JPH0253239A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPH0253239A
JPH0253239A JP20263488A JP20263488A JPH0253239A JP H0253239 A JPH0253239 A JP H0253239A JP 20263488 A JP20263488 A JP 20263488A JP 20263488 A JP20263488 A JP 20263488A JP H0253239 A JPH0253239 A JP H0253239A
Authority
JP
Japan
Prior art keywords
recording
film
target
erasing
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20263488A
Other languages
Japanese (ja)
Inventor
Susumu Fujimori
進 藤森
Norihiro Funakoshi
宣博 舩越
Reiichi Chiba
玲一 千葉
Yasuyuki Sugiyama
泰之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20263488A priority Critical patent/JPH0253239A/en
Publication of JPH0253239A publication Critical patent/JPH0253239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To manufacture the medium simply with high accuracy by forming a recording layer on a substrate by sputtering an alloy target having uniform crystalline orientation. CONSTITUTION:The recording layer 3 is formed by sputtering the alloy target 1 having crystalline orientation comprising anisotropic crystal such as AS2Te3, Bi2Te3 and Sb2Te3. The film as formed is amorphous, but by heat treatment, it crystalizes to have the same crystalline orientation as that of the target. Namely, when the target 1 has a c-axis orientation parallel to its sputtering surface, the obtained film on the substrate 2 is c-axis oriented parallel to the surface of the film. When the target is c-axis oriented perpendicular to the sputtering surface, the obtained film is also c-axis oriented perpendicular to the film surface. Thereby, such an optical recording medium excellent in repeatability of recording/erasing, long-term stability of recorded state and fast erasability can be manufactured efficiently with high accuracy.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は、レーザビームなどの光のヒートモードあるい
はフォトンモードにより情報を記録する光学記録媒体の
製造方法に関するものであり、さらに評言すると薄膜状
の光記録媒体において非晶質化と結晶化とを可逆的に生
起させることを利用しての情報の高速の記録・消去が可
能であり、記録情報の長期保存性に優れ、h)1)、記
録・消去の繰り返し性にも優ね、また、これらの特性の
再現性にも優れた光学記録媒体の製造方法に関するもの
である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing an optical recording medium that records information using the heat mode or photon mode of light such as a laser beam. It is possible to record and erase information at high speed by reversibly causing amorphization and crystallization in an optical recording medium, and the long-term preservation of recorded information is excellent, h) 1) The present invention relates to a method for manufacturing an optical recording medium that has excellent repeatability of recording and erasing and also excellent reproducibility of these characteristics.

(以下余白) [従来の技術] 最近、小型・高性能のレーザの発展にともない、レーザ
ビームを利用した技術分野、すなわち光通信、光記録な
どのいわゆる光関連技術の研究が急速に進展し、一部は
実用化されている。とりわけ、収束レーザ光を基板上の
薄膜状媒体に照射して、薄膜に穿孔もしくは非晶質−結
晶転移のような構造変化を生じせしめて情報の記録・消
去を行なう光学的記録は、高密度・大容量の記録を可能
ならしめる新技術として注目されている。これらの記録
に用いる薄膜状媒体の材料としては、通常、TeやSe
などのカルコゲン、あるいはBi、Sn。
(Blank below) [Prior art] Recently, with the development of compact and high-performance lasers, research in the field of technology that uses laser beams, that is, so-called optical-related technologies such as optical communication and optical recording, has progressed rapidly. Some of them have been put into practical use. In particular, optical recording, in which information is recorded and erased by irradiating a thin film-like medium on a substrate with a focused laser beam to cause structural changes such as perforation or amorphous-crystalline transition in the thin film, is capable of recording and erasing information at high density. - It is attracting attention as a new technology that enables large-capacity recording. The material of the thin film medium used for these recordings is usually Te or Se.
Chalcogen such as Bi, Sn.

Pb、Sb、Inなどの金属、Geなどの半導体等を含
む多元系の物質が用いられ、これらはスパッタリングま
たは真空蒸着などの方法で基板上に膜厚lO〜1100
nの薄膜として形成される。
Multi-component materials containing metals such as Pb, Sb, and In and semiconductors such as Ge are used, and these are deposited onto a substrate with a film thickness of 10 to 1100 nm by sputtering or vacuum evaporation.
It is formed as a thin film of n.

