JP2024012113A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2024012113A
JP2024012113A JP2023103036A JP2023103036A JP2024012113A JP 2024012113 A JP2024012113 A JP 2024012113A JP 2023103036 A JP2023103036 A JP 2023103036A JP 2023103036 A JP2023103036 A JP 2023103036A JP 2024012113 A JP2024012113 A JP 2024012113A
Authority
JP
Japan
Prior art keywords
temperature
upper limit
blast furnace
furnace
top gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023103036A
Other languages
Japanese (ja)
Inventor
健 中内
Takeshi Nakauchi
安義 大平
Yasuyoshi Ohira
泰洋 福本
Yasuhiro Fukumoto
宏治 木宮
Hiroharu Kimiya
悠揮 岡本
Yuki Okamoto
達哉 海瀬
Tatsuya Kaise
和輝 石川
Kazuki Ishikawa
明 森山
Akira Moriyama
昌洋 仁科
Masahiro Nishina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2024012113A publication Critical patent/JP2024012113A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blast furnace operation method capable of preventing a decrease in a furnace internal temperature against a local decrease in a raw material surface level and appropriately suppressing a furnace top gas temperature.
SOLUTION: In a blast furnace operation method in which air blowing is resumed by opening at least a part of a tuyere after closing the tuyere due to a long period of wind rest, the control upper limit of a furnace top gas temperature is raised from an upper limit temperature in the normal operation to a predetermined temperature within the upper limit temperature for equipment protection when water is sprinkled into the furnace based on the furnace top gas temperature against a local decrease in a raw material surface level in a blast furnace.
SELECTED DRAWING: Figure 5
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、操業を停止して高炉を休風し、その後再度立ち上げを行うにあたり、炉頂部を効果的に冷却するための高炉操業方法に関する。 The present invention relates to a method of operating a blast furnace for effectively cooling the top of the furnace when the blast furnace is shut down, the blast furnace is put into air rest, and then restarted.

高炉では、高温還元ガスが、羽口と呼ばれる送風用の穴から炉内へ吹き込んだ高温空気及び酸素と炉内のコークスおよび微粉炭との反応によって、生成する。高炉は、生成した高温還元ガスによって、鉄鉱石の昇温、還元、溶解を行い、羽口下部に設置した出銑口から銑鉄とスラグを炉外に排出して生産する設備である。高炉の通常操業時においては、炉内の反応熱と羽口からの熱供給がバランスしているため、高炉の安定的な操業が可能である。 In a blast furnace, high-temperature reducing gas is generated by the reaction between high-temperature air and oxygen blown into the furnace through ventilation holes called tuyeres, and coke and pulverized coal in the furnace. A blast furnace is a facility that uses generated high-temperature reducing gas to raise the temperature, reduce, and melt iron ore, and then discharges pig iron and slag out of the furnace through a taphole installed at the bottom of the tuyere. During normal operation of a blast furnace, the reaction heat within the furnace and the heat supply from the tuyere are balanced, so stable operation of the blast furnace is possible.

ここで、炉内の反応によって生成された高温還元ガスは高炉の炉頂部へ向かうのだが、原料表面レベルが基準より低下した場合は、原料との還元反応時間が短くなり、炉頂ガス温度が上昇してしまう。このとき、高炉ガス清浄設備などの高温還元ガスが通過する設備が破損する恐れがある。このような破損を防ぐために、炉頂部に設けられた散水装置で炉内へ水を噴霧している。この冷却装置に求められる機能は、炉内に装入される高炉原料自体を冷却させずに炉頂部のガス温度を下げることである。 Here, the high-temperature reducing gas generated by the reaction inside the furnace heads toward the top of the blast furnace, but if the raw material surface level drops below the standard, the reduction reaction time with the raw material becomes shorter, and the top gas temperature increases. It will rise. At this time, equipment such as blast furnace gas cleaning equipment through which high-temperature reducing gas passes may be damaged. To prevent such damage, water is sprayed into the furnace using a water sprinkler installed at the top of the furnace. The function required of this cooling device is to lower the gas temperature at the top of the furnace without cooling the blast furnace raw material itself that is charged into the furnace.

