも前記式(3)および(4)を満足する範囲内
に配置されていれば一方向性トランスジユーサと
して動作させることができる。
In each of the above embodiments, the case where the chirp electrode 15 and the regular electrode 14 are in contact with each other along the vertical line (contact line) Y-Y' has been described, but even if the two electrodes are separated, the equation (3) ) and (4), it can be operated as a unidirectional transducer.

なお弾性体基板13としては圧電体に限らず、
第6図a〜dに示したように非圧電体基板17お
よび圧電膜18、あるいは金属膜19からなる組
み合わせによつて構成してもよい。
Note that the elastic substrate 13 is not limited to piezoelectric material.
As shown in FIGS. 6a to 6d, a combination of a non-piezoelectric substrate 17 and a piezoelectric film 18, or a metal film 19 may be used.

以上述べて明らかなように本発明によれば、正
規形電極とチヤープ電極とが並設され、一方の電
極が給電部として用いられると共に他方の電極が
反射部として用いられるように一方向性トランス
ジユーサを構成するものであるから、広帯域特性
を実現することができる。また製造工程が簡単と
なるために製造コストを低減することができ、さ
らに所望特性を得るための調整が容易となるので
フイルタを初めとする各種の弾性表面波デバイス
に広範囲に適用することができる。
As is clear from the above description, according to the present invention, the regular electrode and the chirp electrode are arranged side by side, and the unidirectional transformer is configured such that one electrode is used as a power feeding section and the other electrode is used as a reflecting section. Since it constitutes a diu- sulator, it is possible to realize wideband characteristics. Furthermore, since the manufacturing process is simple, manufacturing costs can be reduced, and adjustment to obtain desired characteristics is easy, so it can be widely applied to various surface acoustic wave devices such as filters. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はいずれも従来例を示す概略
図、第4図aおよび第5図は共に本発明実施例を
示す概略上面図、第4図bおよび第6図a〜dは
共に本発明実施例を示す概略断面図である。 10……信号源、11……整合回路、12……
リアクタンス回路、13……弾性体基板、14…
…正規形電極、15……チヤープ電極、16……
共通電極、17……非圧電体基板、18……圧電
膜、19……金属膜。
1 to 3 are all schematic diagrams showing the conventional example, FIGS. 4a and 5 are both schematic top views showing the embodiment of the present invention, and FIG. 4b and FIGS. 6 a to d are both schematic diagrams. 1 is a schematic cross-sectional view showing an embodiment of the present invention. 10... Signal source, 11... Matching circuit, 12...
Reactance circuit, 13... Elastic substrate, 14...
...Normal electrode, 15...Chirp electrode, 16...
Common electrode, 17... Non-piezoelectric substrate, 18... Piezoelectric film, 19... Metal film.

Claims (1)

【特許請求の範囲】 1 正規形電極とチヤープ電極とが並設され、一
方の電極が給電部として用いられると共に他方の
電極が反射部として用いられるように構成された
トランスジユーサを備え、上記正規形電極とチヤ
ープ電極との接触線からチヤープ電極の動作周波
数に対応する点までの距離lが l=(N/2+1/8)2f0−f/f・λ0 (ただし、N:正規形電極の対数、f:動作周波
数、f0:中心周波数、λ0:中心周波数における弾
性表面波の波長) となるように、チヤープ電極が形成されてなるこ
とを特徴とする弾性表面波装置。 2 上記給電部電極に信号源が接続されると共に
反射部電極にリアクタンスが接続されてなること
を特徴とする特許請求の範囲第1項記載の弾性表
面波装置。 3 上記チヤープ電極が反射部として用いられる
ことを特徴とする特許請求の範囲第1項又は第2
項のいずれかに記載の弾性表面波装置。
[Claims] 1. A transducer configured such that a regular electrode and a chirp electrode are arranged in parallel, one electrode is used as a power supply part, and the other electrode is used as a reflection part, The distance l from the contact line between the normal form electrode and the chirp electrode to the point corresponding to the operating frequency of the chirp electrode is l = (N/2 + 1/8)2f 0 -f/f・λ 0 (where N: normal form A surface acoustic wave device characterized in that a chirp electrode is formed so that the logarithm of the electrode, f: operating frequency, f0 : center frequency, and λ0 : wavelength of surface acoustic wave at the center frequency. 2. The surface acoustic wave device according to claim 1, wherein a signal source is connected to the power feeding part electrode, and a reactance is connected to the reflecting part electrode. 3. Claim 1 or 2, characterized in that the chirp electrode is used as a reflecting part.
The surface acoustic wave device according to any one of Items 1 to 3.
JP1598082A 1982-02-03 1982-02-03 Surface acoustic wave device Granted JPS58145214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1598082A JPS58145214A (en) 1982-02-03 1982-02-03 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1598082A JPS58145214A (en) 1982-02-03 1982-02-03 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPS58145214A JPS58145214A (en) 1983-08-30
JPH0247887B2 true JPH0247887B2 (en) 1990-10-23

Family

ID=11903827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1598082A Granted JPS58145214A (en) 1982-02-03 1982-02-03 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPS58145214A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028831A (en) * 1990-04-04 1991-07-02 Motorola, Inc. SAW reflectionless quarter-wavelength transducers
US5162689A (en) * 1991-05-01 1992-11-10 Motorola, Inc. Single-phase uni-directional acoustic wave transducer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154815A (en) * 1979-05-21 1980-12-02 Matsushita Electric Ind Co Ltd Elastic surface wave filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154815A (en) * 1979-05-21 1980-12-02 Matsushita Electric Ind Co Ltd Elastic surface wave filter

Also Published As

Publication number Publication date
JPS58145214A (en) 1983-08-30

Similar Documents

Publication Publication Date Title
US3886504A (en) Acoustic surface wave resonator devices
US4144507A (en) Surface acoustic wave resonator incorporating coupling transducer into reflecting arrays
US11764755B2 (en) Elastic wave device, radio-frequency front-end circuit, and communication apparatus
US4491811A (en) Surface acoustic wave device
JPH04506442A (en) surface wave reflector filter
JPH0353802B2 (en)
JPS5942750Y2 (en) temperature compensated surface wave device
JPH0247887B2 (en)
US4521711A (en) Unidirectional transducer for a surface-acoustic-wave device and a method of making same
US5925967A (en) Ultrasonic switching device
US4602183A (en) Surface acoustic wave device with a 3-phase unidirectional transducer
JPS598417A (en) Surface acoustic wave device
JPH043127B2 (en)
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
JPS616916A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode
JPH0356012B2 (en)
JPH0338769B2 (en)
JP2800893B2 (en) Surface acoustic wave device
JPH0356011B2 (en)
JP2002223143A (en) Surface acoustic wave device
JPH025328B2 (en)
JPS5711521A (en) Elastic surface wave resonator
JPS6236343Y2 (en)
JPS6110309A (en) Surface acoustic wave device
JPS58188919A (en) Lamb wave electronic device