JPH0252901A - Detecting method of leaks on boiler tube in coke dry type fire extinguisher - Google Patents

Detecting method of leaks on boiler tube in coke dry type fire extinguisher

Info

Publication number
JPH0252901A
JPH0252901A JP20192288A JP20192288A JPH0252901A JP H0252901 A JPH0252901 A JP H0252901A JP 20192288 A JP20192288 A JP 20192288A JP 20192288 A JP20192288 A JP 20192288A JP H0252901 A JPH0252901 A JP H0252901A
Authority
JP
Japan
Prior art keywords
moisture content
waste heat
outlet
boiler
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20192288A
Other languages
Japanese (ja)
Inventor
Heizou Mera
目羅 平蔵
Yutaka Takahashi
裕 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20192288A priority Critical patent/JPH0252901A/en
Publication of JPH0252901A publication Critical patent/JPH0252901A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect leaks on boiler tubes early and accurately by monitoring and comparing the moisture content of cooling gase at the inlet with that at the outlet of a waste heat boiler. CONSTITUTION:An inlet moisture content meter 21 that measures the moisture content of cooling gas is installed at the inlet of a waste heat boiler 11 and an outlet moisture content meter 22 that measures the moisture content of cooling gas on a gas duct 13 at the outlet. A moisture content measuring device 23 is provided to calculate and indicate the measured moisture content values of the inlet and outlet moisture content meters 21 and 22. The moisture content measuring device 23 measures the moisture contents of the cooling gases in both the inlet and outlet of the waste heat boiler 11 at the same time. [DELTAM=Mo-Mi] is calculated, where Mi % represents the moisture content measured by the moisture content meter at the inlet of the waste heat boiler, and Mo % the moisture content measured by the moisture content meter at the outlet. When DELTAM becomes larger than zero, it is judged that leaks occur on the boiler tubes of the waste heat boiler.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、コークス乾式消火設備におけるボイラチュー
ブの穴空き検知方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for detecting holes in a boiler tube in coke dry extinguishing equipment.

〈従来の技術〉 一般に、コークス乾式消火設備は、第3図に示すように
、竪型の冷却塔l、埋煙道および廃熱ボイラIIからな
り、コークス炉(図示せず)から押し出されてバケツ目
6に入れられた赤熱コークスは、クレーン17で運ばれ
て冷却塔1の装入口2に装入され、冷却塔1の下部から
180°C前後の不活性ガスを冷却ガスとして吹き込む
ことによって冷却され、下部に設けられた切り出しゲー
ト5およびシュート6を経てベルトコンベア7によって
搬出される。
<Prior Art> In general, coke dry extinguishing equipment consists of a vertical cooling tower l, a buried flue, and a waste heat boiler II, as shown in Fig. The red hot coke placed in the bucket 6 is carried by a crane 17 and charged into the charging port 2 of the cooling tower 1, and is cooled by blowing inert gas at around 180°C from the bottom of the cooling tower 1 as a cooling gas. It is cooled and conveyed out by a belt conveyor 7 through a cutting gate 5 and a chute 6 provided at the bottom.

一方、冷却塔1内で赤熱コークスで加熱された冷却ガス
は、円環煙道8を介して煙道9に排出され、除1!!!
110を経て廃熱ボイラ11に導入されてボイラチュー
ブ12内の水と熱交換し、その顕熱が回収されて蒸気を
発生させた後、廃熱ボイラ11の出側に設けられたガス
ダクト13に排出され、サイクロン14で粉コークスが
除去され、循環ファン15で昇圧されて再び冷却ガスと
なって冷却塔1に吹き込まれ循環使用されるように構成
される。
On the other hand, the cooling gas heated by the red-hot coke in the cooling tower 1 is discharged to the flue 9 via the annular flue 8, and is removed by 1! ! !
The waste heat is introduced into the waste heat boiler 11 via the waste heat boiler 110 and exchanges heat with the water in the boiler tube 12, and the sensible heat is recovered to generate steam. The coke breeze is discharged, the pulverulent coke is removed by a cyclone 14, the pressure is increased by a circulation fan 15, and the gas is turned into cooling gas again, which is blown into the cooling tower 1 and used for circulation.