高炉の長期休風または休止を行う際には、高炉内への熱供給が停止する。一方で、高炉内部の温度と大気の温度差によって放熱が継続するため、炉内の冷却が進行し、一部の溶融物は凝固する。このため、高炉の操業再開時、すなわち送風再開時には、炉内の凝固層を溶解させるとともに、凝固物が通過するコークス充填層を溶融物が通過できるまで加熱する必要がある。 When the blast furnace is closed for a long period of time or stopped, the heat supply to the inside of the blast furnace is stopped. On the other hand, heat radiation continues due to the temperature difference between the temperature inside the blast furnace and the atmosphere, so cooling inside the furnace progresses and some of the molten material solidifies. Therefore, when restarting operation of the blast furnace, that is, when restarting air blowing, it is necessary to melt the solidified layer in the furnace and heat the coke packed bed through which the solidified material passes until the molten material can pass through.

そのため、高炉の長期休風または再稼働が見込まれる休止時には、まず、通常操業終了後、原料レベルを低下させる減尺操業を行い、原料レベルを低下させた状態で休風期間にはいり、休風期間終了後、原料レベルを上昇させて通常操業に戻すための立上操業を行っている。 Therefore, when a blast furnace is shut down for a long period of time or when it is expected to restart, first, after normal operation ends, a reduced-scale operation is carried out to reduce the raw material level, and the blast furnace enters the wind-down period with the raw material level reduced. After the period ends, startup operations will be carried out to increase raw material levels and return to normal operations.

減尺操業では、減尺レベルを低下させていく。すなわち、熱風を送風しながらの原料装入なしで、羽口は全周開口した状態で、原料レベルを円周方向で均一に低下させる。そのため、炉頂散水量は炉頂ガス温度上昇値に対して調整するのみである。その際、高炉は炉内のコークス比を上げて休風に入り、送風後に微粉炭の吹込みが開始できるまでの熱補償を行う。それとともに、出銑口上の1-2本の羽口以外を耐火物等により閉塞させ、送風に伴って生成する溶銑滓の量を制限し、少量の溶融物の円滑な排出のサイクルを確立する。その後の立上操業では、減尺レベルを上昇させていく。すなわち、原料レベルを上昇する際、隣接部の羽口を開口し、徐々に開口羽口本数を増やし、通常の操業まで回復させる方法をとる(特許文献1)。 In scale reduction operations, the scale reduction level is lowered. That is, the raw material level is uniformly lowered in the circumferential direction with the tuyere open all around the tuyere without charging the raw material while blowing hot air. Therefore, the amount of water sprinkled at the top of the furnace is only adjusted to the value of the rise in the gas temperature at the top of the furnace. At that time, the blast furnace increases the coke ratio in the furnace and enters a period of rest to compensate for the heat until the injection of pulverized coal can begin after the blast of air. At the same time, all but one or two tuyeres on the taphole are blocked with refractories, etc., to limit the amount of hot metal slag generated due to air blowing, and to establish a cycle for smooth discharge of small amounts of molten material. . In subsequent start-up operations, the reduction level will be increased. That is, when raising the raw material level, a method is used in which adjacent tuyeres are opened and the number of opened tuyeres is gradually increased to restore normal operation (Patent Document 1).

特許第6947345号公報Patent No. 6947345

前述の羽口を部分的に開口して送風を開始する立上操業において、高温空気は開口している羽口からしか炉内へ吹き込まれないため、鉄鉱石の昇温、還元、溶解は開口羽口から吹き込まれた高温空気が到達する部分でのみでしか行われない。そのため、高炉内での反応が円周方向で不均一となり、炉頂部の原料表面レベルの局所的な低下が発生する。この現象により、局所的な炉頂ガス温度上昇が生じ、炉頂部散水装置からの炉内への水の噴霧が行われる。その際、原料表面レベルが低下していない箇所は直接原料自体に冷却水が大量に着床してしまうことで過冷却となってしまい、炉内温度の低下を招いてしまう問題があった。 During start-up operation, which starts air blowing by partially opening the tuyeres mentioned above, high-temperature air can only be blown into the furnace through the open tuyeres, so the temperature rise, reduction, and melting of iron ore is done through the open tuyeres. This is done only in the area where the hot air blown from the tuyeres reaches. Therefore, the reaction within the blast furnace becomes non-uniform in the circumferential direction, causing a local drop in the surface level of the raw material at the top of the furnace. This phenomenon causes a local furnace top gas temperature rise, and water is sprayed into the furnace from the furnace top watering device. At that time, there was a problem that a large amount of cooling water landed directly on the raw material itself in areas where the surface level of the raw material had not been lowered, resulting in overcooling, resulting in a decrease in the temperature inside the furnace.

本発明の目的は、上記の問題点を解決し、原料表面レベルの局所的な低下に対して炉内温度の低下を防止し、炉頂ガス温度を適切に抑制させることができる高炉操業方法を提案することにある。 An object of the present invention is to provide a blast furnace operating method capable of solving the above-mentioned problems, preventing a decrease in the furnace temperature in response to a local decrease in the raw material surface level, and appropriately suppressing the furnace top gas temperature. It's about making suggestions.

本発明の高炉操業方法は、前述の課題を解決すべく開発されたものであり、長期間休風のため羽口を閉塞した後に、その羽口の少なくとも一部を開口して送風を再開するときの高炉操業方法において、高炉内の原料表面レベルの局所的な低下に対して、炉頂ガス温度に基づき炉内に散水するにあたり、炉頂ガス温度の管理上限を、通常操業時の上限温度から設備保護上の上限温度以内の所定温度まで上昇させる、高炉操業方法である。 The blast furnace operating method of the present invention was developed to solve the above-mentioned problem, and after the tuyere is closed for a long period of air suspension, at least a portion of the tuyere is opened to resume blowing air. In the blast furnace operating method at the time, when water is sprinkled into the furnace based on the top gas temperature in response to a local drop in the surface level of the raw material inside the blast furnace, the upper limit for controlling the top gas temperature is set to the upper limit temperature during normal operation. This is a method of operating a blast furnace in which the temperature is raised from

なお、本発明の高炉操業方法においては、
(1)上記本発明において、前記設備保護上の上限温度以内の所定温度は、前記設備保護上の上限温度近傍の温度であること、
(2)上記(1)において、前記設備保護上の上限温度近傍の温度は、上限温度の-20℃~0℃の範囲の温度であること、
(3)上記本発明、上記(1)および上記(2)のいずれかにおいて、高炉内への原料の装入と、高炉内への散水とを交互に実行すること、
(4)上記本発明、上記(1)、上記(2)および上記(3)のいずれかにおいて、散水の実施なしで炉頂ガス温度が通常操業時の管理上限まで低下する場合、管理上限を設備保護上の上限温度近傍の温度から通常操業時の管理上限の温度に戻すこと、
がより好ましい解決手段となるものと考えられる。
In addition, in the blast furnace operating method of the present invention,
(1) In the present invention, the predetermined temperature within the upper limit temperature for equipment protection is a temperature near the upper limit temperature for equipment protection;
(2) In (1) above, the temperature near the upper limit temperature for equipment protection is a temperature in the range of -20°C to 0°C of the upper limit temperature;
(3) In the present invention, in any of (1) and (2) above, charging the raw material into the blast furnace and sprinkling water into the blast furnace are performed alternately;
(4) In any of the above present invention, (1), (2), and (3) above, if the furnace top gas temperature decreases to the control upper limit during normal operation without watering, the control upper limit is Returning the temperature from near the upper limit for equipment protection to the upper limit for normal operation;
is considered to be a more preferable solution.

本発明の高炉操業方法によれば、長時間休風または休止から高炉に羽口を部分開口して再送風する場合、炉内温度の低下の防止と炉頂設備の破損を防止できる。その結果、高炉立上操業の安定化と設備破損のリスクを低減することができる。 According to the blast furnace operating method of the present invention, when the tuyere is partially opened to re-air the blast furnace after a long period of air suspension or suspension, it is possible to prevent a decrease in the temperature inside the furnace and damage to the furnace top equipment. As a result, it is possible to stabilize the startup operation of the blast furnace and reduce the risk of equipment damage.

高炉の炉体断面の一部を示す断面模式図である。It is a cross-sectional schematic diagram showing a part of the furnace body cross section of a blast furnace. 開口羽口と閉塞羽口とを説明するための高炉の羽口レベルの上面図である。It is a top view of the tuyere level of a blast furnace for explaining an open tuyere and a closed tuyere. 高炉内において原料表面レベルの局所的な低下が発生した状態を示す模式図である。FIG. 2 is a schematic diagram showing a state where a local decrease in the raw material surface level occurs in a blast furnace. (a)、(b)は、それぞれ、炉頂部に設けられた散水装置の散水ノズルによる水の噴霧状態を示す模式図である。(a) and (b) are schematic diagrams each showing a state of water sprayed by a water spray nozzle of a water sprinkler provided at the top of the furnace. 長期休風後の高炉立ち上げ時における、開口羽口数、散水量、炉頂ガス温度、溶銑温度のデータを示すグラフである。It is a graph showing data on the number of tuyere openings, the amount of water sprinkled, the furnace top gas temperature, and the hot metal temperature at the time of starting up the blast furnace after a long-term wind break.