また、上述した技術の中でも非晶質−結晶転移のような
構造変化に基づく光記録は、原理的に情報の記録と消去
を多数回繰り返すことが可能であり、いわゆる書換型光
記録媒体としての用途が広く期待されている。この光記
録は、レーザ光により薄膜状記録媒体を融点以上に加熱
して急冷することによりレーザ照射部分を非晶質化して
記録を行ない、また、その非晶質化部分を別のレーザ光
により結晶化温度以上に加熱してアニールすることによ
り結晶状態にもどして消去を行なう、この記録・消去の
ためのレーザ照射条件、その繰り返しに対する安定性、
記録状態の長期安定性は記録膜の組成、構造等の条件に
強く依存するため、例えば、特開昭62−222442
号公報、特開昭62−222443号公報にみられるよ
うな記録膜に関する新提案や研究がさかんに行なわれつ
つある状況である。このように、これ土で種々、様々な
記録膜の材料およびその作製法が検討されてきたが、そ
の達成目標とするところは記録・消去の繰り返しに対す
る記録状態および消去状態の信号レベルの安定性が最大
のものである。
Furthermore, among the above-mentioned technologies, optical recording based on structural changes such as amorphous-crystalline transitions is capable of recording and erasing information many times in principle, and is suitable as a so-called rewritable optical recording medium. It is expected to have a wide range of uses. In this optical recording, recording is performed by heating a thin film recording medium with a laser beam above its melting point and rapidly cooling it to make the laser irradiated area amorphous. The laser irradiation conditions for recording and erasing, which are heated to a temperature higher than the crystallization temperature and annealed to restore the crystalline state and perform erasing, and the stability against repetition of the recording and erasing.
The long-term stability of the recording state strongly depends on conditions such as the composition and structure of the recording film.
New proposals and research regarding recording films, as seen in Japanese Patent Application Laid-Open No. 62-222443, are being actively conducted. In this way, various recording film materials and methods for producing them have been studied, but the goal is to maintain the stability of the signal level in the recorded state and erased state against repeated recording and erasing. is the largest one.

[発明が解決しようとする課題] しかしながら、従来においては次のような問題点があっ
た。
[Problems to be Solved by the Invention] However, in the past, there were the following problems.

書換型光記録媒体では、記録・消去の多数回の繰り返し
に対して安定に動作しなけらばならない、望ましくは、
106回以上の繰り返しに対して、記録信号と消去信号
のレベルが、それぞわ−意に定義され、この2つの信号
のレベルの間で可逆的に再現性よく、情報の0N−OF
Fがなされねばならない。しかし、この中で消去信号の
レベルは一般に不安定であり記録・消去を繰り返してゆ
くと、次第に消去信号の値が変化してしまい、したがっ
てS/Nが著しく低下するという問題がある。
A rewritable optical recording medium must operate stably even after many repeated recording and erasing operations.
For repetitions of 106 times or more, the levels of the recording signal and the erasing signal are arbitrarily defined, and the levels of the two signals are reversibly reproducible and the information is 0N-OF.
F must be done. However, the level of the erase signal is generally unstable, and as recording and erasing are repeated, the value of the erase signal gradually changes, resulting in a problem in that the S/N ratio decreases significantly.

これは記録状態の非晶質が、いわゆる原子配列の完全に
ランダマイズされた状態であり、レーザ・パルスによる
急熱急冷によるクエンチングで一様なものが得られやす
いのに対して、消去状態の結晶としてはレーザ照射条件
のわずかなゆらぎと共に様々な状態が生起されるため、
−意に定義するのが難しいためと考えられている。
This is because the amorphous state in the recorded state is a state in which the atomic arrangement is completely randomized, and it is easy to obtain a uniform state by quenching by rapid heating and cooling with a laser pulse, whereas in the erased state As a crystal, various states occur due to slight fluctuations in the laser irradiation conditions.
-It is thought that this is because it is difficult to define it intentionally.

これらの問題点に対して、これまで、記録膜の組成、特
にTeあるいはSe系合金膜の組成について、様々の研
究がなされてきたが、最近の傾向として、単に、合金の
組成を制御するだけでは不十分であり、他の条件を検討
しなければ、さらなる性能アップは望めないのではない
か、という見方が広まりつつある。また、これに伴い、
記録媒体の製造方法についても、いっそうの精密制御が
求められている状況にある。これらの分野における内外
の研究機関での研究開発競争は、日毎に激しくなってい
る。
To address these problems, various studies have been conducted on the composition of recording films, particularly on the composition of Te or Se-based alloy films, but the recent trend is to simply control the composition of the alloy. There is a growing consensus that this is insufficient and that further performance improvements cannot be expected unless other conditions are considered. Also, along with this,
There is also a need for more precise control in the manufacturing method of recording media. Research and development competition in these fields among domestic and foreign research institutions is becoming more intense every day.

このような情勢の中で本発明者らは薄膜材料のmorp
hologyに着目し、特願昭[i2−171284号
に記述するように、記録膜の結晶配向が媒体特性に深く
関与することを見出した。すなわち、記録膜のIIlo
rphology、特に結晶配向性を制御することによ
り記録・消去の繰り返し特性の安定性のみならず、記録
寿命、高速消去性等を向上させうろことを示したもので
ある。しかし、結晶配向性を製造技術的な意味で精度よ
く、かつ簡便に制御することは、かなり高度の技術であ
り、さらに検討を要する重要課題であった。
Under these circumstances, the present inventors have developed a thin film material called MORP.
Focusing on hology, the inventors discovered that the crystal orientation of the recording film is deeply involved in the characteristics of the medium, as described in Japanese Patent Application No. Sho [i2-171284]. That is, IIlo of the recording film
This study shows that by controlling the rhology, especially the crystal orientation, it is possible to improve not only the stability of repeated recording/erasing characteristics but also the recording life, high-speed erasing performance, etc. However, accurately and easily controlling crystal orientation in terms of manufacturing technology is a fairly advanced technology and is an important issue that requires further study.

