JPH0253206B2 - - Google Patents

Info

Publication number
JPH0253206B2
JPH0253206B2 JP60205039A JP20503985A JPH0253206B2 JP H0253206 B2 JPH0253206 B2 JP H0253206B2 JP 60205039 A JP60205039 A JP 60205039A JP 20503985 A JP20503985 A JP 20503985A JP H0253206 B2 JPH0253206 B2 JP H0253206B2
Authority
JP
Japan
Prior art keywords
granular ice
cement
temperature
mortar
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60205039A
Other languages
Japanese (ja)
Other versions
JPS6270279A (en
Inventor
Toshiro Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60205039A priority Critical patent/JPS6270279A/en
Priority to PCT/JP1986/000029 priority patent/WO1987000163A1/en
Priority to US07/030,851 priority patent/US4830669A/en
Priority to DE8686900850T priority patent/DE3683637D1/en
Priority to AU53904/86A priority patent/AU590743B2/en
Priority to KR1019870700173A priority patent/KR950002919B1/en
Priority to AT86900850T priority patent/ATE71926T1/en
Priority to EP86900850A priority patent/EP0241554B1/en
Priority to CA000500400A priority patent/CA1247661A/en
Priority to CN198686100892A priority patent/CN86100892A/en
Publication of JPS6270279A publication Critical patent/JPS6270279A/en
Publication of JPH0253206B2 publication Critical patent/JPH0253206B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明はモルタル、コンクリート等の水硬性
セメント質組成物(以下モルタル類という)の輸
送方法に関する。 〔従来技術〕 現在、我が国では現場打設コンクリートのほと
んどすべてが、レデイミツクスコンクリート工場
(生コン工場)で練り上げられ、トラツクアジテ
ーターに積込み、打設現場まで輸送している。と
ころが、モルタル類はセメントの水和反応が進行
するために、輸送中にスランプロスを生じ、作業
性の低下をもたらすために、調合後、これを打設
するまでの時間的制約があつた。近年、輸送中の
作業性劣化を抑制する硬化遅延剤が開発されつつ
あるが、一般には水和時間の調節は困難であつ
た。このためモルタル類の輸送時間、距離には自
ずと限度があつた。 〔発明の目的〕 この発明は上記事情に鑑みなされたものであ
り、その目的は、水和反応の進行を抑制し、長時
間の輸送あるいは長距離の輸送が可能のモルタル
類の輸送方法を提案するにある。 〔発明の構成〕 このモルタル類の輸送方法は、セメントあるい
はセメントと骨材等に調合水に代わり粒状氷を添
加し、粒状氷が徐々に融解し、湿潤した粒状氷の
周りにセメントあるいはセメントと骨材等がまぶ
された状態で撹拌混合し、引続き粒状氷が残存し
巨視的均一混合系をなす時点で輸送過程に移すこ
とを特徴とする。 この輸送方法では、モルタル類を調合する際
に、水の代わりに粒状の氷を加え、セメントまた
はセメント、骨材等と固相で混合する。粒状氷は
周りにセメントあるいはセメント、骨材等が付着
し、粉体がまぶされた粒子のごとき状態となり、
分散して微視的には不均質であるが巨視的には均
質の混合系を形成する。この混合の過程では粒状
氷は、周りに粉体がまぶされ、断熱層で覆われた
形となつて、融解が緩徐となり、その分の遊離水
を減少させて水和反応を抑制する。 この混合の過程に引続き、粒状氷が残存し巨視
的均一混合系をなす時点で、トラツクミキサ車の
ドラム内等に収納して輸送過程に移す。この輸送
の過程においても粒状氷の存在は、昇温を防ぐと
ともに遊離水を減じ水和反応を抑制する。また同
時に、この輸送過程において粒状氷は徐々に融解
するが、その融解水は拡散して周囲のセメントあ
るいは骨材等を湿潤して、打設時までに粒状氷が
残存しない微視的均質混合系のモルタル類に移行
せしめることができる。 調合水に代り粒状氷を添加し混合してなつた巨
視的均一混合系のモルタル類温度は、外気温、粒
状氷添加割合および温度、他材料の割合および温
度、混合槽の断熱性等の影響を受けるが、これら
条件を適宜調整して容易に粒状氷が存在する状態
において0℃に近い低温モルタル類をつくること
ができる。 輸送過程に移す時点で粒状氷の残存割合が多け
れば当然低温維持時間が長くなり、水和反応を長
時間抑制できるが、小割合でも残存することはモ
ルタル温度が0℃に近い低温であり、かつ昇温を
防止する融解熱を潜熱として保持するので、従来
の単なる低温モルタルを輸送する場合に比べ、長
時間にわたりモルタル類を低温に維持することが
でき、本発明の目的を達成できる。 モルタル類は通常トラツクミキサー車のドラム
内に積載して目的地まで輸送される。しかし、高
温時、長距離(長時間)輸送する場合等には断熱
材で被覆されたり、あるいは冷却装置で冷却され
たミキサー車ドラム等の空間に収納し輸送するこ
ともある。 氷の融解時間は粒状氷の温度および氷径に大き
く依存する。このため、外気温度、輸送時間等を
勘案して氷温、氷径を適宜選定し、融解までの時
間を制御する。 氷径を所定の値にするため必要に応じて粒状氷
を篩分けして用いることもできる。粒状氷は所定
温度の氷塊を粉砕して用いてもよいし、粒状とな
した氷を所定の温度に深冷して用いてもよい。ま
た、セメント骨材等を予め冷却しておき、モルタ
ル類を調合することもできる。 なお、この輸送方法では、セメントの水和反応
に必要とする水の全量を粒状氷として供給するの
が好ましいが、通常、砂その他骨材類は多少の水
分を含有するので、これら原料に同伴する水分を
除いた調合水を粒状氷で供給することになる。 〔作用〕 このモルタル類の輸送方法は、混合の過程で粒
状氷の周りにセメント、骨材等がまぶされた状態
で撹拌・混合するので、粒状氷の融解が抑制され
て低温を持続でき、当初は融解水も少ないので水
和反応を低位に押さえることができる。この状態
は、混合後の輸送過程にも引き継がれ、残存する
粒状氷は遊離水を減じ、昇温を防ぎ水和反応を緩
慢となし、スランプ値の低下を抑制できる。混合
の過程で粒状氷の添加により形成された巨視的均
一混合系は、粒状氷の融解に伴い容易に微視的均
一混合系に移行できるので、輸送過程のトラツク
ミキサー車ドラム内等に搭載された状態において
粒状氷が残存しても打設時のモルタル類の均一性
に支障をもたらすことがない。 〔実施例〕 実施例 1 粒状氷(−2℃)/セメント(20℃)を0.3/
1の割合で、撹拌混合してセメントペーストをつ
くり、その混合直後の試料()、混合後1.5時間
室温(26〜28℃)放置の試料()、2.5時間室温
放置の試料()、および比較例として室温の水、
セメント(混合比0.3/1)を混合したセメント
ペーストの混合直後の試料()を、それぞれ内