なお、この冷却ガスは、循環の過程で煙道9の入口で燃
焼用空気孔18から空気が投入されて、冷却ガス中の水
素ガスやCOガスなどの可燃性ガス成分の調整が行われ
る。そして、投入された空気や赤熱コークスによって発
生した水素ガスなどにより量が増加した冷却ガスは、放
散管19から放散されたり、あるいは燃料として回収さ
れる。
Note that during the circulation process of this cooling gas, air is injected from the combustion air hole 18 at the entrance of the flue 9 to adjust combustible gas components such as hydrogen gas and CO gas in the cooling gas. The cooling gas, whose amount has increased due to the injected air and hydrogen gas generated by the red-hot coke, is radiated from the diffusion pipe 19 or recovered as fuel.

ところで、前記廃熱ボイラ11のボイラチューブ12は
、冷却ガス中のコークスダストによりチューブ外面が摩
耗され減肉する。また、ボイラチューブ12に通水する
純水によってもチューブ内面が腐食を受けて減肉する。
By the way, the outer surface of the boiler tube 12 of the waste heat boiler 11 is abraded and thinned by coke dust in the cooling gas. Furthermore, the inner surface of the tube is corroded by the pure water flowing through the boiler tube 12, resulting in thinning.

このようにボイラチューブ12は内外両面から減肉する
ため、場合によってはチューブに穴空きが生じ、チュー
ブ内の高圧水や高圧蒸気がチューブの外へ噴出するトラ
ブルが発生する。
As described above, the boiler tube 12 is thinned from both the inner and outer surfaces, and in some cases, holes are formed in the tube, causing problems such as high-pressure water and high-pressure steam inside the tube spouting out of the tube.

このボイラチューブ12は、廃熱ボイラ11内に例えば
102mmX 125mn+という狭い間隔で配設され
ているので、もしいずれかのボイラチューブ12から高
圧水や高圧蒸気が噴出すると、1ケ所で発生した噴出水
や高圧蒸気が隣接する他の健全なチューブの外面へ高圧
、高速でIJi突し、チューブ本体を削り取って穴空き
を発生させるという事態が生じ、ボイラチューブ12の
穴空きによる水や蒸気の噴出による被害は拡大してしま
うこととなる。
The boiler tubes 12 are arranged at narrow intervals of, for example, 102 mm x 125 mm+ within the waste heat boiler 11, so if high-pressure water or high-pressure steam spouts out from any of the boiler tubes 12, the spouted water generated at one location A situation occurs in which high-pressure steam and high-pressure steam impinge on the outer surface of other healthy adjacent tubes at high pressure and high speed, scraping the tube body and creating holes. The damage will be expanded.

また、噴出した水や蒸気と冷却ガス中に含まれる硫黄化
合物とが反応して硫酸を生成して、ボイラチューブ12
外面やガスダク目3を腐食させという問題も生じる。
In addition, the sulfur compounds contained in the cooling gas react with the spouted water and steam to generate sulfuric acid, which causes the boiler tube 12
A problem also arises in that the outer surface and gas duct openings 3 are corroded.

したがって、ボイラチューブ12の穴空きの発生を早期
に検知し、もし穴空きが生じた場合には速やかにボイラ
チューブ12の取り替え補修を行う必要がある。
Therefore, it is necessary to detect the occurrence of a hole in the boiler tube 12 at an early stage, and if a hole occurs, to quickly replace and repair the boiler tube 12.

