JPH0253244A - Optical head for magneto-optical recorder - Google Patents

Optical head for magneto-optical recorder

Info

Publication number
JPH0253244A
JPH0253244A JP63203406A JP20340688A JPH0253244A JP H0253244 A JPH0253244 A JP H0253244A JP 63203406 A JP63203406 A JP 63203406A JP 20340688 A JP20340688 A JP 20340688A JP H0253244 A JPH0253244 A JP H0253244A
Authority
JP
Japan
Prior art keywords
light
magneto
optical
light component
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63203406A
Other languages
Japanese (ja)
Inventor
Mitsuo Kinoshita
光男 木下
Kazutaka Honma
一隆 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP63203406A priority Critical patent/JPH0253244A/en
Publication of JPH0253244A publication Critical patent/JPH0253244A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify and miniaturize the structure of the title device by arranging a photodetector having light receiving surfaces, each of which is divided into four, at the converging point of a normal light component and an abnormal light component separated on an uniaxial birefringence crystal parallel plate. CONSTITUTION:An uniaxial birefringence crystal parallel plate 50 is provided under an inclined state in the convergent luminous flux of light receiving systems 15, 30, 52, and 54 from a magneto-optical recording medium 20, and a photodetector 54 having the light receiving surfaces, each of which is divided into four, is arranged at the converging point of a normal light component (o) and an abnormal light component (e) separated by the plate 50. As the result, not only a magneto-optical signal but also a servo signal can be detected by executing addition processing and subtraction processing for each output from each divided element. Thus, the light path of a magneto-optical signal detecting system and that of a servo signal detecting system can be made common, the number of parts can be reduced, and the device can be miniaturized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光磁気記録装置で用いる光学ヘッドに関し、更
に詳しくは、一軸複屈折結晶平行平板と受光面を合計8
分割した光検出器を用いて光磁気信号検出系とサーボ信
号検出系の光路を共通化した光学ヘッドに関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical head used in a magneto-optical recording device, and more specifically, the present invention relates to an optical head used in a magneto-optical recording device.
This invention relates to an optical head in which a magneto-optical signal detection system and a servo signal detection system share a common optical path by using a divided photodetector.

[従来の技術] 光磁気記録媒体からの情報の再生は、直線偏光を磁性体
に照射した時にその磁化の方向に対応して反射光又は透
過光の偏光面が回転する現象を利用して行われる。
[Prior art] Information is reproduced from a magneto-optical recording medium by utilizing the phenomenon that when a magnetic material is irradiated with linearly polarized light, the plane of polarization of reflected or transmitted light rotates in accordance with the direction of magnetization. be exposed.

光磁気記録装置における従来の光学ヘッドの一例を第5
図に示す、半導体レーザ10から発生した光はコリメー
トレンズ12とビーム整形プリズム14により円断面形
状の平行光線となり、ビームスプリッタ16及び対物レ
ンズ18を通過して光磁気ディスク20に至る。ここで
反射された光は、ある方向に偏光角度が傾く。
An example of a conventional optical head in a magneto-optical recording device is shown in the fifth section.
As shown in the figure, light generated from a semiconductor laser 10 is converted into a parallel beam with a circular cross section by a collimating lens 12 and a beam shaping prism 14, passes through a beam splitter 16 and an objective lens 18, and reaches a magneto-optical disk 20. The light reflected here has a polarization angle tilted in a certain direction.

そして対物レンズ18を通りビームスプリンタ16で反
射されて、次のビームスプリンタ22でサーボ信号検出
系と光磁気信号検出系とに分かれる。サーボ信号検出系
では集光レンズ24、シリンドリカルレンズ26を通り
4分割ホトダイオード28に入射する。フォーカスエラ
ーの検出には非点収差法が、トラッキングエラーの検出
にはプッシュプル法が用いられる。
Then, it passes through the objective lens 18 and is reflected by the beam splinter 16, and is separated into a servo signal detection system and a magneto-optical signal detection system by the next beam splinter 22. In the servo signal detection system, the light passes through a condensing lens 24 and a cylindrical lens 26 and enters a four-part photodiode 28 . The astigmatism method is used to detect focus errors, and the push-pull method is used to detect tracking errors.