法が10×10×10cm、厚さ30mmの発泡スチロール断
熱箱に充填封入し、その中心温度を測定した。結
果は図面グラフの通りであつた。 曲線()は混合直後の粒状氷が残存する巨視
的均一混合系の試料()であり、長時間氷点下
の温度を保ち、大幅に水和反応を遅延せしめるこ
とができた。曲線()、()はそれぞれ、試料
()と同じ試料を室温に1.5時間、2.5時間放置
し、粒状氷が融解して2℃および16℃に昇温した
試料()、()の曲線である。曲線()は比
較例の試料()の曲線である。 このグラフによるとセメントペースド中に残存
する粒状氷は融解しがたく、試料()のごとく
断熱箱に入れておくと(好条件下での輸送に相
当)、長時間氷点下の温度を保ち、大幅に水和反
応を遅延せしめうることがわかる。また、試料
()、()のように比較的高温下に放置しても
(悪条件下での輸送に相当)、1.5時間後2℃、2.5
時間後16℃に昇温するにとどまり、残存する粒状
氷の融解に時間がかかることがうかがわれる。 例えば、輸送後セメントペースト打設時の温度
を35℃、あるいは40℃以下に規定したとすると、
試料()、()、()は試料()に比べ著し
く長時間の輸送が可能となる。また例えば、練上
りから打設までの昇温を20℃以下に規定したとす
ると、試料間条件の相異はあるがこれを無視する
と、試料()、()、()、()はそれぞれ約
10時間、約6.5時間、約4時間、約2.5時間の輸送
ができることになる。 実施例 2 前記実施例1は断熱箱に収納し、その昇温から
水和反応の進行を調べたが、この実施例では開放
容器に収納し、室温下に放置して外気温の影響下
で水和反応の進行をしらべた。 第1表に試験条件、第2図に経過時間と試料温
度の相関グラフを示す。調合水として粒状氷(−
2℃)を用い混練し、氷が残存する試料()、
()は0℃に達するのに1.83時間、1.08時間を
要する。これに反して調合水として水(0℃)を
用いた試料()、()は混練直後から昇温し、
水和反応の著しい進行が認められた。 すなわち、残存する粒状氷は融解に可成りの時
間を要し、その間、低温を維持し、遊離水を減じ
て水和反応を抑制する作用が認められ、前記、実
施例1における試料()、()と試料()と
の関係と同様な傾向が確認できた。
[Industrial Application Field] The present invention relates to a method for transporting hydraulic cementitious compositions such as mortar and concrete (hereinafter referred to as mortars). [Prior Art] Currently, in Japan, almost all on-site concrete is mixed at ready-mix concrete plants (ready-mix concrete plants), loaded onto truck agitators, and transported to the casting site. However, due to the progress of the hydration reaction of cement in mortar, slump loss occurs during transportation, resulting in a decrease in workability, so there is a time limit between the time it is prepared and the time it is poured. In recent years, cure retarders have been developed to suppress deterioration of workability during transportation, but it has generally been difficult to adjust the hydration time. For this reason, there was a natural limit to the time and distance for transporting mortar. [Purpose of the Invention] This invention was made in view of the above circumstances, and its purpose is to propose a method for transporting mortars that suppresses the progress of hydration reactions and enables long-term transportation or long-distance transportation. There is something to do. [Structure of the Invention] This method of transporting mortar involves adding granular ice instead of mixed water to cement or cement and aggregate, etc., and the granular ice gradually melts, and the cement or cement is mixed around the wet granular ice. It is characterized in that it is stirred and mixed with aggregate etc. sprinkled on it, and then transferred to the transportation process when granular ice remains and a macroscopically homogeneous mixed system is formed. In this transportation method, when preparing mortar, granular ice is added instead of water and mixed with cement or cement, aggregate, etc. in a solid phase. Granular ice has cement or cement, aggregate, etc. attached to its surroundings, and becomes like particles sprinkled with powder.
They are dispersed to form a microscopically heterogeneous but macroscopically homogeneous mixed system. During this mixing process, the granular ice is surrounded by powder and covered with a heat insulating layer, which slows down the melting and reduces free water to suppress the hydration reaction. Following this mixing process, when the granular ice remains and forms a macroscopically homogeneous mixed system, it is stored in the drum of a truck mixer vehicle or the like and transferred to the transportation process. During this transport process, the presence of granular ice prevents temperature rise, reduces free water, and suppresses hydration reactions. At the same time, the granular ice gradually melts during this transport process, but the melt water diffuses and wets the surrounding cement or aggregate, creating a microscopically homogeneous mixture where no granular ice remains by the time of pouring. It can be transferred to other types of mortars. The temperature of the macroscopically homogeneous mortar mixture obtained by adding and mixing granular ice instead of mixed water is influenced by the outside temperature, the ratio and temperature of granular ice added, the ratio and temperature of other materials, the insulation properties of the mixing tank, etc. However, by adjusting these conditions appropriately, it is possible to easily produce mortars at a temperature close to 0°C in the presence of granular ice. If there is a large proportion of granular ice remaining at the time of transfer, the low temperature maintenance time will naturally be longer and the hydration reaction can be suppressed for a long time, but if even a small proportion remains, the mortar temperature will be at a low temperature close to 0°C. In addition, since the heat of fusion that prevents temperature rise is retained as latent heat, mortar can be maintained at a low temperature for a long time compared to the conventional case of simply transporting low-temperature mortar, and the object of the present invention can be achieved. Mortar is usually loaded into the drum of a truck mixer and transported to its destination. However, when transported at high temperatures or over long distances (for long periods of time), the materials may be covered with a heat insulating material or stored in a space such as a drum of a mixer truck cooled by a cooling device. The melting time of ice is highly dependent on the temperature of the granular ice and the ice diameter. For this reason, the ice temperature and ice diameter are appropriately selected in consideration of outside air temperature, transportation time, etc., and the time until melting is controlled. In order to adjust the ice diameter to a predetermined value, the granular ice can be sieved and used as necessary. The granular ice may be used by crushing ice cubes at a predetermined temperature, or may be used by deep cooling granular ice to a predetermined temperature. Furthermore, cement aggregate and the like can be cooled in advance and mortar can be prepared. In addition, with this transportation method, it is preferable to supply the entire amount of water required for the hydration reaction of cement as granular ice, but since sand and other aggregates usually contain some moisture, Mixed water with the water removed will be supplied in the form of granular ice. [Function] This method of transporting mortar involves stirring and mixing the granular ice with cement, aggregate, etc. sprinkled around it during the mixing process, which suppresses the melting of the granular ice and maintains a low temperature. Since there is little melt water at the beginning, the hydration reaction can be suppressed to a low level. This state continues in the transportation process after mixing, and the remaining granular ice reduces free water, prevents temperature rise, slows down the hydration reaction, and suppresses a decrease in slump value. The macroscopically homogeneous mixed system formed by the addition of granular ice during the mixing process can easily transition to a microscopically homogeneous mixed system as the granular ice melts, so it is often carried in the drum of a truck mixer during the transportation process. Even if granular ice remains under such conditions, it will not affect the uniformity of the mortar during pouring. [Example] Example 1 Granular ice (-2℃)/cement (20℃) at 0.3/