ところで、このように廃熱ボイラ11のボイラチューブ
12に穴空きが生じ、水や蒸気が冷却ガス中に混入する
のを検知する方法としては、従来、例えば特公昭54−
15433号公報に開示されているように、ボイラの蒸
気発生流量と給水流量を比較し、その不平衡を検出する
ことにより、ボイラチューブの破損を判定する方法が提
案されている。
By the way, as a method for detecting the occurrence of a hole in the boiler tube 12 of the waste heat boiler 11 and the mixing of water or steam into the cooling gas, conventional methods have been used, for example, in
As disclosed in Japanese Patent No. 15433, a method has been proposed for determining damage to a boiler tube by comparing the steam generation flow rate of the boiler and the feed water flow rate and detecting an imbalance therebetween.

また、冷却ガス中に漏れた水や蒸気が、冷却室の赤熱コ
ークスと下記(1)式のように反応して、生じた水素ガ
スの変化を測定する方法がある。
There is also a method in which water or steam leaking into the cooling gas reacts with red-hot coke in the cooling chamber as shown in equation (1) below, and changes in the resulting hydrogen gas are measured.

C+ II!0−CO+11!  −−−−−−・−・
−・−・・・−・−・−・−・・・・(1)〈発明が解
決しようとする41題〉 しかしながら、前者の特公昭54−15433号の方法
は、蒸気発生流量と給水流量を測定する流量計に誤差が
あるため、ボイラチューブの穴空きが小さい期間では穴
空きを検知することができないという欠点がある。
C+ II! 0-CO+11! −−−−−−・−・
−・−・・−・−・−・−・・・・・(1) <41 problems to be solved by the invention> However, the former method of Japanese Patent Publication No. 15433/1983 is based on the steam generation flow rate and the water supply flow rate. Due to the error in the flowmeter that measures the flow rate, there is a drawback that holes in the boiler tube cannot be detected during periods when the holes are small.

すなわち、流量針には通常0.5%程度の誤差があり、
例えば30 L/h程度の廃熱ボイラでは、蒸気の流量
針と給水の流量計との差が0.3t/h以上でないと差
があるとはいえないために、0.31/h以下の漏洩で
は判定ができないのである。
In other words, the flow rate needle usually has an error of about 0.5%,
For example, in a waste heat boiler of about 30 L/h, it cannot be said that there is a difference between the steam flow rate needle and the feed water flow meter unless it is 0.3 t/h or more. A leak cannot be determined.

また、後者の水素ガスの変化で判定する方法では、冷却
塔に装入される赤熱コークスからも水素ガスが発生し、
その量は赤熱コークスの炭化状態により変化するから、
炭化の不十分な赤熱コークスを装入する場合は大幅に水
素ガスが発生して、やはりボイラチューブの穴空きが小
さい期間は検知することができない。
In addition, in the latter method of determining based on changes in hydrogen gas, hydrogen gas is also generated from the red-hot coke charged into the cooling tower.
The amount changes depending on the carbonization state of the red-hot coke, so
When charging poorly carbonized red hot coke, a large amount of hydrogen gas is generated, which cannot be detected during periods when the holes in the boiler tube are small.

第1表に、冷却ガスの成分の分析結果の一例を示す。Table 1 shows an example of the analysis results of the components of the cooling gas.

第   1   表 (容量%) この例に示すように、I+、は3.6%から16.4%
まで変化しており、水素ガスの含有量からボイラチュー
ブの小さな穴空きを検知することができないのである。
Table 1 (Capacity %) As shown in this example, I+ is 3.6% to 16.4%
This makes it impossible to detect small holes in the boiler tube from the hydrogen gas content.

本発明は、上記のような従来技術の有する課題を解決す
べくなされたものであって、コークス乾式消火設備にお
けるボイラチューブの穴空きを早期にかつ確実に検知す
る方法を提供することを目的とする。
The present invention has been made to solve the problems of the prior art as described above, and an object of the present invention is to provide a method for early and reliably detecting holes in a boiler tube in coke dry extinguishing equipment. do.