本発明の目的は、以上述べたような記録媒体の製造方法
に関する問題を解決し、より高精度かつ簡便な方法で製
造しつる光記録媒体の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an optical recording medium that can be manufactured with higher precision and in a simpler manner by solving the problems related to the method of manufacturing a recording medium as described above.

[0!題を解決するためのf段] このような目的を達成するために本発明は先の吸収ある
いは光の吸収による温度上昇により状態の変化する記録
層を打する光記録媒体の製造方法において、一様な結晶
配向を有する合金ターゲットをスパッタして、基板上に
記録層を形成する工程を有することを特(汐とする。
[0! To achieve the above object, the present invention provides a method for manufacturing an optical recording medium in which a recording layer whose state changes due to a temperature increase due to previous absorption or absorption of light is provided. Specifically, the method includes a step of sputtering an alloy target having a different crystal orientation to form a recording layer on a substrate.

し作 用] 一般に、合金ターゲットのスパッタリングにより作製さ
れる薄膜は非晶質または微結晶の集合体の構造をもち、
その各々の結晶粒の配向はランダムであり一様でない。
In general, a thin film produced by sputtering an alloy target has an amorphous or microcrystalline aggregate structure;
The orientation of each crystal grain is random and not uniform.

非晶質の薄膜を熱処理して結晶化させて得られる膜もや
はり一般に結晶粒がランダムに配向した微結晶の集合体
となる。しかるに最近の薄膜形成機構の基礎研究によれ
ばスパッタリングにおいては、スパッタされるターゲッ
ト自体の結晶構造が基板上に堆積する膜の構造にもちき
たされる場合のあることがわかってきた。
A film obtained by heat-treating an amorphous thin film to crystallize it is also generally an aggregate of microcrystals in which crystal grains are randomly oriented. However, recent basic research into the thin film formation mechanism has revealed that in sputtering, the crystal structure of the sputtered target itself may be incorporated into the structure of the film deposited on the substrate.

すなわち、ある結晶構造をもつターゲットをスバ・ツタ
して作製した膜は、ある程度光のターゲットの構造と関
係をもち、同じ結晶構造をもつ場合がある。かりに作製
した膜が非晶質である場合も、それを熱処理して結晶化
させたものは、元のターゲットと同じ結晶構造となる場
合が多い。この原因はまだ明らかでないが、仮説として
は、スパッタリングにおいてはターゲットが単原子とし
てではなく、クラスターとして蒸発すること、あるいは
方向性の強い原子配置を有する材料の場合、その方向性
がターゲット内から膜中にそのまま移植されること等が
挙げられる。
That is, a film produced by sprinkling a target with a certain crystal structure has a certain degree of relationship with the structure of the optical target, and may have the same crystal structure. Even if the newly produced film is amorphous, the film that is crystallized by heat treatment often has the same crystal structure as the original target. The reason for this is not yet clear, but one hypothesis is that during sputtering, the target evaporates not as a single atom but as a cluster, or that in the case of a material with a highly directional atomic arrangement, the directionality is caused by a film forming from within the target. For example, it may be transplanted directly into the plant.

さて、光記録媒体、特に書換型の光記録媒体では、結晶
化した状態が一様で再現性よい構造をもつことが望まれ
る。この結晶状態はランダムな微結晶の集合体ではなく
、結晶配向性のよいものが光記録媒体として優れている
ことは、特願昭62−171284、”に記したとおり
である。ここで、この結晶配向性のよい薄膜を得る方法
としては同明細書に記したように、多層膜にて構成する
ように製造することが一つの手段であるが、さらに簡便
かつ生産性に優れた方法として、上記のターゲット自体
の結晶構造、結晶配向を利用することが考えられる。本
発明者らはこの点に着目し、結晶配向性のよい合金ター
ゲットを母材として、これをスパッタして光記録媒体の
記録層を成膜して、記録媒体特性を評価したところ極め
て優れた特性を示すことを見出したものである。
Now, for optical recording media, especially rewritable optical recording media, it is desired that the crystallized state be uniform and have a structure with good reproducibility. This crystalline state is not an aggregation of random microcrystals, but one with good crystal orientation is excellent as an optical recording medium, as described in Japanese Patent Application No. 62-171284. As described in the same specification, one way to obtain a thin film with good crystal orientation is to manufacture it as a multilayer film, but as a simpler and more productive method, It is conceivable to utilize the crystal structure and crystal orientation of the target itself.The present inventors focused on this point, and used an alloy target with good crystal orientation as a base material and sputtered it to form an optical recording medium. When the recording layer was formed and the characteristics of the recording medium were evaluated, it was found that it exhibited extremely excellent characteristics.

本発明では、As2Te、、、Bi2Te3.Sb2T
e、等の結晶の異方性をもつ材料についてこれらの結晶
配向性をもつ合金ターゲットを母材としてスパッタリン
グにより記録層を作製した。得られた薄膜は作製したま
まの状態で非晶質であったが、これらを熱処理して結晶
化させた膜の結晶配向は母材の配向と同一であることが
判明した。すなわち、ターゲットのスバ・ツタ面に平行
にC軸配向したター・ゲットからは、基板の膜付着面に
平行にC軸配向した膜が、そして、ターゲットのスパッ
タ面に垂直にC軸配向したターゲットからは基板の膜付
着面に垂直にC軸配向した膜が作製できた。この事情を
第1図に模式的に示す。
In the present invention, As2Te, , Bi2Te3. Sb2T
A recording layer was fabricated by sputtering using an alloy target having such crystal orientation as a base material for a material having crystal anisotropy such as e.g. Although the obtained thin films were amorphous in the as-prepared state, it was found that the crystal orientation of the films that were crystallized by heat treatment was the same as that of the base material. In other words, from a target whose C-axis is oriented parallel to the sputtering surface of the target, a film whose C-axis is oriented parallel to the film attachment surface of the substrate, and a target whose C-axis is oriented perpendicular to the sputtering surface of the target. A film with the C-axis oriented perpendicular to the film adhesion surface of the substrate could be produced. This situation is schematically shown in FIG.

第1図(A)はスパッタ面に垂直にC軸配向した合金タ
ーゲット1をスパッタして基板2上に記録層3を成膜し
た場合、第1図(B)はスパッタ面に平行にC軸配向し
た合金ターゲット1を用いて成膜した場合を示したもの
である。
Fig. 1(A) shows a case where a recording layer 3 is formed on a substrate 2 by sputtering an alloy target 1 with the C-axis oriented perpendicular to the sputtering surface, and Fig. 1(B) shows a case where the C-axis is oriented parallel to the sputtering surface. This figure shows a case where a film is formed using an oriented alloy target 1.

これらの服は記録媒体としての特性も優れており、記録
消去の繰り退しに対して極めて安定に動作することが確
認できた。これは記録または消去のいずれか一方の状、
聾に対応する結晶状態が配向性のよい均質な再現性のよ
い状態として定義されていることに基づくものである。
These clothes also have excellent characteristics as recording media, and it was confirmed that they operate extremely stably when recording and erasing data is repeated. This is either recording or erasure,
This is based on the fact that the crystalline state corresponding to deafness is defined as a homogeneous state with good orientation and good reproducibility.

また上記2種類の配向の中で基板面に平行にC@配向し
たものは、それを非晶質化(通常、記録消去のうちの記
録に相当)して得られる非晶質状態の安定性の点で優れ
、一方晶板面に垂直にC軸配向したものは、非晶質状態
のレーザ加熱結晶化(通常、記録消去のうちの消去に相
当)が極めて速やかに生じ、いわゆる高速消去性の点で
優れていることが見出された。
In addition, among the above two types of orientation, the one with C@ orientation parallel to the substrate surface has the stability of the amorphous state obtained by making it amorphous (corresponding to recording in recording erasing). On the other hand, when the C-axis is oriented perpendicular to the crystal plate surface, laser heating crystallization of the amorphous state (usually equivalent to erasing of recorded data) occurs extremely quickly, resulting in the so-called high-speed erasing property. It was found to be superior in terms of

[実施例] 以下、具体的な実施例により説明する。[Example] This will be explained below using specific examples.

叉旌頂ユ RFスパッタリングにより、5b−Te合金膜を記録層
とする記録媒体を作製した。基板として厚さ1.2mm
のガラス基板と直径5インチの溝付ポリカーボネイト・
ディスク基板を用いた。媒体の構成はZnS7:/ダー
コートII!(厚さ10100n/5b−Te合金膜(
厚さ10100n/znSオーバコート@(厚さ101
00nであり、さらに、紫外線硬化樹脂で密着封止した
ものである。5b−Te合金膜形成のスパッタリングの
ターゲットとして、第1図(A)  に示すようなター
ゲラ)・面に垂直にC軸配向しているものを使用し、A
rガス圧9 x 10−’Pa、 RFパワー 100
W(7)条件でスパッタした。作製した膜は作製したま
まの状態で非晶質であったが、200’C11o分の熱
処理を行ない結晶化させた後、X線回折で評価した。
A recording medium having a 5b-Te alloy film as a recording layer was produced by cross-sectional RF sputtering. 1.2mm thick as a substrate
Glass substrate and 5 inch diameter grooved polycarbonate.
A disk substrate was used. The configuration of the medium is ZnS7:/Darcoat II! (thickness 10100n/5b-Te alloy film (
Thickness 10100n/znS overcoat @ (thickness 101
00n, and is further tightly sealed with an ultraviolet curing resin. As a sputtering target for forming a 5b-Te alloy film, a target with the C-axis oriented perpendicular to the target layer (A) as shown in Figure 1(A) was used.
rGas pressure 9 x 10-'Pa, RF power 100
Sputtering was performed under W(7) conditions. Although the produced film was amorphous in the as-prepared state, it was subjected to heat treatment for 200'C11o to crystallize it, and then evaluated by X-ray diffraction.