光磁気信号検出系では、2分の1波長板3゜により光の
偏光角度を変えて偏光ビームスプリッタ32で光学的差
動法をとる0分離されたそれぞれの光を集光レンズ34
.36で集め、ホトダイオード38.40で検出する。
In the magneto-optical signal detection system, the polarization angle of the light is changed using a 1/2 wavelength plate 3°, and the polarization beam splitter 32 uses an optical differential method.
.. 36 and detected by photodiodes 38 and 40.

差動増幅器42でそれらの出力の差動をとることで光磁
気信号が得られる。
A magneto-optical signal is obtained by taking the differential of these outputs with a differential amplifier 42.

なお符号44は対物レンズ18の駆動コイルを、符号4
6は磁場印加用コイルを示す。
Note that reference numeral 44 indicates a drive coil for the objective lens 18.
6 indicates a coil for applying a magnetic field.

[発明が解決しようとする課題] 光学へラド全体を小型化するためには一つ一つの光学部
品を小型化するだけでは限界があり、光路を工夫し、使
用する光学部品点数を削減することが重要である。しか
しながら上記のような従来技術では、レンズやプリズム
等多くの光学部品を組み合わせなければならず、しがも
光路を2方向に分岐させているために小型化が極めて困
難である。
[Problem to be solved by the invention] In order to miniaturize the entire optical herad, there is a limit to just miniaturizing each optical component, so it is necessary to devise the optical path and reduce the number of optical components used. is important. However, in the above-described conventional technology, many optical components such as lenses and prisms must be combined, and the optical path is branched into two directions, making it extremely difficult to downsize.

またサーボ信号検出系と光磁気信号検出系とに光路を分
岐しているために光量不足が生じる問題もある。
Furthermore, since the optical path is branched into the servo signal detection system and the magneto-optical signal detection system, there is also the problem that the amount of light is insufficient.

本発明の目的は、上記のような従来技術のもつ技術的課
題を解決し、構造が簡素化され小型化でき、また光磁気
信号検出系とサーボ信号検出系の光路を共通化すること
で十分な光量が得られ、C/N比が向上し、安定した動
作を実現できるような光磁気記録装置の光学ヘッドを提
供することにある。
The purpose of the present invention is to solve the technical problems of the prior art as described above, to simplify the structure and reduce the size, and to make the optical path of the magneto-optical signal detection system and the servo signal detection system common. An object of the present invention is to provide an optical head for a magneto-optical recording device which can obtain a large amount of light, improve a C/N ratio, and realize stable operation.

[課題を解決するための手段] 上記のような目的を達成できる本発明は、光磁気記録媒
体からの光が入射する受光系に一軸複屈折結晶平行平板
を設け、その透過分離光を、受光面を合計8分割した光
検出器で検出するように構成した光学へラドである。
[Means for Solving the Problems] The present invention, which can achieve the above objects, provides a parallel plate of uniaxial birefringent crystal in the light receiving system into which the light from the magneto-optical recording medium is incident, and transmits and separates the transmitted light from the light receiving system. This is an optical helad configured to detect with a photodetector whose surface is divided into eight parts in total.

本発明の基本構成を第1図に示す、一軸横屈折結晶平行
平板50は、水晶、ルチル、方解石等からなり、常光成
分と異常光成分が分離するように、その結晶の光学軸は
磁気記録媒体からの光入射面50aに対して角度α傾け
られている。この一軸横屈折結晶平行平板50は集光レ
ンズ52の後方に置か、れ、集光レンズ52による収束
光束中に位置する。そしてその光路に対して光入射面5
0aが角度β傾けられている。
The basic configuration of the present invention is shown in FIG. 1. A uniaxial transversely refracting crystal parallel plate 50 is made of quartz, rutile, calcite, etc., and the optical axis of the crystal is magnetically recording so that the ordinary light component and the extraordinary light component are separated. It is tilted at an angle α with respect to the light incident surface 50a from the medium. This uniaxial transverse refraction crystal parallel flat plate 50 is placed behind the condenser lens 52 and positioned in the convergent light beam by the condenser lens 52 . And the light incidence surface 5
0a is tilted by an angle β.

入射する光はこの一軸複屈折結晶平行平板50によって
常光成分0と異常光成分eに分離し、受光面が合計8分
割された光検出器54に達する。ここで一軸横屈折結晶
平行平板50は単に非点収差法を行うために傾けられて
いる。その傾斜角を45°とした場合に、光入射面50
aに対して光学軸を約55°傾けると常光成分と異常光
成分が大きく分離するから、そのような構成が好ましい
The incident light is separated into an ordinary light component 0 and an extraordinary light component e by this uniaxial birefringent crystal parallel plate 50, and reaches a photodetector 54 whose light receiving surface is divided into eight parts in total. Here, the uniaxial transverse refractive crystal parallel plate 50 is tilted simply to perform the astigmatism method. When the inclination angle is 45°, the light incidence surface 50
If the optical axis is tilted by about 55 degrees with respect to a, the ordinary light component and the extraordinary light component will be largely separated, so such a configuration is preferable.