〈課題を解決するための手段〉 本発明は、コークス乾式消火設備におけるボイラチュー
ブの穴空き検知方法であって、廃熱ボイラ人口と出口に
おけるコークス乾式消火用の冷却ガス中の水分を検出し
、これらの測定値に差が生じた時点をボイラチューブの
穴空きと判定することを特徴とするコークス乾式消火設
備におけるボイラチューブの穴空き検知方法である。
<Means for Solving the Problems> The present invention is a method for detecting holes in a boiler tube in coke dry extinguishing equipment, which detects waste heat boiler population and moisture in cooling gas for coke dry extinguishing at the outlet, This is a method for detecting a hole in a boiler tube in a coke dry fire extinguishing equipment, which is characterized in that the point at which a difference occurs between these measured values is determined to be a hole in the boiler tube.

〈作 用〉 一般に、コークス乾式消火設備に使用される冷却ガスは
不活性ガスであるから、通常はそのガス中には水分は含
まれていない、しかし、冷却ガスが赤熱コークスを冷却
しながら循環される間に、赤熱コークスから発生した水
素ガスがリークした空気、あるいは冷却ガスの可燃成分
濃度を下げるために前出第3図に示した燃焼用空気管1
8を介して強制的に吹き込まれる空気と下記(2)式の
ようにL+1/20x−II□0−・−・−・・−・・
・・・−・−・・−・・・・−・・・・・・・・・・(
2)反応して生成された水分と、空気中に元々含まれて
いた水分とが混入することになる。
<Function> In general, the cooling gas used in coke dry extinguishing equipment is an inert gas, so it usually does not contain moisture. However, the cooling gas circulates while cooling the red-hot coke. In order to reduce the concentration of combustible components in the air or cooling gas from which hydrogen gas generated from red-hot coke leaks, the combustion air pipe 1 shown in Figure 3 above is used.
Air forcedly blown through 8 and L+1/20x-II□0-・-・-・・・・・
・・・−・−・・−・・・・−・・・・・・・・・・(
2) The moisture generated by the reaction and the moisture originally contained in the air will mix.

なお、このようにして生成される冷却ガス中の水分は、
赤熱コークスと反応して、すなわち前出(1)式によっ
て、その一部は水素ガスとCOガスに分解されて変動す
る。
In addition, the moisture in the cooling gas generated in this way is
By reacting with red-hot coke, that is, according to equation (1) above, a part of it is decomposed into hydrogen gas and CO gas and fluctuates.

また、空気中に含まれる水分の量は、天候によって左右
される。すなわち、例えば、乾燥期で気温の低い冬季は
約5 g/N+*ff(0,62容量%)、また気温の
高い夏季で約20g/Nm’  (2,5容量%)と変
化し、冷却ガス中の水分の変動の一因となる。
Furthermore, the amount of moisture contained in the air is influenced by the weather. That is, for example, during the dry season and low temperature in the winter, it changes to about 5 g/N+*ff (0.62 volume %), and in the hot summer, it changes to about 20 g/Nm' (2.5 volume %). Contributes to fluctuations in moisture in the gas.

第4図は、廃熱ボイラの出口に水分計を設置して冷却ガ
ス中の水分を測定した一例である。この例では、水分は
1.0〜4.9%の間を変動していることがわかる。
FIG. 4 is an example in which a moisture meter is installed at the outlet of a waste heat boiler to measure moisture in cooling gas. In this example, it can be seen that the moisture content varies between 1.0 and 4.9%.

一方、ボイラチューブに穴が空いて100kg/hの漏
水があった場合、例えば56 t/hのコークス処理能
力のあるコークス乾式消火設備において、冷却ガス系容
積が約1000rrf、系外に放散される余剰ガス量を
200ONm”/hとすると冷却ガス中の水分増加量は
4.1%となるので、この程度のボイラチューブの穴空
きによる水あるいは蒸気の漏洩は水分測定点を1ケ所と
したのでは、正確に検知することができないのである。
On the other hand, if there is a hole in the boiler tube and water leaks at a rate of 100 kg/h, for example, in a coke dry fire extinguishing system with a coke processing capacity of 56 t/h, approximately 1000 rrf of cooling gas system volume will be released outside the system. If the amount of surplus gas is 200ONm"/h, the increase in moisture in the cooling gas will be 4.1%, so water or steam leakage due to holes in the boiler tube can be avoided by setting the moisture measurement point to one location. Therefore, it cannot be detected accurately.

そこで、さらに、廃熱ボイラの入口にも水分計を取付け
て、廃熱ボイラの入口における冷却ガス中の水分を測定
するようにすれば、冷却ガス自体が廃熱ボイラに持ち込
む水分の量を測定することができるから、もし、廃熱ボ
イラの出口における水分の量が変動した場合には、両者
を比較することによって、ボイラチューブの穴空きによ
るものかどうかを判別することが可能になる。
Therefore, if you install a moisture meter at the inlet of the waste heat boiler and measure the moisture in the cooling gas at the inlet of the waste heat boiler, you can measure the amount of moisture that the cooling gas itself brings into the waste heat boiler. Therefore, if the amount of moisture at the outlet of the waste heat boiler fluctuates, by comparing the two, it is possible to determine whether the change is due to a hole in the boiler tube.

すなわち、廃熱ボイラの人口における水分計による測定
値をM+(%)とし、また出口における水分計による測
定値をM、(%)として、その差ΔMを下記(3)式に
より計算する。
That is, the value measured by the moisture meter at the waste heat boiler's population is M+(%), and the value measured by the moisture meter at the outlet is M, (%), and the difference ΔM between them is calculated by the following equation (3).

6M−M、−Ml−・〜・・・〜・・−・・−・〜・〜
・−・・・・・−・−・−(3)そこで、この6MがO
より大きくなった時点をボイラチューブに穴空きが発生
したと判定するのである。
6M-M, -Ml-・〜・〜・・−・・−・〜・〜
・−・・・−・−・−(3) Therefore, this 6M is O
When the hole becomes larger, it is determined that a hole has occurred in the boiler tube.

〈実施例〉 以下に、本発明の実施例について、図面を参照して具体
的に説明する。
<Examples> Examples of the present invention will be specifically described below with reference to the drawings.

第1図は、本発明方法に係る実施例を示す構成図である
0図中、従来例と同一部材は、同一符号を付して説明を
省略す、る。
FIG. 1 is a block diagram showing an embodiment of the method of the present invention. In FIG. 1, the same members as in the conventional example are designated by the same reference numerals, and the explanation thereof will be omitted.

図において、21は、廃熱ボイラ11の入口に取付けら
れて冷却ガス中の水分を測定する入口水分計である。
In the figure, 21 is an inlet moisture meter attached to the inlet of the waste heat boiler 11 to measure the moisture in the cooling gas.

22は、廃熱ボイラ11の出口のガスダクト13に取付
けられて冷却ガス中の水分を測定する出口水分計である
Reference numeral 22 denotes an outlet moisture meter that is attached to the gas duct 13 at the outlet of the waste heat boiler 11 and measures the moisture in the cooling gas.

また、23は、入口水分計21の水分測定値と出口水分
計22の水分測定値とを演算して表示する演算表示装置
である。
Further, 23 is a calculation display device that calculates and displays the moisture measurement value of the inlet moisture meter 21 and the moisture measurement value of the outlet moisture meter 22.

このように構成した水分測定装置を用いて、廃熱ボイラ
11の入口と出口で同時に冷却ガス中の水分を測定した
Using the moisture measuring device configured as described above, the moisture in the cooling gas was measured simultaneously at the inlet and outlet of the waste heat boiler 11.

そこで、ある時点で廃熱ボイラ11の出口のガスダクト
13内に50kgへの水を噴霧して、そのときの両者の
差を前出(3)式で求めた。その結果を第2図に示す。
Therefore, at a certain point, 50 kg of water was sprayed into the gas duct 13 at the outlet of the waste heat boiler 11, and the difference between the two at that time was determined using the above equation (3). The results are shown in FIG.

この図から明らかなように、水噴霧時点までの両者の差
はO±0.5%以内であったが、水噴霧時点以降はほぼ
2%となり、この値は噴霧された水の量に匹敵している
ことがわかる。
As is clear from this figure, the difference between the two up to the time of water spraying was within 0 ± 0.5%, but after the time of water spraying, it became approximately 2%, and this value is comparable to the amount of water sprayed. I know what you're doing.

この実験の結果からみて、100kg/hの水を噴霧し
た場合は、その差の値はさらに大きくなることは明らか
であるから、したがって、本発明の目的とする100 
kg/h以下の水もしくは蒸気の漏洩を検知することが
可能であることはいうまでもない。
From the results of this experiment, it is clear that when 100 kg/h of water is sprayed, the value of the difference becomes even larger.
It goes without saying that it is possible to detect leakage of water or steam of less than kg/h.

このように本発明を用いることにより、ボイラチューブ
にたとえ小さな穴空きがあっても、確実に検出すること
ができる。
By using the present invention in this way, even if there is a small hole in the boiler tube, it can be reliably detected.

〈発明の効果〉 以上説明したように、本発明によれば、廃熱ボイラの入
口と出口の冷却ガス中の水分を比較して監視することに
よって、ボイラチューブの穴空きを早期にかつ確実に検
知することができる。
<Effects of the Invention> As explained above, according to the present invention, by comparing and monitoring the moisture in the cooling gas at the inlet and outlet of the waste heat boiler, holes in the boiler tube can be detected early and reliably. Can be detected.

したがって、ボイラチューブの穴空きの小さい内に補修
することができるから、ボイラチューブの補修、取り替
えに要する期間や費用を大幅に低減することができ、か
つ、粉コークスの摩耗によりボイラチューブの穴空きの
発生頻度の高いコークス乾式消火設備の廃熱ボイラの稼
働率を高め、その安定操業に寄与する。
Therefore, since holes in the boiler tube can be repaired while they are still small, the time and cost required for boiler tube repair and replacement can be significantly reduced. This increases the operating rate of the waste heat boiler of coke dry extinguishing equipment, which has a high frequency of occurrence, and contributes to its stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る実施例を示す構成図、第2図は
、廃熱ボイラの人口と出口における冷却ガス中の水分差
の測定例を示す特性図、第3図は、コークス乾式消火設
備の従来例を示す構成図、第4図は、廃熱ボイラ出口に
おける冷却ガス中の水分の経時変化を示す特性図である
。 ■・・・冷却塔、     9・・・煙道。 11・・・廃熱ボイラ、    12・・・ボイラチュ
ーブ。 13・・・ガスダクト、   21・・・入口水分計2
2・・・出口水分計、23・・・演算表示装置。
Fig. 1 is a configuration diagram showing an embodiment according to the present invention, Fig. 2 is a characteristic diagram showing an example of measurement of water difference in cooling gas at the population and outlet of a waste heat boiler, and Fig. 3 is a coke dry type FIG. 4, which is a block diagram showing a conventional example of fire extinguishing equipment, is a characteristic diagram showing changes over time in moisture in cooling gas at the outlet of a waste heat boiler. ■... Cooling tower, 9... Flue. 11...waste heat boiler, 12...boiler tube. 13... Gas duct, 21... Inlet moisture meter 2
2...Outlet moisture meter, 23...Calculation display device.

Claims (1)

【特許請求の範囲】[Claims] コークス乾式消火設備におけるボイラチューブの穴空き
検知方法であって、廃熱ボイラ入口と出口におけるコー
クス乾式消火用の冷却ガス中の水分を検出し、これらの
測定値に差が生じた時点をボイラチューブの穴空きと判
定することを特徴とするコークス乾式消火設備における
ボイラチューブの穴空き検知方法。
A method for detecting holes in boiler tubes in coke dry extinguishing equipment, in which moisture in the cooling gas for coke dry extinguishing at the inlet and outlet of a waste heat boiler is detected, and the point at which a difference occurs between these measured values is detected in the boiler tube. A method for detecting a hole in a boiler tube in a coke dry extinguishing equipment, characterized by determining that there is a hole in the boiler tube.
JP20192288A 1988-08-15 1988-08-15 Detecting method of leaks on boiler tube in coke dry type fire extinguisher Pending JPH0252901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20192288A JPH0252901A (en) 1988-08-15 1988-08-15 Detecting method of leaks on boiler tube in coke dry type fire extinguisher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20192288A JPH0252901A (en) 1988-08-15 1988-08-15 Detecting method of leaks on boiler tube in coke dry type fire extinguisher

Publications (1)

Publication Number Publication Date
JPH0252901A true JPH0252901A (en) 1990-02-22

Family

ID=16449018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20192288A Pending JPH0252901A (en) 1988-08-15 1988-08-15 Detecting method of leaks on boiler tube in coke dry type fire extinguisher

Country Status (1)

Country Link
JP (1) JPH0252901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170243A (en) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd Damage discovering method of waste heat boiler tube of converter
US7954431B2 (en) * 2006-06-09 2011-06-07 Heidelberger Druchmaschinen Ag Method for determining operating parameters of a printing press
CN108645571A (en) * 2018-05-17 2018-10-12 高振宇 The device and method of coal-powder boiler or circulating fluidized bed boiler tiny leakage for identification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7954431B2 (en) * 2006-06-09 2011-06-07 Heidelberger Druchmaschinen Ag Method for determining operating parameters of a printing press
JP2008170243A (en) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd Damage discovering method of waste heat boiler tube of converter
CN108645571A (en) * 2018-05-17 2018-10-12 高振宇 The device and method of coal-powder boiler or circulating fluidized bed boiler tiny leakage for identification

Similar Documents

Publication Publication Date Title
CN110003923B (en) Device and method for measuring coke burning loss in dry quenching furnace
US20150184943A1 (en) Method and device for detecting a leakage in the area of at least one cooling device of a furnace and a furnace
JPH0252901A (en) Detecting method of leaks on boiler tube in coke dry type fire extinguisher
JP3498973B2 (en) Leak detection method for sintering machine
CN111609970B (en) Airtightness detection method for hot galvanizing vertical annealing furnace under production working condition
KR100958939B1 (en) Fuel gas moisture monitoring apparatus and method of monitoring fuel gas moisture
CN110243557A (en) Pipe detection system, boiler components and method for detecting pipeline
CN210012810U (en) Device for measuring coke burning loss in dry quenching furnace
US3489518A (en) Carbon determination method and apparatus
WO2004022672A1 (en) Coke dry quenching method and system
JP4262428B2 (en) Water leak detection method in metallurgical furnace
JP2009173938A (en) Coke dry-quenching method
JPH08285210A (en) Boiler heat-transfer pipe abnormality detecting method for coke dry-type quenching equipment
CN211478193U (en) Sulfide detection device in chemical waste gas
JP2004067876A (en) Leak detection method on boiler water of coke dry quenching equipment
JP2833449B2 (en) Abnormality detection method for coke dry fire extinguishing equipment
JP3264152B2 (en) Air blowing method in coke dry fire extinguishing equipment
SU876728A1 (en) Method of control of outgoing gas rate in gas outlet loop of convertor
JP2004268964A (en) Apparatus for storing combustible solid matter, and method and system for detecting abnormal heat generation of apparatus for storing combustible solid matter
JP2821985B2 (en) Combustible gas combustion control method for coke dry fire extinguishing equipment
CN102879155A (en) Online leakage detection method and device for non-oxidation furnace radiant tube containing shielding hydrogen gas
JPH0244102A (en) Detecting method for rupture of boiler tube for coke dry type fire extinguishing installation
JPS6339626Y2 (en)
JPH03217488A (en) Method for detecting abnormality of boiler tube of coke dry type cooler
JPS6293305A (en) Detection of clogging and failure in transport piping for blowing powder fuel to blast furnace