以下、本発明の実施の形態について具体的に説明する。なお、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Embodiments of the present invention will be specifically described below. Note that the following embodiments are intended to exemplify an apparatus and method for embodying the technical idea of the present invention, and the configuration is not limited to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.

上述したとおり、羽口を部分的に開口して送風を開始する際、高炉内での反応が円周方向で不均一になってしまう。その結果、高炉の休風又は停止前に炉頂部に残っていた原料が局所的に反応し、原料表面の高さ位置が局所的に低下する現象がおき、局所的に炉頂ガス温度が上昇する。これに対し、散水装置により水を噴霧すると、過冷却となる箇所が生じる。その結果、当該箇所ではスラグの粘性が落ちてしまい、排出されにくくなる等の操業上の問題が発生する。本発明の実施形態によれば、炉頂ガス温度の管理上限を設備保護上の上限温度近傍の温度まで上昇させる。これにより、高炉内への散水量を抑えることができ、原料表面レベルの局所的な低下に対する炉内温度の低下を防止し、炉頂ガス温度を適切に抑制することができる。 As described above, when the tuyere is partially opened to start blowing air, the reaction within the blast furnace becomes non-uniform in the circumferential direction. As a result, the raw material that remained at the top of the blast furnace before the blast furnace was shut down or stopped reacts locally, causing a phenomenon in which the height of the raw material surface locally decreases, and the top gas temperature locally increases. do. On the other hand, if water is sprayed by a water sprinkler, there will be areas that become supercooled. As a result, the viscosity of the slag decreases at that location, causing operational problems such as difficulty in discharging the slag. According to an embodiment of the present invention, the control upper limit of the furnace top gas temperature is raised to a temperature close to the upper limit temperature for equipment protection. Thereby, the amount of water sprinkled into the blast furnace can be suppressed, the furnace temperature can be prevented from decreasing due to a local decrease in the raw material surface level, and the furnace top gas temperature can be appropriately suppressed.

図1は、高炉の炉体断面の一部を示す断面模式図である。図1に示すように、本実施形態にかかる高炉は、シャフト部、炉頂部、炉腹部、朝顔部、炉床、及び羽口を有する。図1に示す断面図では、羽口は一つしか示されていないが、高炉炉体の円周方向に複数の羽口を有する。高炉休風時において羽口は粘土で閉塞されているので、操業開始時には、まず、粘土で閉塞された羽口を開口する。上述のとおり、羽口は複数あるため、部分的に開口する。羽口の開口には、公知の羽口開口機を用いることができる。部分的に開口された羽口から順番に高温空気が送風される。 FIG. 1 is a schematic cross-sectional view showing a part of the cross-section of the furnace body of a blast furnace. As shown in FIG. 1, the blast furnace according to this embodiment has a shaft part, a furnace top part, a furnace part, a morning glory part, a hearth, and a tuyere. Although only one tuyere is shown in the cross-sectional view shown in FIG. 1, the blast furnace body has a plurality of tuyeres in the circumferential direction. Since the tuyere is clogged with clay when the blast furnace is at rest, the tuyere clogged with clay is first opened when the blast furnace starts operating. As mentioned above, since there are multiple tuyeres, they are partially open. A known tuyere opening machine can be used to open the tuyeres. High-temperature air is sequentially blown through the partially opened tuyeres.

図2は、開口羽口と閉塞羽口とを説明するための高炉の羽口レベルの上面図である。図2に示すように、羽口は、高炉炉体の円周方向に複数あり、それらが部分的に開口される。そのように、羽口を部分的に開口して送風を開始する操業においては、高温空気は開口している羽口からしか炉内へ吹き込まれない。そのため、鉄鉱石の昇温、還元、溶解は開口羽口から吹き込まれた高温空気が到達する部分でのみでしか行われない。すなわち、図2で示す開口羽口周辺でしか、羽口から吹き込まれた高温空気による反応が起こらない。そのため、高炉内での反応が、開口羽口上部と閉塞羽口上部との間で、円周方向で不均一となり、炉頂部の原料表面レベルの局所的な低下が発生する。 FIG. 2 is a top view of the tuyere level of the blast furnace for explaining open tuyeres and closed tuyeres. As shown in FIG. 2, there are a plurality of tuyeres in the circumferential direction of the blast furnace body, and these tuyeres are partially opened. Thus, in operations where the tuyeres are partially opened to begin blowing, hot air is blown into the furnace only through the open tuyeres. Therefore, heating, reduction, and dissolution of iron ore occur only in the area where the high-temperature air blown through the tuyeres reaches. That is, the reaction caused by the high temperature air blown from the tuyere occurs only around the open tuyere shown in FIG. 2. Therefore, the reaction within the blast furnace becomes non-uniform in the circumferential direction between the upper part of the open tuyere and the upper part of the closed tuyere, causing a local drop in the raw material surface level at the top of the furnace.

図3は、高炉内において原料表面レベルの局所的な低下が発生した状態を示す模式図である。図3に示すように、高温空気の反応が部分的に開口された開口羽口周辺でのみ生じることから、原料表面の高さが局所的に低下する。原料表面のうちで局所的に高さが低下する位置は、基本的には、開口した開口羽口上部が相当する。しかしながら、羽口から上昇する高温空気は、原料の中をぬって上昇するため、必ずしも開口羽口上部に相当するわけではない。そのため、原料表面のうちで、局所的に高さが低下した位置を特定するのは困難である。 FIG. 3 is a schematic diagram showing a state in which a local decrease in the raw material surface level occurs in the blast furnace. As shown in FIG. 3, since the reaction of the high temperature air occurs only around the partially opened tuyere, the height of the raw material surface locally decreases. The position where the height locally decreases on the raw material surface basically corresponds to the upper part of the open tuyere. However, the high temperature air rising from the tuyere does not necessarily correspond to the upper part of the open tuyere because it passes through the raw material and rises. Therefore, it is difficult to identify a position on the raw material surface where the height is locally reduced.

図4(a)、(b)は、それぞれ、炉頂部に設けられた散水装置の散水ノズルによる水の噴霧状態を示す模式図である。図4(a)に示すように、炉頂部は円周方向に複数の散水ノズルを備えている。図4では、それぞれの散水ノズルによる散水範囲が図示されている。図4(a)、(b)に示す実施形態おいては、散水ノズルはAとBとの2種類あり、水を噴霧する角度が異なる(散水ノズルAの角度は40度、散水ノズルBの角度は30度に設定されている)。散水装置は、炉頂ガス温度が所定の管理上限近傍の温度を超えると、複数の散水ノズルから一斉に水を噴霧する。 FIGS. 4(a) and 4(b) are schematic diagrams each showing a state of water sprayed by a watering nozzle of a watering device provided at the top of the furnace. As shown in FIG. 4(a), the top of the furnace is provided with a plurality of water spray nozzles in the circumferential direction. In FIG. 4, the water spray range by each water spray nozzle is illustrated. In the embodiment shown in FIGS. 4(a) and 4(b), there are two types of water nozzles, A and B, and the angles at which water is sprayed are different (the angle of water nozzle A is 40 degrees, and the angle of water spray nozzle B is 40 degrees). angle is set to 30 degrees). The water sprinkling device sprays water all at once from a plurality of water sprinkling nozzles when the furnace top gas temperature exceeds a temperature near a predetermined control upper limit.

ここで、原料表面の高さが低下した位置に対応する部分のみに、部分的に散水ノズルから水を噴霧することで、局所的に炉頂ガス温度を低下させることは理論的には可能である。しかしながら、上述のとおり原料表面の高さが低下した位置を特定するのは困難である。そのため、一般的に一部の散水ノズルにより局所的な低下位置を狙い撃つのは難しい。その結果、炉頂ガス温度の上昇を抑えるために、複数の散水ノズルから一斉に水を噴霧する必要がある。その場合、原料表面の高さが低下していない位置に対応する部分的に部分では、部分的な過冷却を招く。 Here, it is theoretically possible to locally reduce the furnace top gas temperature by spraying water from the water nozzle locally only on the part corresponding to the position where the height of the raw material surface has decreased. be. However, as described above, it is difficult to specify the position where the height of the raw material surface has decreased. Therefore, it is generally difficult to target localized drop positions with some water spray nozzles. As a result, in order to suppress the rise in the furnace top gas temperature, it is necessary to spray water all at once from a plurality of water spray nozzles. In that case, partial supercooling occurs in a portion corresponding to a position where the height of the raw material surface is not lowered.

そこで、本実施形態においては、炉頂ガス温度の管理上限の温度を、通常操業時の上限温度から設備保護上の上限温度以内の所定温度まで上昇させる。設備保護上の上限温度以内の所定温度とは、設備保護上の上限温度近傍の温度であることが好ましい。その結果、散水装置による高炉内への散水量が抑えられ、必要な範囲で炉頂ガス温度の上昇を抑えるとともに、部分的に生じる過冷却の発生を妨げることができる。ここで、設備保護上の上限温度近傍の温度とは、安全上の理由から上限温度の-20~0℃の範囲の温度であることが好ましく、また、過冷却防止の観点からは、設備保護上の上限温度そのものであることがより好ましい。 Therefore, in this embodiment, the control upper limit temperature of the furnace top gas temperature is increased from the upper limit temperature during normal operation to a predetermined temperature within the upper limit temperature for equipment protection. The predetermined temperature within the upper limit temperature for equipment protection is preferably a temperature near the upper limit temperature for equipment protection. As a result, the amount of water sprinkled into the blast furnace by the water sprinkler can be suppressed, suppressing the rise in the furnace top gas temperature within a necessary range, and preventing the occurrence of partial supercooling. Here, the temperature near the upper limit temperature for equipment protection is preferably a temperature in the range of -20 to 0°C of the upper limit temperature for safety reasons. It is more preferable that the upper limit temperature is the same as above.

なお、高炉への原料装入時に散水を実施してしまうと、装入中の原料に直接冷却水がかかってしまうため、散水装置による水の噴霧は、原料装入時(鉄鉱石・コークスの回転シュートへの装入時)は停止する。水の噴霧は、1回あたり5秒、6秒、30秒等、比較的短い時間で実施し、水の噴霧と原料の装入を交互に繰り返し行うことが好ましい。このようにすることで、原料に直接冷却水がかかることを防止でき、結果的に過冷却の発生をより抑制することができる。 In addition, if water is sprinkled when charging raw materials into the blast furnace, cooling water will be directly splashed onto the raw materials being charged. When charging into the rotating chute), it stops. It is preferable that the water spraying be carried out for a relatively short period of time, such as 5 seconds, 6 seconds, or 30 seconds, and that the water spraying and the charging of the raw material be repeated alternately. By doing so, it is possible to prevent cooling water from directly splashing on the raw material, and as a result, it is possible to further suppress the occurrence of supercooling.

実際に、長期休風後の高炉立ち上げを実施して、開口羽口数、散水量、炉頂ガス温度、溶銑温度のデータを求めた。図5は、長期休風後の高炉立ち上げ時における、開口羽口数、散水量、炉頂ガス温度、溶銑温度のデータを示すグラフである。 The blast furnace was actually started up after a long period of wind shutdown, and data on the number of tuyere openings, amount of water sprinkled, top gas temperature, and hot metal temperature were obtained. FIG. 5 is a graph showing data on the number of tuyere openings, the amount of water sprayed, the furnace top gas temperature, and the hot metal temperature at the time of starting up the blast furnace after a long-term wind break.

本実施例において、設備保護上の上限温度は350℃であり、350℃を少しでも超えると危険である。長期休風からの高炉立ち上げの際、最初は炉頂ガスの温度の管理上限を、通常操業時の管理上限温度と同様に温度260℃に定めていた。通常操業時は、図4(a)、(b)に記載する散水装置ではなく、ミスト状に散水する装置を使用する。その場合、冷却効果(温度上昇の抑制効果)が弱いため、安全を考慮し、管理上限の温度を十分に低いところで設定する必要があることから、通常操業時は管理上限温度を260℃としている。 In this example, the upper limit temperature for equipment protection is 350°C, and it is dangerous if it exceeds 350°C even a little. When the blast furnace was restarted after a long period of hiatus, the upper limit for controlling the top gas temperature was initially set at 260°C, the same as the upper limit for normal operation. During normal operation, a mist spraying device is used instead of the watering device shown in FIGS. 4(a) and 4(b). In that case, the cooling effect (effect of suppressing temperature rise) is weak, so for safety reasons, it is necessary to set the upper limit temperature at a sufficiently low temperature. Therefore, during normal operation, the upper limit temperature is set at 260°C. .

長期休風からの高炉立ち上げの際にも管理上限温度を260℃として、羽口の部分的な開口を進めたところ、開始早々上限に近くなった。そのため、温度上昇を抑えるため、散水装置が大量の水(6~14t)を噴霧した。それに伴い、溶銑温度が低下し、過冷却が発生した。過冷却は、スラグの粘性低下につながるためなど、操業上好ましくない。そのため、過冷却の発生を止めるべく、炉頂ガス温度のグラフにおいて矢印の時間位置で、炉頂ガスの管理温度上限を、設備保護上の温度上限(350℃)に引き上げた。 When starting up the blast furnace after a long period of wind shutdown, we set the upper limit temperature to 260°C and proceeded with partial opening of the tuyeres, but the temperature approached the upper limit as soon as the blast furnace started. Therefore, in order to suppress the temperature rise, a water sprinkler sprayed a large amount of water (6 to 14 tons). As a result, the hot metal temperature decreased and supercooling occurred. Supercooling is unfavorable in terms of operation because it leads to a decrease in the viscosity of the slag. Therefore, in order to stop the occurrence of supercooling, the upper limit of the control temperature of the furnace top gas was raised to the upper temperature limit (350° C.) for equipment protection at the time position indicated by the arrow in the graph of the furnace top gas temperature.

そうしたところ、散水量が抑制され(3t程度に減少)、炉頂ガス温度および溶銑温度が安定した。羽口開口を進めると、炉内でバランスが取れた状態になり、散水が不要になり、炉頂ガス温度が落ち着いていった。なお、炉頂ガスの管理温度上限は、設備保護上の温度上限近くまで高ければ高いほど散水が抑止され、過冷却防止の観点から好ましい。その一方で、安全上の理由から設備保護上の温度上限を超えることは避ける必要がある。そのため、炉頂ガスの管理温度上限は、設備保護上の温度上限の-20℃~0℃の範囲の温度に設定するのが望ましい。 As a result, the amount of water sprinkled was suppressed (reduced to about 3 tons), and the furnace top gas temperature and hot metal temperature became stable. As the tuyere opening was advanced, a balanced condition was achieved in the furnace, water spraying was no longer required, and the top gas temperature stabilized. Note that the higher the upper limit of the control temperature of the furnace top gas is, the closer to the upper limit of the temperature for equipment protection, the more water sprinkling is suppressed, which is preferable from the viewpoint of preventing overcooling. On the other hand, for safety reasons, it is necessary to avoid exceeding the upper temperature limit for equipment protection. Therefore, it is desirable to set the upper limit of the control temperature of the furnace top gas to a temperature in the range of -20°C to 0°C, which is the upper limit of the temperature for equipment protection.

なお、上述したように、炉頂ガス温度の管理上限を設備保護上の上限温度(上記例では350℃)近傍の温度まで上昇させて、その管理上限を炉内温度管理のしきい値として、炉内への散水と散水の実施なしでの原料の炉内への装入とを繰り返して高炉操業を行う。そうした状態で、散水の実施なしで炉頂ガス温度が通常操業時の管理上限(上記例では260℃)まで低下するようなら、管理上限を元に戻すことが好ましい。すなわち、管理上限を350℃から260℃に戻して、その戻した管理上限を炉内温度管理のしきい値として、散水装置の散水ノズルからの散水の実施なしで高炉操業を行うことが好ましい。その理由は、羽口の開口が進み、還元の円周バランスが安定し、原料レベルの円周バランスが均一となってくるため、管理上限を元に戻しても高炉内への散水量を最小限に抑えることができるためである。なお、管理上限を元に戻すタイミングについては、上述した例に限定されるものではなく、他の基準に基づくタイミングで管理上限を元に戻すことも可能である。 As mentioned above, the upper limit of the control of the furnace top gas temperature is raised to a temperature close to the upper limit temperature for equipment protection (350°C in the above example), and the upper limit of control is used as the threshold of the furnace temperature control. The blast furnace is operated by repeatedly sprinkling water into the furnace and charging raw materials into the furnace without watering. In such a state, if the furnace top gas temperature falls to the control upper limit during normal operation (260° C. in the above example) without watering, it is preferable to return the control upper limit to the original value. That is, it is preferable to return the control upper limit from 350° C. to 260° C., use the returned control upper limit as the threshold for furnace temperature control, and operate the blast furnace without watering from the watering nozzle of the watering device. The reason for this is that as the opening of the tuyere progresses, the circumferential balance of reduction becomes stable, and the circumferential balance of the raw material level becomes uniform, so even if the control upper limit is returned to its original value, the amount of water sprinkled into the blast furnace will be kept to a minimum. This is because it can be kept to a minimum. Note that the timing for restoring the management upper limit is not limited to the example described above, and it is also possible to restore the management upper limit at a timing based on other criteria.

本発明に係る高炉操業方法によれば、高炉の再稼働だけでなく、高炉以外の様々の竪型溶解炉においても、安定した操業方法を提供できる。 According to the blast furnace operating method according to the present invention, it is possible to provide a stable operating method not only for restarting a blast furnace but also for various vertical melting furnaces other than blast furnaces.

Claims (5)

長期間休風のため羽口を閉塞した後に、その羽口の少なくとも一部を開口して送風を再開するときの高炉操業方法において、
高炉内の原料表面レベルの局所的な低下に対して、炉頂ガス温度に基づき炉内に散水するにあたり、炉頂ガス温度の管理上限を、通常操業時の上限温度から設備保護上の上限温度以内の所定温度まで上昇させる、高炉操業方法。
In a blast furnace operating method when the tuyeres are closed for a long period of air suspension, at least a portion of the tuyere is opened to resume air blowing,
When sprinkling water into the furnace based on the top gas temperature in response to a local drop in the raw material surface level inside the blast furnace, the upper limit for controlling the furnace top gas temperature is changed from the upper limit temperature during normal operation to the upper limit temperature for equipment protection. A method of operating a blast furnace that raises the temperature to a specified temperature within
前記設備保護上の上限温度以内の所定温度は、前記設備保護上の上限温度近傍の温度である、請求項1に記載の高炉操業方法。 The blast furnace operating method according to claim 1, wherein the predetermined temperature within the upper limit temperature for equipment protection is a temperature near the upper limit temperature for equipment protection. 前記設備保護上の上限温度近傍の温度は、上限温度の-20℃~0℃の範囲の温度である、請求項2に記載の高炉操業方法。 The blast furnace operating method according to claim 2, wherein the temperature near the upper limit temperature for equipment protection is a temperature in the range of -20° C. to 0° C. of the upper limit temperature. 高炉内への原料の装入と、高炉内への散水とを交互に実行する、請求項1~3のいずれか1項に記載の高炉操業方法。 The blast furnace operating method according to any one of claims 1 to 3, wherein charging of raw materials into the blast furnace and sprinkling of water into the blast furnace are performed alternately. 散水の実施なしで炉頂ガス温度が通常操業時の管理上限まで低下する場合、管理上限を設備保護上の上限温度以内の所定温度から通常操業時の管理上限の温度に戻す、請求項1~3のいずれか1項に記載の高炉操業方法。 If the furnace top gas temperature drops to the control upper limit during normal operation without watering, the control upper limit is returned from a predetermined temperature within the upper limit temperature for equipment protection to the control upper limit temperature during normal operation. 3. The blast furnace operating method according to any one of 3.
JP2023103036A 2022-07-14 2023-06-23 Blast furnace operation method Pending JP2024012113A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112816 2022-07-14
JP2022112816 2022-07-14

Publications (1)

Publication Number Publication Date
JP2024012113A true JP2024012113A (en) 2024-01-25

Family

ID=89622395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023103036A Pending JP2024012113A (en) 2022-07-14 2023-06-23 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2024012113A (en)

Similar Documents

Publication Publication Date Title
JP6369910B2 (en) Starting the smelting process
CN110396564A (en) A kind of processing method that Wall of Blast Furnace top knot is thick
JP2024012113A (en) Blast furnace operation method
JP3991525B2 (en) Reduced blast furnace operation method
KR100797360B1 (en) Blast Furnace Operation Method For Early Securing Steady Operation Temperature
JPH01283308A (en) Melt-down gasifier operation method and melt-down gasifier
KR20000014413A (en) Method for ascending operating degree in mending operation of blast furnace wall
JP2007254897A (en) Method for lowered level operation in blast furnace
JP2854925B2 (en) Injection cooling method of remaining charge in furnace during air blow off operation of blast furnace
JP5811019B2 (en) Reduced blast method for blast furnace
KR100938485B1 (en) Ore melting method using the technology for preventing from damage of wind input port
JP5012596B2 (en) Reduced blast furnace operation method
JP3465471B2 (en) Blast furnace operation method
RU2812287C1 (en) Way blast furnace works
JPS63282203A (en) Method for operating blast furnace
KR100862033B1 (en) Operation method of minimizing remnant of the molten iron and slag in hearth at blow-out
JP2002121608A (en) Method for operating blast furnace
KR100434736B1 (en) Method for managing the top gas temperature in lowering the level of charge in the blast furnace
Liu et al. The Operation of Blowing Out, Blanking and Furnace Blowing Off
Liu et al. The Explosion of Blast Furnace
JP2024013311A (en) Blast furnace operating method
JPS6328816A (en) Coating method of converter slag
JP2023152640A (en) Blast furnace operation method
JPH02282408A (en) Lowered stock level operation method for blast furnace
JP2002275553A (en) Method for heat-insulating converter, and converter lid device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240226