JPH0253161B2 - - Google Patents

Info

Publication number
JPH0253161B2
JPH0253161B2 JP56213814A JP21381481A JPH0253161B2 JP H0253161 B2 JPH0253161 B2 JP H0253161B2 JP 56213814 A JP56213814 A JP 56213814A JP 21381481 A JP21381481 A JP 21381481A JP H0253161 B2 JPH0253161 B2 JP H0253161B2
Authority
JP
Japan
Prior art keywords
tool
machining
spindle axis
machining area
nose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56213814A
Other languages
Japanese (ja)
Other versions
JPS58120447A (en
Inventor
Shoji Momoi
Kyohisa Mizoguchi
Hajime Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamazaki Mazak Corp
Original Assignee
Yamazaki Mazak Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamazaki Mazak Corp filed Critical Yamazaki Mazak Corp
Priority to JP56213814A priority Critical patent/JPS58120447A/en
Publication of JPS58120447A publication Critical patent/JPS58120447A/en
Publication of JPH0253161B2 publication Critical patent/JPH0253161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35525Use same data for different operations, coarse and fine, cutting and grinding
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50213Grooving of different forms or parallel to each other, grooving cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】 本発明は、数値制御旋盤において、溝入れ加工
を自動的に行なわせる、溝入れ加工制御方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grooving control method for automatically performing grooving in a numerically controlled lathe.

最近、数値制御旋盤においては、加工形状によ
り分類された複数の加工パターンを予め登録して
おき、作業者は製作図面に示された最終加工形状
に基いた加工情報を入力するだけで、旋盤の方で
加工プログラムの作成及び実行、即ち加工を自動
的に行なう制御方法が開発されつつある。
Recently, in numerically controlled lathes, multiple machining patterns classified by machining shape are registered in advance, and the operator can control the lathe by simply inputting machining information based on the final machining shape shown in the production drawing. On the other hand, control methods for automatically creating and executing machining programs, that is, automatically performing machining, are being developed.

しかし、溝入れ工具を用いた溝入れ加工はその
制御が複雑なためにまだ自動化が行なわれておら
ず、従来から、プログラマによる加工プログラム
の作成に頼つていたが、この作業は専門の知識と
高度の熟練を要し、加工プログラムも長大化して
それだけプログラムミスも生じ易い欠点があつ
た。一方、数値制御旋盤には、溝入れ加工の固定
サイクルが設けられている場合もあるが、この固
定サイクルはいずれもU字形の、いわゆるストレ
ート型の溝しか形成することができず、V字形や
台形の溝の形成はできなかつた。
However, grooving using a grooving tool has not yet been automated due to its complicated control, and has traditionally relied on the creation of machining programs by programmers, but this work requires specialized knowledge. This requires a high degree of skill, and the machining program is also long, which has the disadvantage that program errors are more likely to occur. On the other hand, some numerically controlled lathes are equipped with canned cycles for grooving, but these canned cycles can only form U-shaped, so-called straight, grooves; they can only form V-shaped or straight grooves. It was not possible to form trapezoidal grooves.

即ち、通常のバイトは切削すべき形状に対して
平行に、例えばワークの外周を円筒状に加工する
場合には、最終加工形状がZ軸と平行な方向とな
るので、バイトをZ軸と平行な方向に移動させ
て、外形を形成するのに対して、溝入れ工具は、
切削すべき形状に対して、直角方向に、あたかも
ワークを突つ切るかのように移動させて加工を行
なう。従つて、U字形の溝は容易に切削可能であ
るが、V字形の溝や前後のコーナの面取りやR取
り加工を有する溝斜面部の加工を行なうには、工
具を切削形状に対して平行に移動させなければな
らない要素があるために、工具に隣接するワーク
の未加工部分と工具とが干渉して、加工が不可能
となる。このため、溝斜面部を加工するために、
溝入れ工具によるU字形の溝加工の後、更に通常
のバイトを用いて当該部分の加工を行なう必要が
あり、加工プログラムの作成が極めて煩雑であつ
た。本発明は、前述の欠点を解消すべく、単一の
溝入れ工具で各種形状の溝を加工することが出
来、従つて、加工プログラムの作成も容易に行な
うことの出来る数値制御旋盤における溝入れ加工
制御方法に関する。
In other words, a normal cutting tool is used parallel to the shape to be cut.For example, when machining the outer circumference of a workpiece into a cylindrical shape, the final machining shape is parallel to the Z-axis, so the cutting tool is used parallel to the Z-axis. Grooving tools move in different directions to form the outer shape, whereas grooving tools
Machining is performed by moving the workpiece in a direction perpendicular to the shape to be cut, as if cutting through it. Therefore, U-shaped grooves can be easily cut, but when machining V-shaped grooves or groove slopes with chamfering or rounding of the front and rear corners, it is necessary to hold the tool parallel to the cutting shape. Because there are elements that must be moved, the tool interferes with the unmachined part of the workpiece adjacent to the tool, making machining impossible. Therefore, in order to process the groove slope part,
After machining a U-shaped groove using a grooving tool, it is necessary to further process the corresponding part using a normal cutting tool, making the creation of a machining program extremely complicated. In order to eliminate the above-mentioned drawbacks, the present invention provides a method for grooving in a numerically controlled lathe that can machine grooves of various shapes with a single grooving tool, and therefore allows easy creation of machining programs. It relates to a processing control method.

即ち、本発明は、所定の工具幅を有し、工具先
端両側にノーズRの形成された溝入れ工具を、形
成すべき溝の底部に対して直角方向に移動させ
て、該移動により溝を被加工物外周部に切削形成
する旋盤の溝入れ加工において、被加工物に底部
加工領域、斜面加工領域を有する加工ラインを設
定すると共に加工すべき溝を左右方向に第1工程
及び第2工程に分割し、 前記第1工程の加工を、 第1工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第1工程側のノーズRを基準にして前記
工具の主軸軸心方向の位置決めを行ない、該位置
決めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで前記主軸軸心に向かつて移動させ、
更に前記加工ラインに沿つて第2工程側に移動さ
せた後、主軸軸心に対して直角方向に退避させる
工具軌跡を、1回又は、主軸軸心方向へ工具を所
定量だけシフトさせつつ2回以上繰り返して前記
斜面加工領域の加工を行なうことにより行ない、 第2工程の加工を、 第2工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第2工程に斜面加工領域が含まれる場合
には、第2工程側のノーズRを基準にして前記工
具の主軸軸心方向の位置決めを行ない、該位置決
めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで前記主軸軸心に向かつて移動させ、
更に前記加工ラインに沿つて第1工程側に移動さ
せた後、主軸軸心に対して直角方向に退避させる
工具軌跡を、1回又は、主軸軸心方向へ工具を所
定量だけシフトさせつつ2回以上繰り返して前記
斜面加工領域の加工を行なうことにより行ない、 前記第1及び第2工程を制御することにより、
少なくとも一方の側に斜面部を有する溝を、同一
の溝入れ工具を用いて被加工物外周部に切削形成
するようにして構成される。
That is, in the present invention, a grooving tool having a predetermined tool width and having noses R formed on both sides of the tool tip is moved in a direction perpendicular to the bottom of the groove to be formed, and the groove is formed by this movement. In the lathe grooving process to cut and form the outer circumference of a workpiece, a machining line having a bottom machining area and a slope machining area is set on the workpiece, and the groove to be machined is horizontally moved in the first and second steps. The processing of the first step is performed by positioning the tool in the direction of the spindle axis based on the nose R on the first step side, and moving the positioned tool in the direction perpendicular to the spindle axis. , a tool trajectory in which the tool is moved toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then retracted in the opposite direction, once or
Machining the bottom machining area is repeated two or more times while shifting the tool by a predetermined amount in the direction of the spindle axis, and then positioning the tool in the direction of the spindle axis with reference to the nose R on the first process side. moving the positioned tool from a direction perpendicular to the spindle axis toward the spindle axis until the nose R reaches the machining line of the slope machining area;
Furthermore, after moving the tool along the machining line to the second process side, the tool trajectory to be retracted in a direction perpendicular to the spindle axis is changed once or twice while shifting the tool by a predetermined amount in the direction of the spindle axis. The machining of the second step is carried out by repeatedly machining the slope machining area more than once, and the tool is positioned in the spindle axis direction with reference to the nose R on the second step side. The tool is moved from a direction perpendicular to the spindle axis toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then is retracted in the opposite direction. times or
The bottom machining area is machined twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then, if the second process includes a slope machining area, the nose on the second process side is The tool is positioned in the direction of the spindle axis using R as a reference, and the positioned tool is moved along the spindle from a direction perpendicular to the spindle axis until the nose R reaches the machining line of the slope machining area. Move it toward the axis,
Furthermore, after moving the tool along the machining line to the first process side, the tool locus for retreating in a direction perpendicular to the spindle axis is changed once or twice while shifting the tool by a predetermined amount in the direction of the spindle axis. By repeating the machining of the slope machining area more than once, and by controlling the first and second steps,
A groove having a sloped portion on at least one side is formed by cutting on the outer circumference of the workpiece using the same grooving tool.

また、本発明は、所定の工具幅を有し、工具先
端両側にノーズRの形成された溝入れ工具を、形
成すべき溝の底部に対して直角方向に移動させ
て、該移動により溝を被加工物外周部に切削形成
する旋盤の溝入れ加工において、 被加工物に底部加工領域、斜面加工領域を有す
る加工ラインを設定すると共に加工すべき溝を左
右方向に第1工程及び第2工程に分割し、 第1工程の加工を、 第1工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第1工程に斜面加工領域が含まれる場合
には、第1工程側のノーズRを基準にして前記工
具の主軸軸心方向の位置決めを行ない、該位置決
めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで主軸軸心に向かつて移動させ、更に
前記加工ラインに沿つて第2工程側に移動させた
後、主軸軸心に対して直角方向に退避させる工具
軌跡を、1回又は、主軸軸心方向へ工具を所定量
だけシフトさせつつ2回以上繰り返して前記斜面
加工領域の加工を行なうことにより行ない、 前記第2工程の加工を、 第2工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで主軸軸心に向かつて移動させた後、逆
方向に退避させる工具軌跡を、1回又は、主軸軸
心方向へ工具を所定量だけシフトさせつつ2回以
上繰り返して前記底部加工領域の加工を行ない、 次に、第2工程側のノーズRを基準にして前記
工具の主軸軸心方向の位置決めを行ない、該位置
決めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで主軸軸心に向かつて移動させ、更に
前記加工ラインに沿つて第1工程側に移動させた
後、主軸軸心に対して直角方向に退避させる工具
軌跡を、1回又は、主軸軸心方向へ工具を所定量
だけシフトさせつつ2回以上繰り返して前記斜面
加工領域の加工を行なうことにより行ない、 前記第1及び第2工程を制御することにより、
少なくとも一方の側に斜面部を有する溝を、同一
の溝入れ工具を用いて被加工物外周部に切削形成
するようにして構成される。
In addition, the present invention moves a grooving tool having a predetermined tool width and noses R formed on both sides of the tool tip in a direction perpendicular to the bottom of the groove to be formed, and by this movement, the groove is formed. In the lathe grooving process that cuts and forms the outer circumference of the workpiece, a machining line having a bottom machining area and a slope machining area is set on the workpiece, and the groove to be machined is placed in the first and second processes in the left and right direction. The first process is performed by positioning the tool in the direction of the spindle axis based on the nose R on the first process side, and moving the positioned tool in the direction perpendicular to the spindle axis. , a tool trajectory in which the tip of the tool is moved toward the spindle axis until it reaches the machining line in the bottom machining area, and then retracted in the opposite direction, once or
The bottom machining area is machined twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then, if the first process includes the slope machining area, the nose on the first process side is The tool is positioned in the direction of the spindle axis based on R, and the positioned tool is moved along the spindle axis from a direction perpendicular to the spindle axis until the nose R reaches the machining line of the slope machining area. The tool is moved toward the center, further moved along the machining line to the second process side, and then retracted in a direction perpendicular to the spindle axis once, or the tool is moved in the direction of the spindle axis. The machining of the slope machining area is carried out twice or more while shifting by a predetermined amount, and the machining of the second process is performed in the direction of the main axis of the tool with reference to the nose R on the second process side. After performing positioning, the positioned tool is moved from a direction perpendicular to the spindle axis toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then in the opposite direction. Machining the bottom machining area is performed by repeating the retracting tool trajectory once or twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then using the nose R on the second process side as a reference. to position the tool in the spindle axis direction, and move the positioned tool toward the spindle axis from a direction perpendicular to the spindle axis until the nose R reaches the machining line in the slope machining area. After moving the tool and moving it further along the machining line to the first process side, the tool locus is retracted in a direction perpendicular to the spindle axis, either once or by shifting the tool by a predetermined amount in the direction of the spindle axis. by repeatedly machining the slope machining area two or more times while controlling the first and second steps,
A groove having a sloped portion on at least one side is formed by cutting on the outer circumference of the workpiece using the same grooving tool.

以下、図面に示す実施例に基き、本発明を具体
的に説明する。
The present invention will be specifically described below based on embodiments shown in the drawings.

第1図は本発明が適用された数値制御旋盤の制
御部分の一例を示すブロツク図、 第2図は加工すべき溝を示す図、 第3図は加工領域を示す部分拡大図、 第4図及び第5図は工具軌跡を示す図である。
Fig. 1 is a block diagram showing an example of a control part of a numerically controlled lathe to which the present invention is applied, Fig. 2 is a diagram showing a groove to be machined, Fig. 3 is a partially enlarged view showing a machining area, and Fig. 4 and FIG. 5 are diagrams showing tool trajectories.

数値制御旋盤1は、第1図に示すように、主制
御部2を有しており、主制御部2にはデータメモ
リ3、キーボード5、加工制御部6、デイスプレ
イ7、プログラムメモリ9、加工展開制御部1
0、切削条件決定制御部15等が接続している。
加工制御部6には工具送り用のX軸送り駆動モー
タ11、Z軸送り駆動モータ12及び、主軸駆動
モータ13が接続しており、加工展開制御部10
には加工パターンメモリ19が接続している。
As shown in FIG. 1, the numerically controlled lathe 1 has a main control section 2, which includes a data memory 3, a keyboard 5, a processing control section 6, a display 7, a program memory 9, and a processing section. Deployment control unit 1
0, the cutting condition determination control section 15, etc. are connected.
The machining control unit 6 is connected to an X-axis feed drive motor 11 for tool feeding, a Z-axis feed drive motor 12, and a spindle drive motor 13, and the machining development control unit 10
A machining pattern memory 19 is connected to.

数値制御旋盤1は、以上のような構成を有する
ので、被加工物16に、第2図に示すような台形
の溝16aを切削形成する、溝入れ加工を行なう
場合には、作業者は、キーボード5を操作して始
点SPと終点FPの座標、溝幅W1、前コーナ16
b及び後コーナ16cの面取り、R取り加工の有
無及び形状、使用する溝入れ工具17の幅、両端
のノーズR等を加工情報INFとして入力する。加
工情報INFはデータメモリ3中に格納され、情報
INFの入力が完了すると主制御部2は加工展開制
御部10を駆動して、データメモリ3中の加工情
報INFから、溝16aの最終加工形状を、第2図
に示すように決定すると共に、所定の仕上代FT
を見込んだ荒加工ラインRCLを、第3図に示す
ように設定する。荒加工ラインRCLは溝16a
の底部16dに対応した底部加工領域BCA、後
コーナ16cに対応した後コーナ加工領域RCA、
前コーナ16bに対応した前コーナ加工領域
FCA及び溝斜面16eに対応した斜面加工領域
SCAに分割されており、各領域の境界には、境
界点PA,PB,……PD,PE,……PHが、第2図に
示すように設定される(第2図に示す場合、溝1
6aの形状は、第2図中心線CLに対して左右対
称に設定される。)制御部10は、第4図及び第
5図に示すように、溝16aを境界点PDを境に
して図中左右に分割し、図中左方を加工する第1
荒仕上工程と図中右方を加工する第2荒仕上工程
とに分離し、加工パターンメモリ19から、各加
工領域における工具の移動パターンPATを読み
出して、具体的な工具軌跡について決定する。即
ち、移動パターンPATは、底部加工領域BCAに
おいては、工具17のどちらか一方の側のノーズ
Rを基準にして、当該ノーズRのZ座標位置を所
定のスタート位置に位置決めすると共に、該スタ
ート位置から−X方向、従つて、底部加工領域
BCAに対して直角方向、即ちZ軸である主軸軸
心に向かつてペツキングしながら工具17を移動
させ、工具先端17bが荒加工ラインRCLに達
したところで、境界点PD,PH間を直線補間した
後、又は何らの補間も行なわず直ちに、+X方向
に退避させるパターンPATであり、当該パター
ンを1回又は、工具17を主軸軸心方向に所定量
づつシフトさせた形で2回以上繰り返すことによ
り加工を行なう。前後コーナ加工領域FCA,
RCAにおいては、工具17のどちらか一方の側
のノーズRを基準にして、当該ノーズRのZ座標
位置を所定のスタート位置に位置決めすると共
に、該スタート位置から荒加工ラインRCLまで
は被加工物方向、即ち主軸軸心(Z軸)に向かつ
てペツキングしながら工具17を移動させ、工具
17のコーナ側のノーズRが荒加工ラインRCL
に達したところで、境界点PA,PB間、PE,PF間、
PC,PD間、PG,PH間を、加工情報INFに基く面
取り加工及びR取り加工に応じて直線又は円弧補
間させ、それが完了したところで工具17を+X
方向に退避させるパターンである。なお、ノーズ
Rによる面取り加工及びR取り加工は、通常の旋
削加工における公知のノーズR補正と同様の補正
を行なつて加工を行う。即ち、溝入れ工具のノー
ズR部分を真円の一部とみなして、その真円上の
1点が常に荒加工ラインRCLに接するように工
具を移動させて加工を行なうパターンとなる。更
に斜面加工領域SCAにおいては、工具17のど
ちらか一方の側のノーズRを基準にして、当該ノ
ーズRのZ座標位置を所定のスタート位置に位置
決めすると共に、該スタート位置から斜面側のノ
ーズRが荒加工ラインRCLに達するまでは、被
加工物方向にペツキングしながら工具17を移動
させ、その後境界点PB,PC間及びPF,PG間を直
線補間させた後、+X方向に工具を退避移動させ
る移動パターンPATであり、当該パターンを1
回又は、工具17を主軸軸心方向(Z軸方向)に
所定量づつシフトさせた形で2回以上繰り返すこ
とにより加工を行なう。制御部10は各加工領域
における工具17の移動パターンPATを組み合
わせて第1荒仕上げ工程における具体的な工具軌
跡を決定する。即ち、工具17は、まず第1荒仕
上げ工程側のノーズRである左端17aのZ座標
と境界点PDのZ座標が一致する形で準備位置A
1に位置決めされ、次いで、第4図に示すよう
に、各加工領域の移動パターンPATに従つた軌
跡PR1,PR2,……PR13,PR14上を工具
17を主軸軸心方向であるZ軸方向に所定量ずつ
シフトさせた形で移動し、もつて荒加工ライン
RCLに従つた形状に溝16aの図中略左半分を
切削する工具軌跡PRとなる(第4図においては
第1荒仕上げ工程において加工の基準となるノー
ズR、即ち工具左端17aの移動軌跡を示してい
る。)。第1荒仕上げ工程における工具軌跡PRが
決定されたところで、制御部10は第2荒仕上げ
工程の工具軌跡QRを決定する。即ち、工具17
は、底部加工領域BCAの第1荒仕上げ工程にお
いて加工された部分に接続する準備位置A2に、
Z軸、即ち主軸軸線方向が位置決めされ、次い
で、第5図に示すように、各加工領域の移動パタ
ーンPATに従つて、軌跡QR1,QR2,………
QP14,QR15上を工具17を主軸軸心方向で
あるZ軸方向に所定量ずつシフトさせた形で移動
し、荒加工ラインRCLに従つた形状に溝16a
の図中略右半分を切削する工具軌跡QRとなる
(第5図においては、第2荒仕上げ工程において
加工の基準となるノーズR、即ち工具右端17c
の移動軌跡を示している。)。なお、この際、軌跡
PR,QRが二つ以上の加工領域にわたつて荒加工
ラインRCL上を移動する場合も生じるが、その
場合、各領域についてそれぞれの移動パターン
PATが適用される。即ち、軌跡PR5について述
べると、軌跡PR5は斜面加工領域SCAと後コー
ナ加工領域RCA内を移動するが、領域SCA内で
は境界点PB,PC間を直線補間する形で移動し、
領域RCA内では点PC,PD間を円弧補間する形で
移動することになる。こうして、第1及び第2荒
仕上工程の工具軌跡PR,QRが決定されると、展
開制御部10は仕上げ工程の工具軌跡SRの決定
を行なうが、この場合の工具の移動パターン
PATは、第2図に示すように、まず第1荒仕上
げ工程で荒加工された部分を、前コーナ加工領域
FCA、斜面加工領域SCA、後コーナ加工RCA、
底部加工領域BCAの順に仕上代FTを除去する形
で工具左端17aを移動させて、当該工具左端1
7aを基準に加工を行ない、次に、工具右端17
cを、第2荒仕上げ工程で荒加工された部分につ
いて同様に移動させて、当該工具右端17cを基
準に加工を行なうパターンPATであり、該パタ
ーンPATに基いて工具軌跡SRは、第2図に示す
ように決定される。こうして、荒仕上げ及び仕上
両工程における工具軌跡PR,QR,SRが決定さ
れたところで、それ等は切削条件決定制御部15
が決定した各工程における送り速度、主軸回転速
度等の切削条件と共に加工プログラムPROとし
てプログラムメモリ9に格納される。なお、実際
の加工は、プログラムメモリ9中の加工プログラ
ムPROに従つて加工制御部6がX軸及びZ軸送
り駆動モータ11,12及び主軸駆動モータ13
を駆動制御し、被加工物16を回転駆動させると
共に、工具17を工具軌跡PR,QR,SRに従つ
て移動させ、溝16aを準備位置A1よりも第4
図左方の加工領域を図中左方の工具17のノーズ
R、即ち工具左端17aを基準にして加工を行な
い、準備位置A2よりも第5図右方の加工領域を
図中右方の工具17のノーズR、即ち工具右端1
7cを基準にして加工を行ない、単一の工具17
で溝16aの加工を行なつてゆく。
Since the numerically controlled lathe 1 has the above-described configuration, when performing grooving to cut and form trapezoidal grooves 16a as shown in FIG. 2 on the workpiece 16, the operator must: Operate the keyboard 5 to enter the coordinates of the start point SP and end point FP, groove width W1, and front corner 16.
The presence or absence of chamfering and rounding of the rear corner 16c and the shape thereof, the width of the grooving tool 17 to be used, the nose radius at both ends, etc. are input as processing information INF. The processing information INF is stored in the data memory 3, and the information
When the input of the INF is completed, the main control section 2 drives the machining development control section 10 to determine the final machining shape of the groove 16a from the machining information INF in the data memory 3 as shown in FIG. Prescribed finishing allowance FT
The rough machining line RCL is set as shown in Fig. 3, taking this into account. Rough machining line RCL is groove 16a
a bottom machining area BCA corresponding to the bottom 16d, a rear corner machining area RCA corresponding to the rear corner 16c,
Front corner machining area corresponding to front corner 16b
Slope machining area compatible with FCA and groove slope 16e
SCA is divided into SCA, and boundary points P A , P B , ... P D , P E , ... P H are set at the boundaries of each area as shown in Fig. 2 (Fig. 2 In the case shown, groove 1
The shape of 6a is set symmetrically with respect to the center line CL in FIG. ) As shown in FIGS. 4 and 5, the control unit 10 divides the groove 16a into left and right parts in the figure with the boundary point P D as a boundary, and processes the first part on the left side in the figure.
The process is separated into a rough finishing process and a second rough finishing process for machining the right side in the figure, and the tool movement pattern PAT in each machining area is read out from the machining pattern memory 19, and a specific tool trajectory is determined. That is, in the bottom machining area BCA, the movement pattern PAT positions the Z coordinate position of the nose R on either side of the tool 17 at a predetermined start position with reference to the nose R on either side of the tool 17. from -X direction, therefore the bottom machining area
The tool 17 is moved while pecking in a direction perpendicular to BCA, that is, toward the spindle center which is the Z axis, and when the tool tip 17b reaches the rough machining line RCL, a straight line is drawn between the boundary points P D and P H. This is a pattern PAT in which the tool is retracted in the +X direction after interpolation or immediately without any interpolation, and the pattern is repeated once or twice or more with the tool 17 shifted by a predetermined amount in the direction of the spindle axis. Processing is performed by Front and rear corner machining area FCA,
