JPH0252985A - Cooling of furnace material - Google Patents
Cooling of furnace materialInfo
- Publication number
- JPH0252985A JPH0252985A JP20205988A JP20205988A JPH0252985A JP H0252985 A JPH0252985 A JP H0252985A JP 20205988 A JP20205988 A JP 20205988A JP 20205988 A JP20205988 A JP 20205988A JP H0252985 A JPH0252985 A JP H0252985A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- cooling
- liquefied gas
- temperature
- furnace material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 38
- 238000001816 cooling Methods 0.000 title claims abstract description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000007789 gas Substances 0.000 claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract 4
- 239000001569 carbon dioxide Substances 0.000 claims abstract 4
- 238000000034 method Methods 0.000 claims description 10
- 230000006378 damage Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 11
- 239000007924 injection Substances 0.000 abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007921 spray Substances 0.000 abstract description 2
- 238000007664 blowing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 abstract 1
- 239000011449 brick Substances 0.000 description 16
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000395 magnesium oxide Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は製鋼用の電気炉、化合物製造用反応炉等の高温
で使用される装置の耐火物炉材の冷却方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for cooling refractory furnace materials of equipment used at high temperatures, such as electric furnaces for steel manufacturing and reaction furnaces for compound production.
[従来の技術]
操業時の温度が高温(−射的にはl000℃前後または
1000℃以上)の装置、例えば製鋼用電気炉、転炉、
セメントロータリーキルン、谷種窯業炉、化学工場にお
ける反応炉、合成炉、分解炉、熱風炉、加熱炉、焼却炉
等においては、第2図に例示する如く、装置の構造物ま
たは断熱材(保温材)として各種の耐火煉瓦が使用され
ている。この種の耐火煉瓦としては粘土質煉瓦、マグネ
シア質煉瓦、クロム、マグネシア質煉瓦、ドロマイト質
煉瓦等が使用されている。[Prior Art] Equipment that operates at a high temperature (around 1000°C or above 1000°C), such as an electric furnace for steelmaking, a converter,
In cement rotary kilns, Yatane ceramic furnaces, reaction furnaces in chemical factories, synthesis furnaces, decomposition furnaces, hot blast furnaces, heating furnaces, incinerators, etc., as shown in Figure 2, ) Various types of refractory bricks are used. As this type of refractory brick, clay bricks, magnesia bricks, chromium, magnesia bricks, dolomite bricks, etc. are used.
第2図中、11は電極、I2は珪石煉瓦であり、隣接す
る煉瓦同士の間にはに張シロが設けられている。13は
マグネシア煉瓦、14は珪石煉瓦又は鋼板巻き塩基性煉
瓦、I5は耐火煉瓦、16は珪石煉瓦、17は珪石煉瓦
又はマグネシア煉瓦、18は耐火煉瓦、19は鍵もしく
は珪石粉末又はマグネシアクリンカ−もしくはドロマイ
トクリンカ−である。In FIG. 2, 11 is an electrode, I2 is a silica brick, and a gap is provided between adjacent bricks. 13 is a magnesia brick, 14 is a silica brick or a basic brick wrapped with a steel plate, I5 is a refractory brick, 16 is a silica brick, 17 is a silica brick or a magnesia brick, 18 is a refractory brick, 19 is a key or silica powder or magnesia clinker, or It is dolomite clinker.
これらの炉材は使用により損耗するので、定期的または
不定期に補修、取替えを行なう必要がある。Since these furnace materials wear out with use, they must be repaired or replaced periodically or irregularly.
[発明が解決しようとする課題]
上記炉材の補修、取替えのためには、高温の装置の運転
を一時停止し、炉修作業が行なえる室温付近まで炉材を
冷却しなけわばならないが、この冷却に要する時間は一
般に非常に長く、特に大型の装置の場合は、数日を要す
る場合もある。この原因は、上記炉材として断熱性能が
良いものを使用しているからであり、冷却時にこの特性
が逆効果を発揮して冷却所要時間が長くなるためである
。[Problem to be solved by the invention] In order to repair or replace the above-mentioned furnace materials, it is necessary to temporarily stop the operation of the high-temperature equipment and cool the furnace materials to around room temperature where furnace repair work can be performed. The time required for this cooling is generally very long, and may take several days, especially in the case of large equipment. The reason for this is that a material with good heat insulation performance is used as the furnace material, and this property has an adverse effect during cooling, increasing the time required for cooling.