Samples immediately after mixing (), samples left at room temperature (26-28℃) for 1.5 hours after mixing (), samples left at room temperature (26-28℃) for 2.5 hours (), and comparison. For example, water at room temperature,
Immediately after mixing samples () of cement paste mixed with cement (mixing ratio 0.3/1) were filled and sealed in styrofoam insulation boxes with an internal dimension of 10 x 10 x 10 cm and a thickness of 30 mm, and the center temperature was measured. . The results were as shown in the graph. The curve () shows a sample () of a macroscopically homogeneous mixed system in which granular ice remains immediately after mixing, and the sample was able to maintain a temperature below freezing for a long time, significantly delaying the hydration reaction. Curves () and () are the curves for samples () and (), respectively, where the same sample as sample () was left at room temperature for 1.5 hours and 2.5 hours, and the temperature rose to 2℃ and 16℃ as the granular ice melted. be. The curve () is that of the comparative sample (). According to this graph, the granular ice remaining in the cement paste is difficult to melt, and if it is placed in an insulated box like the sample () (equivalent to transportation under favorable conditions), it will maintain a temperature below freezing for a long time. It can be seen that the hydration reaction can be significantly delayed. In addition, even if the samples () and () are left at relatively high temperatures (corresponding to transportation under adverse conditions), the temperature at 2℃ after 1.5 hours is 2.5℃.
After hours, the temperature only rose to 16°C, indicating that it takes time for the remaining granular ice to melt. For example, if the temperature at the time of cement paste placement after transportation is specified to be below 35℃ or 40℃,
Samples (), (), and () can be transported for a significantly longer time than sample (). For example, if the temperature rise from mixing to pouring is specified to be 20℃ or less, and ignoring the differences in conditions between samples, samples (), (), (), and () are respectively about
The transportation time will be 10 hours, about 6.5 hours, about 4 hours, and about 2.5 hours. Example 2 In Example 1, the sample was stored in an insulated box, and the progress of the hydration reaction was investigated by increasing the temperature; however, in this example, the sample was stored in an open container, left at room temperature, and left under the influence of outside temperature. The progress of the hydration reaction was investigated. Table 1 shows the test conditions, and Figure 2 shows a correlation graph between elapsed time and sample temperature. Granular ice (−
Samples () with ice remaining after kneading at 2°C),
() takes 1.83 hours and 1.08 hours to reach 0℃. On the other hand, for samples () and () using water (0°C) as the mixing water, the temperature rose immediately after kneading.
Remarkable progress of the hydration reaction was observed. In other words, the remaining granular ice takes a considerable amount of time to melt, and during that time it maintains the low temperature, reduces free water, and suppresses the hydration reaction. A similar trend to the relationship between () and sample () was confirmed.

〔発明の効果〕〔Effect of the invention〕

この発明は以上の通りであり、この輸送方法は
輸送時モルタル類のスランプ値の低下を抑制し、
モルタル類打設の作業性および品質を良好に維持
することができる。また、生コンクリートプラン
ト等のモルタル類製造プラントの供給可能域が拡
大し、プラント稼動率の向上、遠隔地におけるモ
ルタル類打設工事の能率化が達成できる。
The present invention is as described above, and this transportation method suppresses a decrease in the slump value of mortar during transportation,
Good workability and quality of mortar can be maintained. In addition, the supply area of mortar manufacturing plants such as ready-mixed concrete plants will be expanded, and it will be possible to improve plant operation rates and streamline mortar placement work in remote areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ実施例1および実施
例2のセメントペーストの経過時間と温度との相
関グラフである。
FIG. 1 and FIG. 2 are graphs of the correlation between elapsed time and temperature for the cement pastes of Example 1 and Example 2, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 モルタル類を輸送するに当たつて、セメント
あるいはセメントと骨材に調合水に代わり粒状氷
を添加し、粒状氷が徐々に融解し、湿潤した粒状
氷の周りにセメントあるいはセメントと骨材等が
まぶされた状態で撹拌混合し、引続き粒状氷が残
存し巨視的均一混合系をなす時点で輸送過程に移
すことを特徴とするモルタル類の輸送方法。
1 When transporting mortar, granular ice is added to cement or cement and aggregate instead of mixed water, and the granular ice gradually melts, and cement or cement and aggregate, etc. are added around the wet granular ice. A method for transporting mortars, which is characterized in that the mortar is stirred and mixed in a covered state, and then transferred to the transport process when granular ice remains and a macroscopically homogeneous mixed system is formed.
JP60205039A 1985-07-03 1985-09-17 Method for transporting mortars Granted JPS6270279A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP60205039A JPS6270279A (en) 1985-09-17 1985-09-17 Method for transporting mortars
PCT/JP1986/000029 WO1987000163A1 (en) 1985-07-03 1986-01-24 Process for producing mortar and method for applying the same
US07/030,851 US4830669A (en) 1985-07-03 1986-01-24 Method of producing and applying mortar
DE8686900850T DE3683637D1 (en) 1985-07-03 1986-01-24 PRODUCTION METHOD OF MORTAR AND USE METHOD.
AU53904/86A AU590743B2 (en) 1985-07-03 1986-01-24 Process for producing mortar and method for applying the same
KR1019870700173A KR950002919B1 (en) 1985-07-03 1986-01-24 Method of producing and applying mortar
AT86900850T ATE71926T1 (en) 1985-07-03 1986-01-24 MANUFACTURING PROCESSES OF MORTAR AND USE PROCESSES.
EP86900850A EP0241554B1 (en) 1985-07-03 1986-01-24 Process for producing mortar and method for applying the same
CA000500400A CA1247661A (en) 1985-07-03 1986-01-27 Method of preparing and handling cement-containing composition
CN198686100892A CN86100892A (en) 1985-07-03 1986-01-28 The accord method of mortar class and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205039A JPS6270279A (en) 1985-09-17 1985-09-17 Method for transporting mortars

Publications (2)

Publication Number Publication Date
JPS6270279A JPS6270279A (en) 1987-03-31
JPH0253206B2 true JPH0253206B2 (en) 1990-11-16

Family

ID=16500432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205039A Granted JPS6270279A (en) 1985-07-03 1985-09-17 Method for transporting mortars

Country Status (1)

Country Link
JP (1) JPS6270279A (en)

Also Published As

Publication number Publication date
JPS6270279A (en) 1987-03-31

Similar Documents

Publication Publication Date Title
CA2207915C (en) Low-heat high-performance concrete
WO2017106922A1 (en) Cementitious composition
US20040050301A1 (en) Method and device for the production of concrete
AU739884B2 (en) Cement composition, concrete using the same and method of manufacturing concrete product
JPH0253206B2 (en)
JP2879017B2 (en) Heat of hydration control concrete and concrete crack control method
JP2008223385A (en) Porous concrete and its manufacturing process
EP0560837B1 (en) Lightweight aggregate
JPS6233049B2 (en)
US9328019B2 (en) Process to produce a durable concrete at hot ambient conditions
JPH0515660B2 (en)
JP2000044317A (en) Construction of concrete structure and concrete therefor
JPS61286457A (en) Construction method of concrete
JP2001151552A (en) Premixed concrete material and concrete using the same
JPS60221354A (en) Cement admixture
JPS6353924B2 (en)
JPH0196051A (en) Method for casting concrete in cold season
JPS62199407A (en) Kneading method of concrete-mortar
CA1333914C (en) Compositions of no mix compounds and methods of applying same
JPH09169554A (en) Microcapsuled cement hydration exothermicity suppressing material and production of cement hardened material using the same
JP2829668B2 (en) Cement composition
JPS63312106A (en) Manufacture of concrete
JPH07144942A (en) Method for inhibiting hydration reaction of cement by coating
JP4290895B2 (en) Cement crystal growth material in concrete or mortar
JPH08170337A (en) Concrete block for tree-planting