In RCA, with reference to the nose R on either side of the tool 17, the Z coordinate position of the nose R is positioned at a predetermined start position, and the workpiece is moved from the start position to the rough machining line RCL. Move the tool 17 while pecking in the direction, that is, the spindle axis (Z-axis), so that the nose R on the corner side of the tool 17 is on the rough machining line RCL.
When the boundary points P A and P B are reached, and between P E and P F ,
Linear or circular interpolation is performed between P C and P D and between P G and P H according to the chamfering and R chamfering based on the machining information INF, and when that is completed, the tool 17 is moved to +
This is a pattern for retreating in the direction. Note that chamfering and rounding using the nose R are performed by performing the same correction as the known nose R correction in normal turning processing. That is, the pattern is such that the nose R portion of the grooving tool is regarded as part of a perfect circle, and the tool is moved so that one point on the perfect circle is always in contact with the rough machining line RCL. Furthermore, in the slope machining area SCA, with reference to the nose R on either side of the tool 17, the Z coordinate position of the nose R is positioned at a predetermined start position, and the nose R on the slope side is moved from the start position. The tool 17 is moved while pecking in the direction of the workpiece until it reaches the rough machining line RCL, then linear interpolation is performed between the boundary points P B and P C and between P F and P G , and then the tool 17 is moved in the +X direction. This is a movement pattern PAT for retracting the tool, and the pattern is 1
Machining is performed by repeating the process twice or more, or by shifting the tool 17 by a predetermined amount in the direction of the spindle axis (Z-axis direction). The control unit 10 determines a specific tool trajectory in the first rough finishing process by combining the movement patterns PAT of the tool 17 in each machining area. That is, the tool 17 is first moved to the preparation position A in such a way that the Z coordinate of the left end 17a, which is the nose R on the first rough finishing process side, and the Z coordinate of the boundary point P D match.
1, and then, as shown in Fig. 4, the tool 17 is moved in the Z-axis direction, which is the spindle axis direction, on the trajectories PR1, PR2, ... PR13, PR14 according to the movement pattern PAT of each machining area. The rough machining line moves by shifting by a predetermined amount.
The tool path PR is to cut approximately the left half of the groove 16a in the figure in accordance with the RCL (Figure 4 shows the movement path of the nose R, which is the reference for machining in the first rough finishing step, that is, the left end of the tool 17a). ing.). Once the tool trajectory PR in the first rough finishing step is determined, the control unit 10 determines the tool trajectory QR in the second rough finishing step. That is, tool 17
is in the preparation position A2 connected to the part machined in the first rough finishing process of the bottom processing area BCA,
The Z-axis, that is, the spindle axis direction, is positioned, and then, as shown in FIG. 5, according to the movement pattern PAT of each processing area, the trajectories QR1, QR2, ......
The tool 17 is moved over QP14 and QR15 by shifting it by a predetermined amount in the Z-axis direction, which is the direction of the spindle axis, and cuts the groove 16a in a shape that follows the rough machining line RCL.
This is the tool path QR for cutting the approximate right half of the figure (in FIG. 5, the tool path QR is the tool path QR, which is the reference point for machining in the second rough finishing process, that is, the tool right end 17c).
The trajectory of the movement is shown. ). In addition, at this time, the trajectory
There are cases where PR and QR move on the rough machining line RCL over two or more machining areas, but in that case, each area has its own movement pattern.
PAT applies. That is, regarding the trajectory PR5, the trajectory PR5 moves within the slope machining area SCA and the back corner machining area RCA, but within the area SCA, it moves between the boundary points P B and P C by linear interpolation,
Within the area RCA, the movement is performed by circular interpolation between the points P C and P D. In this way, when the tool trajectories PR and QR for the first and second rough finishing processes are determined, the deployment control unit 10 determines the tool trajectory SR for the finishing process, but the tool movement pattern in this case is
As shown in Figure 2, PAT first processes the rough-machined part in the first rough-finishing process in the front corner machining area.
FCA, slope machining area SCA, back corner machining RCA,
Move the tool left end 17a in order to remove the finishing allowance FT in the order of the bottom machining area BCA, and
Machining is performed based on 7a, and then the right end of the tool 17
c is a pattern PAT in which the rough-machined part in the second rough-finishing step is similarly moved and machining is performed based on the tool right end 17c, and the tool path SR is determined based on the pattern PAT as shown in FIG. It is determined as shown in . In this way, when the tool trajectories PR, QR, and SR for both the rough finishing and finishing processes are determined, they are processed by the cutting condition determination control section 15.
is stored in the program memory 9 as a machining program PRO along with the cutting conditions such as feed rate and spindle rotation speed for each process determined. In the actual machining, the machining control unit 6 controls the X-axis and Z-axis feed drive motors 11 and 12 and the spindle drive motor 13 according to the machining program PRO in the program memory 9.
The workpiece 16 is rotationally driven, and the tool 17 is moved along the tool trajectories PR, QR, and SR, and the groove 16a is moved from the preparation position A1 to the fourth position.
The machining area on the left side of the figure is machined based on the nose R of the tool 17 on the left side of the figure, that is, the left end 17a of the tool, and the machining area on the right side of FIG. Nose R of 17, that is, tool right end 1
Processing is performed based on 7c, and a single tool 17
Then, the groove 16a is machined.

なお、上述の実施例は、台形の溝16aを形成
する場合について述べたが、V字形の溝は、底部
加工領域BCAを少なくすることにより、U字形
の溝は、斜面加工領域SCAを削除することによ
り容易に行なうことが可能となる。例えば、始点
SPと終点FPのZ座標を等しくしてキーボード5
から入力すると、斜面加工領域SCAは設定され
ず、U字形の溝が形成される。また、斜面加工領
域SCAを溝16aの第2図どちらか一方の側に
のみ形成するように構成することも当然可能であ
る。
In addition, although the above-mentioned embodiment described the case of forming the trapezoidal groove 16a, the V-shaped groove reduces the bottom processing area BCA, and the U-shaped groove eliminates the slope processing area SCA. This makes it possible to do this easily. For example, starting point
Keyboard 5 with the Z coordinates of SP and end point FP equal
If input from , the slope machining area SCA is not set and a U-shaped groove is formed. Furthermore, it is naturally possible to form the slope machining area SCA only on one side of the groove 16a in FIG. 2.

なお、上述の実施例は、荒加工ラインRCLを、
底部加工領域BCA、後コーナ加工領域RCA、前
コーナ加工領域FCA、斜面加工領域SCAに分割
した場合について述べたが、荒加工ラインRCL
の設定態様としては、底部加工領域BCA、斜面
加工領域SCAが設定されれば、後コーナ加工領
域RCA、前コーナ加工領域FCAが無くとも溝入
れ工具による溝加工が可能となるので、必ずしも
コーナ加工領域を設ける必要は無い。
In addition, in the above embodiment, the rough machining line RCL is
We have described the case where it is divided into bottom machining area BCA, back corner machining area RCA, front corner machining area FCA, and slope machining area SCA, but rough machining line RCL
As for the setting mode, if the bottom machining area BCA and slope machining area SCA are set, groove machining with a grooving tool is possible even without the rear corner machining area RCA and front corner machining area FCA, so corner machining is not necessarily required. There is no need to provide an area.

以上説明したように、所定の工具幅を有し、工
具先端両側に工具左端17a、及び右端17c等
のノーズRの形成された溝入れ工具17を、形成
すべき溝16aの底部に対して直角方向に移動さ
せて、該移動により溝を被加工物外周部に切削形
成する旋盤の溝入れ加工において、被加工物に底
部加工領域BCA、斜面加工領域SCAを有する荒
加工ラインRCA等の加工ラインを設定すると共
に加工すべき溝を左右方向に第1工程及び第2工
程に分割し、 前記第1工程の加工を、 第1工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第1工程側のノーズRを基準にして前記
工具の主軸軸心方向の位置決めを行ない、該位置
決めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで前記主軸軸心に向かつて移動させ、
更に前記加工ラインに沿つて第2工程側に移動さ
せた後、主軸軸心に対して直角方向に退避させる
工具軌跡を、1回又は、主軸軸心方向へ工具を所
定量だけシフトさせつつ2回以上繰り返して前記
斜面加工領域の加工を行なうことにより行ない、 第2工程の加工を、 第2工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第2工程に斜面加工領域が含まれる場合
には、第2工程側のノーズRを基準にして前記工
具の主軸軸心方向の位置決めを行ない、該位置決
めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで前記主軸軸心に向かつて移動させ、
更に前記加工ラインに沿つて第1工程側に移動さ
せた後、主軸軸心に対して直角方向に退避させる
工具軌跡を、1回又は、主軸軸心方向へ工具を所
定量だけシフトさせつつ2回以上繰り返して前記
斜面加工領域の加工を行なうことにより行ない、 前記第1及び第2工程を制御することにより、
少なくとも一方の側に斜面部を有する溝を、同一
の溝入れ工具を用いて被加工物外周部に切削形成
するようにして構成したので、各種の形状を有す
る溝の加工を単一の溝入れ工具17で簡単に行な
うことが可能となり、従来のように、溝斜面部を
加工するために、溝入れ工具によるU字形の溝加
工の後、更に通常のバイトを用いて当該部分の加
工を行なう等の煩雑な工程が不要となり、加工プ
ログラムの作成が極めて容易となる。とくに、幅
の狭い斜面部を有する溝を加工する場合等におい
ては、従来の方法では、斜面部の加工を行なう際
に、工具刃先を溝中に位置決めした状態で主軸軸
心方向に平行に移動させなければならないので、
ワークと工具刃先が干渉してしまい、加工が不可
能となり、予め形成すべき溝形状に刃先が形成さ
れた総形バイトを使用するしか方法が無かつた
が、本発明によれば、汎用の刃幅の狭い溝入れバ
イトを用いることにより、簡単に幅の狭い斜面部
を有する溝の加工を行なうことが出来る。
As explained above, the grooving tool 17, which has a predetermined tool width and has noses R such as the tool left end 17a and the right end 17c on both sides of the tool tip, is placed at right angles to the bottom of the groove 16a to be formed. In lathe grooving processing in which a groove is cut and formed on the outer periphery of a workpiece by moving the workpiece in a direction, a processing line such as a rough processing line RCA having a bottom processing area BCA and a slope processing area SCA on the workpiece is used. is set, and the groove to be machined is divided into a first process and a second process in the left-right direction, and the machining of the first process is performed in the direction of the main axis of the tool with reference to the nose R on the first process side. After performing positioning, the positioned tool is moved from a direction perpendicular to the spindle axis toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then moved in the opposite direction. The tool path to be retracted is changed once or
Machining the bottom machining area is repeated two or more times while shifting the tool by a predetermined amount in the direction of the spindle axis, and then positioning the tool in the direction of the spindle axis with reference to the nose R on the first process side. moving the positioned tool from a direction perpendicular to the spindle axis toward the spindle axis until the nose R reaches the machining line of the slope machining area;
Furthermore, after moving the tool along the machining line to the second process side, the tool trajectory to be retracted in a direction perpendicular to the spindle axis is changed once or twice while shifting the tool by a predetermined amount in the direction of the spindle axis. The machining of the second step is performed by repeatedly machining the sloped machining area more than once, and the tool is positioned in the spindle axis direction with reference to the nose R on the second step side, and the A tool trajectory in which the tool is moved from a direction perpendicular to the spindle axis toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then retracted in the opposite direction. times or
The bottom machining area is machined twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then, if the second process includes a slope machining area, the nose on the second process side is The tool is positioned in the direction of the spindle axis using R as a reference, and the positioned tool is moved along the spindle from a direction perpendicular to the spindle axis until the nose R reaches the machining line of the slope machining area. Move it toward the axis,
Furthermore, after moving the tool along the machining line to the first process side, the tool locus for retreating in a direction perpendicular to the spindle axis is changed once or twice while shifting the tool by a predetermined amount in the direction of the spindle axis. By repeating the machining of the slope machining area more than once, and by controlling the first and second steps,
Grooves with slopes on at least one side are formed by cutting on the outer periphery of the workpiece using the same grooving tool, so grooves with various shapes can be machined with a single grooving tool. This can be easily done with the tool 17, and as in the past, in order to process the sloped part of the groove, after machining the U-shaped groove with a grooving tool, the corresponding part is further machined using a normal cutting tool. This eliminates the need for such complicated processes, making it extremely easy to create machining programs. In particular, when machining a groove with a narrow sloped area, in the conventional method, when machining the sloped area, the tool tip is positioned in the groove and moved parallel to the spindle axis direction. Because I have to let
The workpiece and the tool cutting edge interfered, making machining impossible, and the only option was to use a full-form cutting tool whose cutting edge was formed in the groove shape that was to be formed in advance.However, according to the present invention, a general-purpose tool By using a grooving tool with a narrow blade width, it is possible to easily process a groove having a narrow sloped portion.

また、所定の工具幅を有し、工具先端両側にノ
ーズRの形成された溝入れ工具を、形成すべき溝
の底部に対して直角方向に移動させて、該移動に
より溝を被加工物外周部に切削形成する旋盤の溝
入れ加工において、 被加工物に底部加工領域、斜面加工領域を有す
る加工ラインを設定すると共に加工すべき溝を左
右方向に第1工程及び第2工程に分割し、 第1工程の加工を、 第1工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第1工程に斜面加工領域が含まれる場合
には、第1工程側のノーズRを基準にして前記工
具の主軸軸心方向の位置決めを行ない、該位置決
めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで主軸軸心に向かつて移動させ、更に
前記加工ラインに沿つて第2工程側に移動させた
後、主軸軸心に対して直角方向に退避させる工具
軌跡を、1回又は、主軸軸心方向へ工具を所定量
だけシフトさせつつ2回以上繰り返して前記斜面
加工領域の加工を行なうことにより行ない、 前記第2工程の加工を、 第2工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで主軸軸心に向かつて移動させた後、逆
方向に退避させる工具軌跡を、1回又は、主軸軸
心方向へ工具を所定量だけシフトさせつつ2回以
上繰り返して前記底部加工領域の加工を行ない、 次に、第2工程側のノーズRを基準にして前記
工具の主軸軸心方向の位置決めを行ない、該位置
決めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで主軸軸心に向かつて移動させ、更に
前記加工ラインに沿つて第1工程側に移動させた
後、主軸軸心に対して直角方向に退避させる工具
軌跡を、1回又は、主軸軸心方向へ工具を所定量
だけシフトさせつつ2回以上繰り返して前記斜面
加工領域の加工を行なうことにより行ない、 前記第1及び第2工程を制御することにより、
少なくとも一方の側に斜面部を有する溝を、同一
の溝入れ工具を用いて被加工物外周部に切削形成
するようにして構成すると、前記した場合とは逆
の工程での加工が可能となる。
In addition, a grooving tool having a predetermined tool width and a nose radius formed on both sides of the tool tip is moved in a direction perpendicular to the bottom of the groove to be formed, and by this movement, the groove is formed around the outer circumference of the workpiece. In the lathe grooving process for cutting and forming on the workpiece, a machining line having a bottom machining area and a slope machining area is set on the workpiece, and the groove to be machined is divided into a first process and a second process in the left and right direction, In the first process, the tool is positioned in the direction of the spindle axis based on the nose R on the first process side, and the positioned tool is moved from the direction perpendicular to the spindle axis. A tool trajectory in which the tip is moved toward the spindle axis until the tip reaches the machining line in the bottom machining area, and then retracted in the opposite direction, once or
The bottom machining area is machined twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then, if the first process includes the slope machining area, the nose on the first process side is The tool is positioned in the direction of the spindle axis based on R, and the positioned tool is moved along the spindle axis from a direction perpendicular to the spindle axis until the nose R reaches the machining line of the slope machining area. The tool is moved toward the center, further moved along the machining line to the second process side, and then retracted in a direction perpendicular to the spindle axis once, or the tool is moved in the direction of the spindle axis. The machining of the slope machining area is carried out twice or more while shifting by a predetermined amount, and the machining of the second process is performed in the direction of the main axis of the tool with reference to the nose R on the second process side. After performing positioning, the positioned tool is moved from a direction perpendicular to the spindle axis toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then in the opposite direction. Machining the bottom machining area is performed by repeating the retracting tool trajectory once or twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then using the nose R on the second process side as a reference. to position the tool in the spindle axis direction, and move the positioned tool toward the spindle axis from a direction perpendicular to the spindle axis until the nose R reaches the machining line in the slope machining area. After moving the tool and moving it further along the machining line to the first process side, the tool locus is retracted in a direction perpendicular to the spindle axis, either once or by shifting the tool by a predetermined amount in the direction of the spindle axis. by repeatedly machining the slope machining area two or more times while controlling the first and second steps,
If a groove having a sloped portion on at least one side is formed by cutting it on the outer circumference of the workpiece using the same grooving tool, processing can be performed in the reverse process to the above case. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用された数値制御旋盤の制
御部分の一例を示すブロツク図、第2図は加工す
べき溝を示す図、第3図は加工領域を示す部分拡
大図、第4図及び第5図は工具軌跡を示す図であ
る。 1……数値制御旋盤、16a……溝、BCA…
…底部加工領域、RCA……後コーナ加工領域、
SCA……斜面加工領域、FCA……前コーナ加工
領域。
Fig. 1 is a block diagram showing an example of a control part of a numerically controlled lathe to which the present invention is applied, Fig. 2 is a diagram showing a groove to be machined, Fig. 3 is a partially enlarged view showing a machining area, and Fig. 4 and FIG. 5 are diagrams showing tool trajectories. 1... Numerical control lathe, 16a... Groove, BCA...
...bottom machining area, RCA...rear corner machining area,
SCA...Slant machining area, FCA...Front corner machining area.

Claims (1)

【特許請求の範囲】 1 所定の工具幅を有し、工具先端両側にノーズ
Rの形成された溝入れ工具を、形成すべき溝の底
部に対して直角方向に移動させて、該移動により
溝を被加工物外周部に切削形成する旋盤の溝入れ
加工において、 被加工物に底部加工領域、斜面加工領域を有す
る加工ラインを設定すると共に加工すべき溝を左
右方向に第1工程及び第2工程に分割し、 前記第1工程の加工を、 第1工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第1工程側のノーズRを基準にして前記
工具の主軸軸心方向の位置決めを行ない、該位置
決めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで前記主軸軸心に向かつて移動させ、
更に前記加工ラインに沿つて第2工程側に移動さ
せた後、主軸軸心に対して直角方向に退避させる
工具軌跡を、1回又は、主軸軸心方向へ工具を所
定量だけシフトさせつつ2回以上繰り返して前記
斜面加工領域の加工を行なうことにより行ない、 第2工程の加工を、 第2工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第2工程に斜面加工領域が含まれる場合
には、第2工程側のノーズRを基準にして前記工
具の主軸軸心方向の位置決めを行ない、該位置決
めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで前記主軸軸心に向かつて移動させ、
更に前記加工ラインに沿つて第1工程側に移動さ
せた後、主軸軸心に対して直角方向に退避させる
工具軌跡を、1回又は、主軸軸心方向へ工具を所
定量だけシフトさせつつ2回以上繰り返して前記
斜面加工領域の加工を行なうことにより行ない、 前記第1及び第2工程を制御することにより、
少なくとも一方の側に斜面部を有する溝を、同一
の溝入れ工具を用いて被加工物外周部に切削形成
するようにして構成した数値制御旋盤における溝
入れ加工制御方法。 2 所定の工具幅を有し、工具先端両側にノーズ
Rの形成された溝入れ工具を、形成すべき溝の底
部に対して直角方向に移動させて、該移動により
溝を被加工物外周部に切削形成する旋盤の溝入れ
加工において、 被加工物に底部加工領域、斜面加工領域を有す
る加工ラインを設定すると共に加工すべき溝を左
右方向に第1工程及び第2工程に分割し、 第1工程の加工を、 第1工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで前記主軸軸心に向かつて移動させた
後、逆方向に退避させる工具軌跡を、1回又は、
主軸軸心方向へ工具を所定量だけシフトさせつつ
2回以上繰り返して前記底部加工領域の加工を行
ない、 次に、第1工程に斜面加工領域が含まれる場合
には、第1工程側のノーズRを基準にして前記工
具の主軸軸心方向の位置決めを行ない、該位置決
めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで主軸軸心に向かつて移動させ、更に
前記加工ラインに沿つて第2工程側に移動させた
後、主軸軸心に対して直角方向に退避させる工具
軌跡を、1回又は、主軸軸心方向へ工具を所定量
だけシフトさせつつ2回以上繰り返して前記斜面
加工領域の加工を行なうことにより行ない、 前記第2工程の加工を、 第2工程側のノーズRを基準にして前記工具の
主軸軸心方向の位置決めを行ない、該位置決めさ
れた工具を、主軸軸心に対して直角方向から、前
記工具の先端が前記底部加工領域の加工ラインに
達するまで主軸軸心に向かつて移動させた後、逆
方向に退避させる工具軌跡を、1回又は、主軸軸
心方向へ工具を所定量だけシフトさせつつ2回以
上繰り返して前記底部加工領域の加工を行ない、 次に、第2工程側のノーズRを基準にして前記
工具の主軸軸心方向の位置決めを行ない、該位置
決めされた工具を、主軸軸心に対して直角方向か
ら、該ノーズRが前記斜面加工領域の加工ライン
に達するまで主軸軸心に向かつて移動させ、更に
前記加工ラインに沿つて第1工程側に移動させた
後、主軸軸心に対して直角方向に退避させる工具
軌跡を、1回又は、主軸軸心方向へ工具を所定量
だけシフトさせつつ2回以上繰り返して前記斜面
加工領域の加工を行なうことにより行ない、 前記第1及び第2工程を制御することにより、
少なくとも一方の側に斜面部を有する溝を、同一
の溝入れ工具を用いて被加工物外周部に切削形成
するようにして構成した数値制御旋盤における溝
入れ加工制御方法。
[Claims] 1. A grooving tool having a predetermined tool width and having noses R formed on both sides of the tool tip is moved in a direction perpendicular to the bottom of a groove to be formed, and the groove is formed by the movement. In the lathe grooving process that cuts and forms the outer periphery of the workpiece, a machining line having a bottom machining area and a slope machining area is set on the workpiece, and the groove to be machined is placed in the first and second steps in the left and right direction. dividing the processing into steps, positioning the tool in the spindle axis direction with reference to the nose R on the first step side, and moving the positioned tool at right angles to the spindle axis. From the direction, the tool trajectory is moved toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then retracted in the opposite direction, once or,
Machining the bottom machining area is repeated two or more times while shifting the tool by a predetermined amount in the direction of the spindle axis, and then positioning the tool in the direction of the spindle axis with reference to the nose R on the first process side. moving the positioned tool from a direction perpendicular to the spindle axis toward the spindle axis until the nose R reaches the machining line of the slope machining area;
Furthermore, after moving the tool along the machining line to the second process side, the tool trajectory to be retracted in a direction perpendicular to the spindle axis is changed once or twice while shifting the tool by a predetermined amount in the direction of the spindle axis. The machining of the second step is carried out by repeatedly machining the slope machining area more than once, and the tool is positioned in the spindle axis direction with reference to the nose R on the second step side. The tool is moved from a direction perpendicular to the spindle axis toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then is retracted in the opposite direction. times or
The bottom machining area is machined twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then, if the second process includes a slope machining area, the nose on the second process side is The tool is positioned in the direction of the spindle axis using R as a reference, and the positioned tool is moved along the spindle from a direction perpendicular to the spindle axis until the nose R reaches the machining line of the slope machining area. Move it toward the axis,
Furthermore, after moving the tool along the machining line to the first process side, the tool locus for retreating in a direction perpendicular to the spindle axis is changed once or twice while shifting the tool by a predetermined amount in the direction of the spindle axis. By repeating the machining of the slope machining area more than once, and by controlling the first and second steps,
A method for controlling grooving in a numerically controlled lathe, in which a groove having a sloped portion on at least one side is cut and formed on the outer circumference of a workpiece using the same grooving tool. 2. A grooving tool having a predetermined tool width and a nose R formed on both sides of the tool tip is moved in a direction perpendicular to the bottom of the groove to be formed, and by this movement, the groove is formed on the outer periphery of the workpiece. In the lathe grooving process, a machining line having a bottom machining area and a slope machining area is set on the workpiece, and the groove to be machined is divided into a first process and a second process in the left and right direction. In the first process, the tool is positioned in the direction of the spindle axis based on the nose R on the first process side, and the positioned tool is moved from the direction perpendicular to the spindle axis to the tip of the tool. The tool is moved toward the spindle axis until it reaches the machining line in the bottom machining area, and then retracted in the opposite direction.
The bottom machining area is machined twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then, if the first process includes the slope machining area, the nose on the first process side is The tool is positioned in the direction of the spindle axis based on R, and the positioned tool is moved along the spindle axis from a direction perpendicular to the spindle axis until the nose R reaches the machining line of the slope machining area. The tool is moved toward the center, further moved along the machining line to the second process side, and then retracted in a direction perpendicular to the spindle axis once, or the tool is moved in the direction of the spindle axis. The machining of the slope machining area is carried out twice or more while shifting by a predetermined amount, and the machining of the second process is performed in the direction of the main axis of the tool with reference to the nose R on the second process side. After performing positioning, the positioned tool is moved from a direction perpendicular to the spindle axis toward the spindle axis until the tip of the tool reaches the machining line in the bottom machining area, and then in the opposite direction. Machining the bottom machining area is performed by repeating the retracting tool trajectory once or twice or more while shifting the tool by a predetermined amount in the direction of the spindle axis, and then using the nose R on the second process side as a reference. to position the tool in the spindle axis direction, and move the positioned tool toward the spindle axis from a direction perpendicular to the spindle axis until the nose R reaches the machining line in the slope machining area. After moving the tool and moving it further along the machining line to the first process side, the tool locus is retracted in a direction perpendicular to the spindle axis, either once or by shifting the tool by a predetermined amount in the direction of the spindle axis. by repeatedly machining the slope machining area two or more times while controlling the first and second steps,
A method for controlling grooving in a numerically controlled lathe, in which a groove having a sloped portion on at least one side is cut and formed on the outer circumference of a workpiece using the same grooving tool.
JP56213814A 1981-12-30 1981-12-30 Control method of grooving work in numerically controlled lathe Granted JPS58120447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56213814A JPS58120447A (en) 1981-12-30 1981-12-30 Control method of grooving work in numerically controlled lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56213814A JPS58120447A (en) 1981-12-30 1981-12-30 Control method of grooving work in numerically controlled lathe

Publications (2)

Publication Number Publication Date
JPS58120447A JPS58120447A (en) 1983-07-18
JPH0253161B2 true JPH0253161B2 (en) 1990-11-15

Family

ID=16645466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56213814A Granted JPS58120447A (en) 1981-12-30 1981-12-30 Control method of grooving work in numerically controlled lathe

Country Status (1)

Country Link
JP (1) JPS58120447A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090653A (en) * 1983-10-22 1985-05-21 Fanuc Ltd Working for range
JPS6150762A (en) * 1984-08-10 1986-03-13 Washino Kikai Kk Optical copy grinding device
JPH0780112B2 (en) * 1985-04-16 1995-08-30 オークマ株式会社 Generating Optimal Grooved Cutting Path on Numerically Controlled Lathe
JPH0685130B2 (en) * 1986-06-13 1994-10-26 日立精機株式会社 Processing area division processing device in automatic processing machine
JPS6455604A (en) * 1987-08-26 1989-03-02 Fanuc Ltd Nc data generating system for grooving
JPH01180009A (en) * 1988-01-11 1989-07-18 Fanuc Ltd Automatic programming system
KR930011214B1 (en) * 1988-01-20 1993-11-29 미쓰비시전기 주식회사 Offset configuration forming method
JP2550490B2 (en) * 1988-07-16 1996-11-06 三菱電機株式会社 Automatic cutting method
CN109093131A (en) * 2018-11-01 2018-12-28 重庆江增船舶重工有限公司 A kind of processing method of cast housing molded line of internal bore
CN109093132A (en) * 2018-11-01 2018-12-28 重庆江增船舶重工有限公司 A kind of cast housing molded line method for turning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343183A (en) * 1976-09-30 1978-04-19 Okuma Mach Works Ltd Controller for working pattern input command of machine tool for numerical value control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343183A (en) * 1976-09-30 1978-04-19 Okuma Mach Works Ltd Controller for working pattern input command of machine tool for numerical value control

Also Published As

Publication number Publication date
JPS58120447A (en) 1983-07-18

Similar Documents

Publication Publication Date Title
US6428252B1 (en) Method for machining
JPH0351548B2 (en)
JPH0319022B2 (en)
EP0323517B1 (en) Profiling method
JPH0253161B2 (en)
US4713747A (en) Numerically controlled machining method using primary and compensating cutters
KR860002075B1 (en) Numerical control method
US20020071732A1 (en) Corner cutting method and NC controller
EP0107147B1 (en) Numerically controlled process and machine operating according to the process
US20170203371A1 (en) Numerical controller having cutting control function through turret rotation
JPS6161924B2 (en)
JPH1058279A (en) Turret tool selection instruction method
JPH10118889A (en) Method for determining cutting condition
JP2845711B2 (en) Machining method of work with character line
JPS58177250A (en) Rough and middle finishing processing method for circular arc and taper in simultaneous uniaxial nc machine tool
JP4286940B2 (en) NC machining program creation method and apparatus for machine tools
JP3490962B2 (en) Tool path creation method and machining method
JPH08174335A (en) Method for chamfering gear-like workpiece
JPH04141311A (en) Method for cutting off with axial feed
JP2002137119A (en) Machining method for gear by machining center
JPH08314515A (en) Machining method and deburring working method
JPH0762802B2 (en) Automatic programming device for numerical controllers
JPH07299696A (en) Contour machining method in cnc machine tool
CN117355801A (en) Numerical controller and processing method
JPS6351281B2 (en)