炉の補修時間をできるだけ短縮し操業率を上げるため、
一般には炉内に強制通気を行なっているが、この冷却方
法はあまり効果かなく、所定の温度となるまでにかなり
の長時間を要しているのが現状である。In order to reduce furnace repair time as much as possible and increase operating efficiency,
Generally, forced ventilation is carried out in the furnace, but this cooling method is not very effective and it takes a considerable amount of time to reach a predetermined temperature.
本発明は上記炉材の冷却所要時間の短縮を図ることを目
的とするものである。An object of the present invention is to shorten the time required for cooling the above-mentioned furnace material.
[課題を解決するための手段]
上記課題を解決するため本発明は次のような炉材の冷却
方法を提供する。[Means for Solving the Problems] In order to solve the above problems, the present invention provides the following method for cooling furnace materials.
すなわち本発明にかかる炉材の冷却方法は、電気炉、反
応炉等、高温で使用される炉の運転停止時における炉材
冷却方法であって、高温の炉中に液体窒素、液化炭酸ガ
ス等の液化ガスを噴出させ炉材を急速に冷却することを
特徴としている。That is, the method for cooling furnace materials according to the present invention is a method for cooling furnace materials when the operation of a furnace used at high temperatures, such as an electric furnace or a reaction furnace, is stopped. It is characterized by rapidly cooling the furnace material by ejecting liquefied gas.
換言すれば、炉材の冷却剤として液体窒素等を使用し、
これら超低温液化ガスが持っている冷却エネルギーを有
効に活用して炉材の冷却所要時間を短縮するものである
。In other words, using liquid nitrogen etc. as a coolant for the furnace material,
The cooling energy possessed by these ultra-low temperature liquefied gases is effectively used to shorten the time required to cool the reactor materials.
いま、仮に装置の停止時の炉材の温度を1000℃と仮
定し、この炉中に室温の空気を送風し、その排気温度が
500℃になるものと想定する。この空気の代りに同量
の液体窒素を使用するものとすると、気体のエンタルピ
ーすなわち冷却エネルギーはほぼ液体窒素のそれが空気
のそれの2倍に相当する。すなわち、冷却能力は2倍に
なる。また、液体窒素は室温の空気に比し、その見かけ
容積は約]/700であり、大量の冷却用のガスを炉内
に送り込むことが可能であり、冷却時間の大幅な短縮が
可能である。Assume now that the temperature of the furnace material when the apparatus is stopped is 1000°C, and that air at room temperature is blown into the furnace and the exhaust temperature is 500°C. If the same amount of liquid nitrogen is used instead of air, the enthalpy, or cooling energy, of the gas is approximately twice that of liquid nitrogen as that of air. In other words, the cooling capacity is doubled. In addition, the apparent volume of liquid nitrogen is approximately 700 times smaller than that of air at room temperature, making it possible to feed a large amount of cooling gas into the furnace, thereby significantly shortening the cooling time. .
液体窒素等の液化ガスは、爆発の危険性を避けるため噴
霧状で炉内に供給するのが好ましい。液体窒素の温度(
−196℃)より排気温度500℃まで温度上昇がある
と、気体の体積は約10倍に膨張するのであり、これを
圧力に換算すると大略10気圧に相当する。したがって
、この気体の膨張エネルギーを利用して回転しつつ液化
ガスを噴出する反動式タービンを使用して液体窒素等を
炉内に噴射させれば、きわめて効果的に炉壁全体を冷却
することかできる。The liquefied gas, such as liquid nitrogen, is preferably supplied into the furnace in atomized form to avoid the risk of explosion. Temperature of liquid nitrogen (
-196°C) to the exhaust temperature of 500°C, the volume of the gas expands approximately 10 times, which corresponds to approximately 10 atmospheres when converted to pressure. Therefore, if liquid nitrogen or the like is injected into the furnace using a reaction turbine that spouts out liquefied gas while rotating using the expansion energy of this gas, it is possible to cool the entire furnace wall extremely effectively. can.