第2図にX線回折結果を示す。図示されるようにこの膜
は基板面に垂直にC軸配向している。この試料について
収束レーザ光を用いて静止系にょる記録消去の実験を行
なった。レーザとしては、Al1 GaAsレーザダイ
オード(波長830nm)を直径的1.2μ−に収束し
たものを使用した。その結果、本実施例の記録媒体は1
8mW、30nsのレーザ光で記録(非晶質化) 、1
0mW、50nSのレーザ光で消去(結晶化)できるこ
とがわかった。また、記録消去の繰り返しに対しても極
めて安定に動作し、記録(非晶質)状態、消去(結晶)
状態ともに反射信号のレベルの再現性の精度に優れ、1
0’回以上の繰り返しが可能であることがわかった。
Figure 2 shows the X-ray diffraction results. As shown in the figure, this film has a C-axis orientation perpendicular to the substrate surface. We conducted an experiment on erasing records in a stationary system using a focused laser beam on this sample. As a laser, an Al1 GaAs laser diode (wavelength: 830 nm) converged to a diameter of 1.2 .mu.- was used. As a result, the recording medium of this example has 1
Recording with 8 mW, 30 ns laser light (amorphous), 1
It was found that it can be erased (crystallized) with a laser beam of 0 mW and 50 nS. In addition, it operates extremely stably even with repeated recording and erasing, and the recording (amorphous) state and erasing (crystalline) state are extremely stable.
Excellent reproducibility of reflected signal level in both conditions, 1
It was found that 0' or more repetitions are possible.

また、ポリカーボネイト・ディスク上の媒体については
、回転系の測定装置によってもディスク特性を評価した
。その結果、上述した静止系の評価で、消去時間50n
sと短いことを反映し、ディスク特性においても高速消
去が可能であることが確認され、すなわち線速20i/
sの高速回転において記録のC/N 53dBに対して
消去ビーム1回照射でC(キャリヤ)レベルの減少は4
0dB以上を達成できた。この記録消去の繰り返しの信
号変化は安定であり、第3図に示すように、記録時Cレ
ベル、消去時の残留Cレベル、さらにはN(ノイズ)レ
ベル共に10’以上の繰り返しに対して安定に動作する
ことがわかった。
For media on polycarbonate disks, disk characteristics were also evaluated using a rotating measuring device. As a result, in the stationary system evaluation described above, the erasure time was 50n.
Reflecting the short length of s, it was confirmed that high-speed erasing is possible in terms of disk characteristics, that is, at a linear speed of 20i/
At high speed rotation of s, the C (carrier) level decreases by 4 with one erase beam irradiation for recording C/N of 53 dB.
We were able to achieve over 0dB. The signal changes during repeated recording and erasing are stable, and as shown in Figure 3, both the C level during recording, the residual C level during erasing, and the N (noise) level are stable against repetitions of 10' or more. I found that it works.

実施例2 実施例1と同じ条件で、RFスパッタリングにより記録
媒体を作製した。但し本実施例では5b−Te合金膜形
成のスパッタリングのターゲットとして、第1図(B)
 に示すようにターゲツト面に平行にC軸配向している
ものを使用した。得られた膜はやはり作製したままの状
態で非晶質であったが、 300℃、 10分の熱処理
を行ない結晶化させた後、X線回折で評価したところ、
第4図に示すように基板面に平行にC軸配向しているこ
とがわかった。
Example 2 A recording medium was produced by RF sputtering under the same conditions as in Example 1. However, in this example, the sputtering target for forming the 5b-Te alloy film was used as shown in Fig. 1(B).
The C-axis was oriented parallel to the target plane as shown in FIG. The obtained film was still amorphous in the as-prepared state, but after crystallization by heat treatment at 300°C for 10 minutes, it was evaluated by X-ray diffraction.
As shown in FIG. 4, it was found that the C-axis was oriented parallel to the substrate surface.

この試料について実施例1と同じく収束レーザ光を用い
て静止系の記録・消去実験を行なったところ、本実施例
の記録媒体は、18mW、30nsのレーザ光で記録(
非晶質化) 、10mW、100nsのレーザ光で消去
(結晶化)できることがわかった。また、記録消去の繰
り返しに対しても安定に動作し、やはり10’回以上の
繰り返しが可能であった。
A stationary recording/erasing experiment was conducted on this sample using a convergent laser beam as in Example 1, and it was found that the recording medium of this example was capable of recording (recording) using a 18 mW, 30 ns laser beam.
It was found that it was possible to erase (crystallize) with a laser beam of 10 mW and 100 ns. Furthermore, it operated stably even when recording and erasing was repeated, and it was possible to repeat recording and erasing more than 10' times.

ポリカーボネイト・ディスク−トの媒体に対する回転系
評価においては、線速20m/sの高速回転転において
記録のC/N 51dBに対して消去ビーム1回照射で
Cレベルの減少は30dB以上であり、やはり高速消去
が可能であった。記録・消去の繰り返し性についても第
5図に示すように極めて安定に動作し、Cレベル、残留
Cレベル、Nレベル共に10’回の繰り返しに対し、は
とんど変動せず安定であった。
In the rotation system evaluation for polycarbonate disk media, the reduction in C level by one erasing beam irradiation was more than 30 dB for a recording C/N of 51 dB in high-speed rotation at a linear velocity of 20 m/s. High-speed erasing was possible. Regarding the repeatability of recording and erasing, as shown in Figure 5, it operated extremely stably, and the C level, residual C level, and N level remained stable with almost no fluctuation after 10' repetitions. .

■旦」 比較のために、無配向の合金ターゲットを用い、実施例
1と同様にして作製したポリカーボネイト・ディスク上
の媒体について、回転系の測定装置によってディスク特
性を測定した。その結果を第6図に示す、無配向ターゲ
ットをスパッタして成膜した記録層は無配向であり、ぞ
のため結晶化状態が一意酌に定まらず、消去後の残留キ
ャリヤのレベルが変動する。また消去状態が一意でない
ために、記録・消去を繰り返すに従ってノイズレベルが
上がってしまう。
For comparison, the disk characteristics of a medium on a polycarbonate disk manufactured in the same manner as in Example 1 using a non-oriented alloy target were measured using a rotating measuring device. The results are shown in Figure 6. The recording layer formed by sputtering a non-oriented target is non-oriented, so the crystallization state is not determined uniquely, and the level of residual carriers after erasing varies. . Furthermore, since the erased state is not unique, the noise level increases as recording and erasing are repeated.

以上述べたようにスパッタされるターゲツト面に垂直ま
たは平行にC軸配向した5b−Te合金ターゲットから
得られた合金膜は各々基板面に垂直または平行にC軸配
向しており、母材の構造を反映したものであった。そし
て各々の合金膜を記録層とした記録媒体は結晶化時の反
射光レベルが一定となることから、消去時の信号レベル
が一定で、それゆえ、記録・消去の繰り返し性に優れて
いる。結晶配向性のみられる試料は一般にレーザ加熱に
より高温に熱した時の結晶化速度が結晶配向のないラン
ダムな微結晶の集合体を記録層とした試料よりも大きく
、したがフて実施例に示すごとく高速消去の可能なもの
であった。
As mentioned above, the alloy films obtained from the 5b-Te alloy targets whose C-axes are oriented perpendicularly or parallel to the target surface to be sputtered have their C-axes oriented perpendicularly or parallel to the substrate surface, and the structure of the base material It was a reflection of the Since the recording medium in which each alloy film is used as a recording layer has a constant reflected light level during crystallization, the signal level during erasing is constant, and therefore, the repeatability of recording and erasing is excellent. Samples with crystal orientation generally have a crystallization rate higher when heated to a high temperature by laser heating than samples whose recording layer is a collection of random microcrystals without crystal orientation; therefore, this is shown in Examples. It was possible to erase it at high speed.

2種の配向性をもつ試料間で性能を比較すると、基板面
に垂直にC軸配向のもの(第1図(A))がより結晶化
速度が大きい反面、基板面に平行にC軸配向のもの(第
1図(B))がより結晶化温度が高く、非晶質状態で安
定であるという特徴があった。この原因は明らかでない
が、おそらくこの種の構造の材料ではc!thに垂直な
(ab1面内で、結晶化、・すなわち、原子の規則的な
再配列が速やかに進行する一方で、(ab)面間におい
ては、原子間結合が弱く再配列が比較的遅くなるという
結晶異方性に基づく現象によると推察される。
Comparing the performance between samples with two types of orientation, the one with the C-axis oriented perpendicular to the substrate surface (Figure 1 (A)) has a higher crystallization rate, whereas the one with the C-axis oriented parallel to the substrate surface has a higher crystallization rate. The one shown in FIG. 1 (B) had a higher crystallization temperature and was stable in an amorphous state. The cause of this is not clear, but it is probably c! Within the (ab1 plane perpendicular to This is presumed to be due to a phenomenon based on crystal anisotropy.

なお、Sb、Te、と同種の構造をもっBi2Te5゜
八s、Te、についても上記2つの実施例と同様の検討
を行なった。その結果、いずれも結晶配向をもつ合金タ
ーゲットから、結晶配向をもつ合金膜が形成され、かつ
記録媒体としての性能も繰り返し記録消去性に優れるこ
とが検証できた。
Incidentally, the same study as in the above two examples was also conducted on Bi2Te5°8s and Te, which have the same type of structure as Sb and Te. As a result, it was verified that an alloy film with crystal orientation was formed from an alloy target with crystal orientation, and the performance as a recording medium was excellent in repeated recording and erasing properties.

各材料間で異なるところは結晶化速度の点では、Bi2
Te、> Sb2Te、> As2Te3であり、非晶
質寿命の点では、As2Te、> Sb、Te3> B
12Te=という差異がみられた。これらは結晶結合、
あるいは原子間結合の強弱の差によるものとみられる。
The difference between each material is the crystallization rate of Bi2
Te, > Sb2Te, > As2Te3, and in terms of amorphous lifetime, As2Te, > Sb, Te3 > B
A difference of 12Te= was observed. These are crystal bonds,
Alternatively, this may be due to differences in the strength of bonds between atoms.

さらに、Bi2Te3. Sb2Te3. As2Te
3の3種の材料の各々に第3元素としてGe、Sn、P
b、As、Sb、Bi、Inからなる群より選んだ元素
のうち少なくとも1つを20atk 添加したものにつ
いても同様の検討を行なった。その結果、これらの元素
を添加した材料系においても、ベースとなる2元の材料
の基本的な結晶配向性は、合金ターゲットにおいてもそ
れをスパッタして得られる合金膜において崩れることな
く成り立っていることが確認された。そして、記録媒体
としての性能も記録消去の繰り返し性が優れることは、
ベースとなる2元素と同様であり、しかも添加元素の種
類により、非晶質寿命の向上や消去(結晶化)速度の向
上など、媒体性能がさらに向上することが見出された。
Furthermore, Bi2Te3. Sb2Te3. As2Te
Ge, Sn, and P are added as a third element to each of the three materials in 3.
A similar study was conducted on a material to which 20 atk of at least one element selected from the group consisting of Sb, As, Sb, Bi, and In was added. As a result, even in material systems to which these elements are added, the basic crystal orientation of the two base materials remains unchanged in the alloy film obtained by sputtering the alloy target. This was confirmed. Also, the performance as a recording medium is excellent in the repeatability of recording and erasing.
It has been found that the medium performance is the same as the two base elements, and that depending on the type of added element, the media performance, such as an improvement in the amorphous lifetime and an improvement in the erasure (crystallization) speed, can be further improved.

すなわち、As、Ge、Sbなどの共有結合性の強い元
素を添加すると、結晶化温度が著しく向上し、非晶質寿
命が長くなる(例えばGe添加のSb2Te:+の場合
、結晶化温度は350℃にも達し、常温での非晶X寿命
は30年以上と見積られる)のに対し、Sn、Pb、B
i、 Inなど金属結合性の強い元素を添加すると、高
速消去(高速結晶化)性が向上する(例えばPb添加の
Sb2Te3の場合、非晶質マークのレーザ加熱結晶化
は、12mW、40nsで可能であり、ディスク特性に
おいても線速25m/sの条件で、レーザ1回照射てC
レベルの減少40dBを達成できた)ことがわかった、
なお、添加元素の濃度については本実施例の限りではな
く、合金が光学記録層として使用し得る範囲、量的には
約30at零までの添加が可能である。
That is, when elements with strong covalent bonding properties such as As, Ge, and Sb are added, the crystallization temperature is significantly improved and the amorphous life is lengthened (for example, in the case of Ge-added Sb2Te:+, the crystallization temperature is 350 ℃, and the lifetime of amorphous X at room temperature is estimated to be more than 30 years), whereas Sn, Pb, and B
Adding elements with strong metal bonding properties such as i and In improves high-speed erasure (high-speed crystallization) (for example, in the case of Pb-added Sb2Te3, laser heating crystallization of amorphous marks is possible at 12 mW and 40 ns). In terms of disk characteristics, C
It was found that a level reduction of 40 dB was achieved.
Note that the concentration of the additive element is not limited to that in this example, and it is possible to add up to about 30 at.0 within a range where the alloy can be used as an optical recording layer.

[発明の効果] 以上、実施例によって具体的に説明したように、本発明
によれば、記録・消去の繰り返し性および記録状態の長
期安定性、高速消去性などの媒体性能虹優れた光記録媒
体を効率的に、かつ、再現性よく製造することができる
。本発明は結晶配向を有する高性能な光記録媒体の製造
方法について更に検討を進め、スパッタリングの合金タ
ーゲットとして配向性のものを用いた時、極めて良い結
果を得たものである0本発明の製造方法は、低コストで
、量産に適したものであり、光記録媒体の研究開発が著
しく、商品化の待望される昨今の情勢を考慮する時、光
ディスクや光カードの高性能化を達成する上で1つの技
術的ブレークスルーを提供するものとしてそのインパク
トは極めて大きい。
[Effects of the Invention] As described above in detail with reference to Examples, the present invention provides optical recording with excellent media performance such as repeatability of recording/erasing, long-term stability of recorded state, and high-speed erasing performance. A medium can be manufactured efficiently and with good reproducibility. The present invention has further investigated the manufacturing method of high-performance optical recording media having crystal orientation, and obtained extremely good results when an oriented alloy target was used as a sputtering alloy target. This method is low cost and suitable for mass production, and considering the recent situation where research and development of optical recording media is significant and commercialization is long-awaited, it is an effective method for achieving high performance of optical disks and optical cards. Its impact is extremely large as it provides a technological breakthrough.

また、上述の説明では非晶質−結晶転移を利用するもの
について説明したが、結晶配向をした合金ターゲットを
用いて記録層を製造することの効果は、結晶−結晶転移
を利用した媒体(2種以上の結晶構造の間の相変化を利
用したもの)についても同様に成立するものである。
In addition, although the above explanation has been given regarding a device that utilizes an amorphous-crystal transition, the effect of manufacturing a recording layer using a crystal-oriented alloy target is similar to that of a medium that utilizes a crystal-crystal transition (2 The same holds true for those that utilize phase changes between crystal structures of seeds or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は台金ターゲットとそれをスパッタリングして得
られる膜を熱処理して結晶化させたものの結晶配向性の
関係を示す模式図、 第2図および第4図はそれぞれスパッタ面に垂直および
水モにC軸配向した合金ターゲットをスパッタして得た
記録層の結晶化後のX線回折ピーク強度図、 第3図および第5図はそれぞれディスク基板面に重心お
よび水平にC軸配向した記録層を有する光ディスクにお
けζ、記録・消去繰り返しによるCレベル、Nレベル、
残留Cレベルの変化を示す図、 第6図は無配向の記録層を有する光ディスクにおける記
録・消去繰り返しによるCレベル、Nレベル、残留Cレ
ベルの変化を示す図である。 1・・・合金ターゲット、 2・・・基板、 3・・・合金膜。
Figure 1 is a schematic diagram showing the relationship between the crystal orientation of the base metal target and the film obtained by sputtering it, which is heat-treated and crystallized. Figures 2 and 4 are perpendicular to the sputtering surface and Figures 3 and 5 show the X-ray diffraction peak intensity diagram after crystallization of a recording layer obtained by sputtering a C-axis oriented alloy target, respectively. ζ in optical discs with layers, C level, N level due to repeated recording and erasing,
Figure 6 shows changes in residual C level. Figure 6 is a diagram showing changes in C level, N level, and residual C level due to repeated recording and erasing in an optical disc having a non-oriented recording layer. DESCRIPTION OF SYMBOLS 1... Alloy target, 2... Substrate, 3... Alloy film.

Claims (1)

【特許請求の範囲】[Claims] 1)光の吸収あるいは光の吸収による温度上昇により状
態の変化する記録層を有する光記録媒体の製造方法にお
いて、一様な結晶配向を有する合金ターゲットをスパッ
タして、基板上に前記記録層を形成する工程を有するこ
とを特徴とする光記録媒体の製造方法。
1) In a method for manufacturing an optical recording medium having a recording layer whose state changes due to absorption of light or temperature rise due to absorption of light, the recording layer is formed on a substrate by sputtering an alloy target having a uniform crystal orientation. 1. A method of manufacturing an optical recording medium, comprising the step of forming.
JP20263488A 1988-08-16 1988-08-16 Manufacture of magnetic recording medium Pending JPH0253239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20263488A JPH0253239A (en) 1988-08-16 1988-08-16 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20263488A JPH0253239A (en) 1988-08-16 1988-08-16 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0253239A true JPH0253239A (en) 1990-02-22

Family

ID=16460591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20263488A Pending JPH0253239A (en) 1988-08-16 1988-08-16 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0253239A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221853A (en) * 2006-02-14 2007-08-30 Toyota Motor Corp Stator fixing structure and electric vehicle
WO2010101020A1 (en) 2009-03-02 2010-09-10 王子製紙株式会社 Heat-sensitive recording material and method for producing same
US20140299873A1 (en) * 2013-04-05 2014-10-09 Semiconductor Energy Laboratory Co., Ltd. Single-crystal oxide semiconductor, thin film, oxide stack, and formation method thereof
US9382611B2 (en) 2011-06-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221853A (en) * 2006-02-14 2007-08-30 Toyota Motor Corp Stator fixing structure and electric vehicle
WO2010101020A1 (en) 2009-03-02 2010-09-10 王子製紙株式会社 Heat-sensitive recording material and method for producing same
US9382611B2 (en) 2011-06-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US10889888B2 (en) 2011-06-08 2021-01-12 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US11066739B2 (en) 2011-06-08 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US11959165B2 (en) 2011-06-08 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film
US20140299873A1 (en) * 2013-04-05 2014-10-09 Semiconductor Energy Laboratory Co., Ltd. Single-crystal oxide semiconductor, thin film, oxide stack, and formation method thereof

Similar Documents

Publication Publication Date Title
Barton et al. New phase change material for optical recording with short erase time
US4889746A (en) Process for manufacturing an optical recording medium
JP2574325B2 (en) Optical information recording medium
JPH11139000A (en) Optical recording medium
JP2001322357A (en) Information recording medium and its manufacturing method
JP2937351B2 (en) Optical recording material consisting of antimony-tin alloy containing third element
JPH0253239A (en) Manufacture of magnetic recording medium
JPH0885261A (en) Optical information recording medium and manufacture thereof
JP2629746B2 (en) Optical recording medium
JP2830022B2 (en) Optical information recording medium
JP2836227B2 (en) Optical recording medium and method for producing the same, and sputtering target for optical recording medium and method for producing the same
JPH04232780A (en) Phase change optical recording medium
JPH07111786B2 (en) Optical recording medium, protective film for optical recording medium, and manufacturing method of protective film
JP2913759B2 (en) Optical recording medium
JPH02112987A (en) Optical recording medium
JPH05144084A (en) Optical recording medium and production thereof
JPH0822611B2 (en) Method for manufacturing optical recording medium
JPH04316887A (en) Optical recording medium and sputtering target, and manufacture thereof
JP3415099B2 (en) Optical disk recording medium and method of manufacturing the same
JP2798247B2 (en) Optical recording medium
US5196284A (en) Erasable phase change optical recording elements and methods
JPH0243088A (en) Information recording medium and its recording/erasing method
JP2867407B2 (en) Information recording medium
JPH0294134A (en) Rewriting type phase change optical recording medium and production thereof
JPH07172060A (en) Optical information recording medium and manufacture thereof