常光成分Oと異常光成分eはそれぞれ集光点を作り、一
つの集光点に対して8分割光検出器54の4素子ずつが
対応している。つまり第2図に示すように異常光成分e
に対してはA、B。
The ordinary light component O and the extraordinary light component e each form a focal point, and each of the four elements of the 8-split photodetector 54 corresponds to one focal point. In other words, as shown in Figure 2, the extraordinary light component e
For A and B.

C,Dの4素子が対応し、常光成分0に対してはE、F
、G、Hの4素子が対応している。
Four elements C and D correspond, and for ordinary light component 0, E and F
, G, and H correspond to the four elements.

[作用] 光磁気記録媒体からの反射光は集光レンズ52で収束さ
れ、一軸横屈折結晶平行平板50で常光成分0と異常光
成分eに分けられ、それぞれの集光点で受光面が4分割
されている光検出器54に達する。光検出器54でのビ
ーム形状を第2図に示す。同図において上段の3列で斜
線を施した部分が異常光成分eに対するビーム形状であ
り、下段の3列で斜線を施した部分が常光成分0に対す
るビーム形状である。また第2図において中)は合焦状
態を示し、(δ)は焦点位置が遠のいた場合、fclは
焦点位置が近づいた場合をそれぞれ示している。
[Function] The reflected light from the magneto-optical recording medium is converged by the condenser lens 52, and is divided into an ordinary light component 0 and an extraordinary light component e by the uniaxial transverse refracting crystal parallel plate 50, and the light-receiving surface is 4 at each condensing point. It reaches the photodetector 54 which is divided. The beam shape at the photodetector 54 is shown in FIG. In the figure, the hatched portion in the upper three rows is the beam shape for the extraordinary light component e, and the hatched portion in the lower three rows is the beam shape for the ordinary light component 0. Further, in FIG. 2, (middle) indicates the in-focus state, (δ) indicates the case where the focal position is far away, and fcl indicates the case where the focal position approaches.

光磁気信号の検出は各素子か、らの4個一組の検出出力
を加算し、その差動出力をとることによって得られる。
Detection of the magneto-optical signal is obtained by adding the detection outputs of a set of four elements from each element and taking the differential output.

それを数式的に示すと次のように表せる。This can be expressed mathematically as follows.

光磁気信号−(A+B+C+D)−(E+F十G十旧 フォーカスエラー信号の検出は非点収差法によって行う
ことができる。本発明では常光成分0と異常光成分θが
存在するので、それぞれの4素子を用いて差動をとり、
それを加算する・ことによって得られる。これを数式的
に示すと次のように表せる。
Detection of the magneto-optical signal - (A + B + C + D) - (E + F Take the differential using
It can be obtained by adding them. This can be expressed mathematically as follows.

フォーカスエラー信号−FE1+FE2− ((A+C
)−(B+D))+ ((E+G)−(F+H)) これをグラフで示すと第3図のようになる。
Focus error signal -FE1+FE2- ((A+C
)-(B+D))+ ((E+G)-(F+H)) This is shown in a graph as shown in FIG.

破線で示したのが最終的に得られるフォーカスエラー信
号である。
The dashed line shows the finally obtained focus error signal.

トラッキングエラー信号はプッシュプル法によって検出
できる。これを数式的に表すと次のようになる。
The tracking error signal can be detected by a push-pull method. This can be expressed mathematically as follows.

トラッキングエラー信号=TE L +TE 2− (
B−D)+ CF−H) このようにして本発明ではそれぞれの受光素子からの信
号を加算・減算処理することによって、必要となる光磁
気信号及びフォーカスとトラッキングのサーボ信号を得
ることができる。
Tracking error signal = TE L + TE 2- (
B-D) + CF-H) In this way, in the present invention, the necessary magneto-optical signals and focus and tracking servo signals can be obtained by adding and subtracting the signals from each light receiving element. .

[実施例] 第4図は本発明に係る光学ヘッドの一実施例を示す説明
図である。半導体レーザ10から光磁気ディスク20に
至る読出し光の入射経路は基本的には従来技術と同様で
あってよい。半導体レーザ10からの光はコリメートレ
ンズ12を遣って平行光線となり、ビーム整形及びビー
ムスプリフタ15を通り対物レンズ18で集光して光デ
ィスク20の所定位置を照射する。
[Embodiment] FIG. 4 is an explanatory diagram showing an embodiment of the optical head according to the present invention. The incident path of the read light from the semiconductor laser 10 to the magneto-optical disk 20 may be basically the same as in the prior art. The light from the semiconductor laser 10 is converted into parallel light by a collimating lens 12, passes through a beam shaping and beam splitter 15, and is focused by an objective lens 18 to illuminate a predetermined position on the optical disc 20.

光磁気ディスク20からの反射光はビームスプリンタで
反射され、2分の1波長板30で偏光面を45度回転し
集光レンズ52で集光する。
The reflected light from the magneto-optical disk 20 is reflected by a beam splinter, the plane of polarization is rotated by 45 degrees by a half-wave plate 30, and the light is condensed by a condenser lens 52.

その収束光束中に一軸複屈折結晶平行平板50が(lI
けられて設置され、その集光点に信号検出用の8分割光
検出器54が位置する。集光レンズ52、一軸横屈折結
晶平行平板50.8分割光検出器54の詳細は第2図で
説明した通りである。8分割光検出器54におけるそれ
ぞれの素子の出力を演算することによって光磁気信号の
みならずフォーカスエラー信号とトラッキングエラー信
号が得られる。
In the converging light beam, a uniaxial birefringent crystal parallel plate 50 (lI
The 8-split photodetector 54 for signal detection is located at the focal point of the light beam. The details of the condenser lens 52, the uniaxial transverse refracting crystal parallel flat plate 50.8-divided photodetector 54 are as explained in FIG. By calculating the output of each element in the eight-divided photodetector 54, not only a magneto-optical signal but also a focus error signal and a tracking error signal can be obtained.

[発明の効果] 本発明は上記のように光磁気記録媒体からの受光系の収
束光束中に一軸複屈折結晶平行平板を傾けて設け、それ
で分離した常光成分と異常光成分の集光点にそれぞれ受
光面を4分割した光検出器を配置したから、分割した各
素子からの出力を加算・減算処理することによって光磁
気信号のみならずサーボ信号を検出することがでる。従
って光磁気信号検出系とサーボ信号検出系の光路が共通
化され、部品点数を大幅に削減でき小型化できることに
なる。
[Effects of the Invention] As described above, the present invention tilts a uniaxial birefringent crystal parallel plate into the converging light beam of the light receiving system from the magneto-optical recording medium, and thereby focuses the separated ordinary light component and extraordinary light component. Since photodetectors each having a light-receiving surface divided into four are arranged, not only a magneto-optical signal but also a servo signal can be detected by adding and subtracting the outputs from each divided element. Therefore, the optical path of the magneto-optical signal detection system and the servo signal detection system is shared, and the number of parts can be significantly reduced and the device can be made smaller.

また本発明では一軸複屈折結晶平行平板を用いているた
め、従来の偏光ビームスプリフタよりも10〜20dB
程度消光比が高く高感度で光磁気信号を検出することが
可能である。更に上記のように光磁気信号検出系とサー
ボ信号検出系の光路が共通化され、それらの信号検出を
同じ光検出器で行うため、光量不足が生じず安定したサ
ーボをかけることが可能となる。
In addition, since the present invention uses a parallel plate of uniaxial birefringent crystal, it is 10 to 20 dB lower than a conventional polarizing beam splitter.
It has a high extinction ratio and can detect magneto-optical signals with high sensitivity. Furthermore, as mentioned above, the optical path of the magneto-optical signal detection system and the servo signal detection system is shared, and since these signals are detected by the same photodetector, it is possible to apply stable servo without insufficient light intensity. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成を示す説明図、第2図(al
 、 (bl 、 、(C1は光検出器の受光面でのビ
ーム形状を示す説明図、第3図は焦点ずれに対するフォ
ーカスエラー量を示す説明図、第4図は本発明に係る光
学ヘッドの一実施例を示す説明図である。 また第5図は従来技術の一例を示す説明図である。 10・・・半導体レーザ、20・・・光磁気ディスク、
50・・・一軸横屈折結晶平行平板、52・・・集光レ
ンズ、54・・・光検出器。 特許出願人  冨士電気化学株式会社 代  理  人     茂  見     檀第 図 第 図 (b) (C) 第 図
FIG. 1 is an explanatory diagram showing the basic configuration of the present invention, and FIG. 2 (al.
, (bl, , (C1 is an explanatory diagram showing the beam shape on the light receiving surface of the photodetector, FIG. 3 is an explanatory diagram showing the amount of focus error with respect to defocus, and FIG. 4 is an explanatory diagram showing the amount of focus error with respect to defocusing. FIG. 4 is an explanatory diagram showing the beam shape on the light receiving surface of the photodetector. FIG. 5 is an explanatory diagram showing an example. FIG. 5 is an explanatory diagram showing an example of the conventional technology. 10... Semiconductor laser, 20... Magneto-optical disk,
50... Uniaxial transverse refracting crystal parallel plate, 52... Condensing lens, 54... Photodetector. Patent Applicant: Fuji Denki Kagaku Co., Ltd. Representative: Shigeru Mi Dan Diagram (b) (C)

Claims (1)

【特許請求の範囲】[Claims] 1、光磁気記録媒体からの光が入射する受光系において
、常光成分と異常光成分が分離するように光入射面に対
して光学軸を傾けた一軸複屈折結晶平行平板を、収束光
束中で且つ光路に対して光入射面を傾けて配置し、前記
一軸複屈折結晶平行平板で分離した常光成分と異常光成
分の集光点に受光面をそれぞれ4分割した光検出器を配
置し、光磁気信号検出系とサーボ信号検出系の光路を共
通化したことを特徴とする光磁気記録装置の光学ヘッド
1. In a light-receiving system where light from a magneto-optical recording medium is incident, a parallel plate of uniaxial birefringent crystal whose optical axis is tilted with respect to the light incidence plane is used in a convergent beam so that the ordinary light component and the extraordinary light component are separated. In addition, a photodetector with a light-receiving surface divided into four parts is placed at the focal point of the ordinary light component and the extraordinary light component separated by the parallel flat plate of the uniaxial birefringent crystal, and the light incident surface is inclined with respect to the optical path. An optical head for a magneto-optical recording device, characterized in that a magnetic signal detection system and a servo signal detection system share a common optical path.
JP63203406A 1988-08-16 1988-08-16 Optical head for magneto-optical recorder Pending JPH0253244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63203406A JPH0253244A (en) 1988-08-16 1988-08-16 Optical head for magneto-optical recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203406A JPH0253244A (en) 1988-08-16 1988-08-16 Optical head for magneto-optical recorder

Publications (1)

Publication Number Publication Date
JPH0253244A true JPH0253244A (en) 1990-02-22

Family

ID=16473533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203406A Pending JPH0253244A (en) 1988-08-16 1988-08-16 Optical head for magneto-optical recorder

Country Status (1)

Country Link
JP (1) JPH0253244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0722167A4 (en) * 1994-07-29 1997-01-29 Sony Corp Optical pickup apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0722167A4 (en) * 1994-07-29 1997-01-29 Sony Corp Optical pickup apparatus

Similar Documents

Publication Publication Date Title
KR100477275B1 (en) Optical pickup device and disc player device
JPS6117103A (en) Polarizing beam splitter
JPS598145A (en) Optical pickup
JPH0253244A (en) Optical head for magneto-optical recorder
JP2710809B2 (en) Crossed diffraction grating and polarization rotation detector using the same
US6396638B1 (en) Optical pickup device capable of stable tracking
JP2760848B2 (en) Focus position detection device and focus control device
US5939710A (en) Optical pickup system incorporating therein a beam splitter having a phase layer
KR0135859B1 (en) Optical head
JPH08287510A (en) Optical pickup device
JPH03122853A (en) Optical head device
JP2578203B2 (en) Light head
JPH0120498B2 (en)
JPH04177623A (en) Optical information recording/reproducing apparatus
JPS641858B2 (en)
JPH0785523A (en) Magneto-optical disk device
JPH0489645A (en) Signal detecting method for magneto-optical recording
JPH0845127A (en) Optical head
JPS60234236A (en) Optical pickup device
JPH0242641A (en) Optical head structure
JPH04143935A (en) Optical pickup device
JPH0668541A (en) Optical pickup device, photodetection element and focus error signal detection method
JPH0487043A (en) Optical pickup device
JPH01243257A (en) Optical pickup
JPH0684226A (en) Optical pickup device