第1図は本発明の冷却方法の実施例を模式的にあられす
もので、冷却に際しては、この炉1の内部に先端部に反
動タービン式噴射装置2,2を備えた噴射ユニット3が
挿入される。反動タービン式噴射装置2は、例えば芝生
等に散水する自転式スプリンクラ−のように、液化ガス
を噴出しつつ、その噴出の反動を利用して回転するよう
になっている。噴射装置2には液化ガス貯槽4から液化
ガスが流量制御弁5.流量制御ユニット6゜温度制御ユ
ニット7等で流量制御されつつ供給される。なお、噴射
装置は図示例のものに限らず、液化ガスを炉材に効果的
に吹きつけることができるものであれば他の形式のもの
でもよい。FIG. 1 schematically shows an embodiment of the cooling method of the present invention. During cooling, an injection unit 3 having a reaction turbine type injection device 2 at its tip is inserted into the inside of this furnace 1. be done. The reaction turbine type injection device 2 is designed to emit liquefied gas and rotate using the reaction of the ejection, for example, like a rotating sprinkler that sprinkles water on a lawn or the like. The liquefied gas is supplied to the injection device 2 from the liquefied gas storage tank 4 through the flow rate control valve 5. The flow rate is controlled by a flow rate control unit 6, a temperature control unit 7, etc., and the water is supplied. Note that the injection device is not limited to the one shown in the drawings, but may be of any other type as long as it can effectively spray the liquefied gas onto the furnace material.
実際の冷却に際しては、排気ガス温度が200℃前後に
なったとき液体窒素等の不活性ガスの使用を中止し、液
体空気または室温空気により炉内のガス置換を行なうと
ともに冷却を継続し、室温付近の温度まで冷却するのが
好ましい。これは、最初から液体空気を使用して冷却を
行なうと、沸点が低い窒素が先に蒸発し、炉内が酸素リ
ッチになって危険性が増すからである。また、冷却の後
半を液体空気等で行なうのは炉材補修時に作業員が炉内
に入ったとき酸欠状態になるおそれがないよう炉内雰囲
気を置換するためである。During actual cooling, when the exhaust gas temperature reaches around 200℃, the use of inert gas such as liquid nitrogen is stopped, and the gas in the furnace is replaced with liquid air or room temperature air. Preferably, it is cooled to a temperature in the vicinity. This is because if liquid air is used for cooling from the beginning, nitrogen, which has a low boiling point, will evaporate first, making the inside of the furnace rich in oxygen and increasing the danger. The reason why the second half of cooling is performed using liquid air or the like is to replace the atmosphere in the furnace so that there is no risk of oxygen deficiency when workers enter the furnace during repair of the furnace material.
つぎに、この炉材の冷却は、前述の如く炉材の補修、取
替えを[1的として行なわれるものであリ、炉材が室温
程度の温度に冷却されると、使用済みの炉材を解体して
除去し、新しい炉材を組み立てる作業が実施される。こ
の作業は、それ自体非常に労力を要する困難な作業であ
るが、従来は炉の操業率を上げるために炉材が充分に冷
却しないうち(例えば50℃程度)に作業を行なってい
たので、さらに作業条件の悪いものとなっていた。Next, this cooling of the furnace material is carried out as a temporary measure for repairing or replacing the furnace material as described above, and once the furnace material has been cooled to about room temperature, the used furnace material is removed. Work will be carried out to dismantle, remove and assemble new furnace materials. This work itself is very labor-intensive and difficult work, but in the past, in order to increase the operating rate of the furnace, it was performed before the furnace material had sufficiently cooled down (for example, to about 50°C). Furthermore, the working conditions were poor.
本発明では、超低温の液化ガスを直接炉材に吹きつける
ことにより、炉材の表面と内部との間に大きな温度差が
生じ、熱歪によって炉材が脆化するので、使用済みの炉
材を容易に破砕できるという利点もあるのである。この
ためには、炉材の冷却速度を好ましいものに制御すれば
よい。In the present invention, by spraying ultra-low temperature liquefied gas directly onto the furnace material, a large temperature difference is created between the surface and the inside of the furnace material, which causes the furnace material to become brittle due to thermal strain. Another advantage is that it can be easily crushed. For this purpose, the cooling rate of the furnace material may be controlled to a preferable value.
[実施例]
第1図に示す冷却装置を使用し、最初に液体窒素を噴射
し、排気ガス温度が200℃程度となった後半は液体空
気を噴射して製鋼用電気炉の冷却を行なったところ、従
来の強制通気方法の場合に較べて、冷却時間をI73以
下にすることができた。[Example] Using the cooling device shown in Figure 1, liquid nitrogen was first injected, and in the second half when the exhaust gas temperature reached about 200°C, liquid air was injected to cool a steelmaking electric furnace. However, compared to the conventional forced ventilation method, the cooling time could be reduced to I73 or less.
[発明の効果]
以上の説明から明らかなように、本発明にかかる冷却方
法によれば、高温で使用される多種装置の冷却時間を大
111に短縮することが可能となり、高温装置の補修時
間を短縮し、稼働率を向上させることが可能となフた。[Effects of the Invention] As is clear from the above explanation, according to the cooling method of the present invention, it is possible to shorten the cooling time of various types of equipment used at high temperatures by as much as 111 times, and the repair time for high-temperature equipment can be reduced. This makes it possible to shorten the time required and improve operating rates.
また、この急速冷却を利用して使用済み炉材の破砕を容
易にすることもできるので、例えば炉材の解体作業が容
易になるという利点もある。Moreover, this rapid cooling can also be used to facilitate the crushing of used furnace materials, which has the advantage that, for example, the work of dismantling the furnace materials becomes easier.
第1図は本発明の実施法を例示する説明図、第2図は炉
の例を示す断面図である。
1・・・炉 2・・・噴射装置FIG. 1 is an explanatory view illustrating the method of implementing the present invention, and FIG. 2 is a sectional view showing an example of a furnace. 1...furnace 2...injection device
Claims (3)
止時における炉材冷却方法であって、高温の炉中に液体
窒素、液化炭酸ガス等の液化ガスを噴出させ炉材を急速
に冷却することを特徴とする炉材の冷却方法。(1) A method for cooling furnace materials during shutdown of furnaces used at high temperatures, such as electric furnaces and reaction furnaces, in which liquefied gas such as liquid nitrogen or liquefied carbon dioxide is spouted into the high-temperature furnace to cool the furnace materials. A method for cooling furnace materials characterized by rapid cooling.
せたのち、引続き液体空気又は室温の空気を供給して炉
内雰囲気の置換と冷却を行なう特許請求の範囲第1項記
載の炉材の冷却方法。(2) The furnace according to claim 1, wherein liquid nitrogen or liquefied carbon dioxide gas is ejected into the high-temperature furnace, and then liquid air or room temperature air is subsequently supplied to replace and cool the atmosphere inside the furnace. Method of cooling materials.
等の液化ガスを供給することにより炉材に温度差による
歪を発生させて該炉材を脆化させ、冷却とともに炉材の
破壊を行なうことを特徴とする炉材の冷却方法。(3) By supplying liquefied gas such as liquid nitrogen, liquefied carbon dioxide, or liquid air into a high-temperature furnace, the temperature difference causes distortion in the furnace material, causing it to become brittle. A method for cooling furnace materials characterized by destruction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63202059A JP2696351B2 (en) | 1988-08-12 | 1988-08-12 | Furnace material cooling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63202059A JP2696351B2 (en) | 1988-08-12 | 1988-08-12 | Furnace material cooling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0252985A true JPH0252985A (en) | 1990-02-22 |
JP2696351B2 JP2696351B2 (en) | 1998-01-14 |
Family
ID=16451261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63202059A Expired - Fee Related JP2696351B2 (en) | 1988-08-12 | 1988-08-12 | Furnace material cooling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2696351B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000633A1 (en) * | 1997-06-30 | 1999-01-07 | Kawasaki Steel Corporation | Method and apparatus for cooling heating furnace |
DE102006008186A1 (en) * | 2006-02-22 | 2007-08-23 | Messer Austria Gmbh | Accelerated cooling of metallurgical vessel, e.g. converter to be relined, involves contacting vessel with cryogenic medium, preferably carbon dioxide |
JP2009287847A (en) * | 2008-05-29 | 2009-12-10 | Nippon Steel Corp | Rapid cooling method of channel induction heating device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57112679A (en) * | 1980-12-27 | 1982-07-13 | Fuji Electric Co Ltd | Disassembling of furnace lining |
-
1988
- 1988-08-12 JP JP63202059A patent/JP2696351B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57112679A (en) * | 1980-12-27 | 1982-07-13 | Fuji Electric Co Ltd | Disassembling of furnace lining |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000633A1 (en) * | 1997-06-30 | 1999-01-07 | Kawasaki Steel Corporation | Method and apparatus for cooling heating furnace |
US6238208B1 (en) | 1997-06-30 | 2001-05-29 | Kawasaki Steel Corporation | Method and apparatus for cooling furnace |
DE102006008186A1 (en) * | 2006-02-22 | 2007-08-23 | Messer Austria Gmbh | Accelerated cooling of metallurgical vessel, e.g. converter to be relined, involves contacting vessel with cryogenic medium, preferably carbon dioxide |
WO2007096411A2 (en) * | 2006-02-22 | 2007-08-30 | Messer Austria Gmbh | Method for cooling metallurgical vessels |
WO2007096411A3 (en) * | 2006-02-22 | 2007-11-29 | Messer Austria Gmbh | Method for cooling metallurgical vessels |
JP2009287847A (en) * | 2008-05-29 | 2009-12-10 | Nippon Steel Corp | Rapid cooling method of channel induction heating device |
Also Published As
Publication number | Publication date |
---|---|
JP2696351B2 (en) | 1998-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104456569A (en) | Progressive switchover heat storage type combustion device | |
US4077614A (en) | Steelmaking apparatus | |
CN205026653U (en) | Compound htac combustion device | |
JPH0252985A (en) | Cooling of furnace material | |
KR101115833B1 (en) | Spray type cooling device for converter | |
RU2707036C1 (en) | Operation of rotary furnace for production of hydraulic binder | |
JP2000104107A (en) | Method for changing brick in burner part of combustion chamber in hot blast stove and its device | |
KR100447892B1 (en) | The exchangeable connecting pipe of hot stove having cooling ability | |
US4767323A (en) | Lime kiln and method of retarding formation of slag ring therein | |
CN1264995C (en) | Blasting lance with gas/liquid mixing chamber and method for expansion cooling thereof | |
EP1611070B1 (en) | Refractory composition and process for the repair of a hot refractory wall | |
CN113686154A (en) | Repairing method for high-temperature liquid metal discharge port discharge brick | |
JP2006153389A (en) | Rotary kiln and its operation method | |
CN114685067B (en) | Rapid and stable cooling and emptying method for double-hearth kiln | |
JPS63282203A (en) | Method for operating blast furnace | |
KR100442645B1 (en) | Remove apparatus for coating level of CaO | |
SU761813A1 (en) | Method of cooling martin furnace at repairing it | |
KR20040057707A (en) | Method of repairing refractories in electrical furnace | |
JPH10287879A (en) | Retardation of carbon attachment to brick in oven top space of coke oven, and device therefor | |
US3345053A (en) | Apparatus for stopping air flow into blast furnaces | |
JP2024012113A (en) | Blast furnace operation method | |
JPS5817650Y2 (en) | nozzle stand | |
KR20210015673A (en) | Method of extending hot-blast pipe and method of adding hot- blast furnace | |
JPS6330965B2 (en) | ||
KR20030009950A (en) | Apparatus for supplying hot repairing materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |