JPH03217488A - Method for detecting abnormality of boiler tube of coke dry type cooler - Google Patents

Method for detecting abnormality of boiler tube of coke dry type cooler

Info

Publication number
JPH03217488A
JPH03217488A JP1390090A JP1390090A JPH03217488A JP H03217488 A JPH03217488 A JP H03217488A JP 1390090 A JP1390090 A JP 1390090A JP 1390090 A JP1390090 A JP 1390090A JP H03217488 A JPH03217488 A JP H03217488A
Authority
JP
Japan
Prior art keywords
boiler
coke
pressure
circulating gas
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1390090A
Other languages
Japanese (ja)
Other versions
JPH0756026B2 (en
Inventor
Teruo Sanada
輝男 真田
Fumio Azuma
東 二三男
Akira Hamazaki
浜崎 晃
Takashi Eto
江藤 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013900A priority Critical patent/JPH0756026B2/en
Publication of JPH03217488A publication Critical patent/JPH03217488A/en
Publication of JPH0756026B2 publication Critical patent/JPH0756026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To prevent reduction of thickness of heating tube and breakage of hole thereof and carry out safe operation of coke furnace by detecting abnormality of boiler tube by difference of circulating gas pressure of inlet and outlet of boiler. CONSTITUTION:A number of pressure measuring devices 20-23 are provided in inlet and outlet of a boiler 11, preferably in the direction of height of the boiler 11 and pressure loss between prescribed positions in the boiler 11 is operated from the difference of pressure of circulating gas measured thereby and deposited amount of small mass coke and powder coke is estimated. When the estimated amount reaches prescribed value or above, feed of circulating gas to the boiler 11 is stopped and the deposited small mass coke and powder coke are removed to prevent abnormality of each pipe line of heating tube groups SH1 to SH5 of the boiler 11.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はコークス炉から押出した灼熱コークスを冷却す
る乾式冷却装置のボイラーチューブと称する伝熱管の異
状を検知して、該伝熱管の減肉及び破孔を防止するため
の方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention detects abnormalities in heat transfer tubes called boiler tubes of dry cooling equipment that cools scorching coke extruded from coke ovens, and detects thinning of the heat transfer tubes. and a method for preventing hole breakage.

[従来の技術] コークス炉より押出した灼熱コークスを消火冷却する装
置として、近年は省エネルギーの観点から例えは特公昭
56−45860号公報に示す乾式冷却装置が使用され
つつある。
[Prior Art] As a device for extinguishing and cooling scorching hot coke extruded from a coke oven, in recent years, from the viewpoint of energy saving, a dry cooling device as shown in Japanese Patent Publication No. 56-45860, for example, has been used.

この乾式冷却装置の構成について第5図を基に以下に説
明する。
The structure of this dry cooling device will be explained below based on FIG. 5.

乾式冷却装置の冷却塔1にはコークス炉より押出した灼
熱コークスを冷却塔1の上部に設けた投入口2から装入
し、該冷却塔1の下部に設けた冷却ガス吹込口4から低
温の循環ガスを吹き込んでいる。
The cooling tower 1 of the dry cooling system is charged with scorching coke extruded from a coke oven through an inlet 2 provided at the top of the cooling tower 1, and low-temperature coke is charged through a cooling gas inlet 4 provided at the bottom of the cooling tower 1. Circulating gas is injected.

前記灼熱コークスは冷却塔1を降下する途中で、該冷却
塔1の下部から胴部へと上昇して来る循環ガスにより順
次冷却されて、冷却塔1の下部から払出される。
On the way down the cooling tower 1, the scorching coke is sequentially cooled by the circulating gas rising from the lower part of the cooling tower 1 to the body, and is discharged from the lower part of the cooling tower 1.

一方、前記のように冷却塔1の冷却ガス吹込口4から吹
き込まれた循環ガスは冷却塔1内を上昇する間に前記灼
熱コークスから吸熱して900〜1000℃程度の高温
になってスローピングフリュ−5から流出し、タストキ
ャッチャ−9を有するダクト10を通ってボイラー11
に流入する。
On the other hand, as described above, the circulating gas blown from the cooling gas inlet 4 of the cooling tower 1 absorbs heat from the scorching coke while rising in the cooling tower 1, reaches a high temperature of about 900 to 1000°C, and becomes a sloping flue. -5 and passes through a duct 10 with a dust catcher -9 to a boiler 11
flows into.

このボイラー11て高温の循環ガスを 160〜180
℃に降温して、次段のサイクロン12、ブロワー13、
冷却器14を順次介して低温の循環ガスとして前記冷却
塔1の冷却ガス吹込口4から再び吹込むものである。
This boiler 11 pumps high-temperature circulating gas at 160~180℃.
℃, the next stage cyclone 12, blower 13,
The cooled gas is sequentially passed through the cooler 14 and is again blown in from the cooling gas inlet 4 of the cooling tower 1 as a low-temperature circulating gas.

[発明が解決しようとする課題] 上記ボイラー11は高温の循環ガス流通路15に冷却水
が流通する伝熱管群SH,〜SH5を配置しており、特
に伝熱管群SH.,SH.には熱回収効率を上げるため
に、管路3を密に配置し、更に、伝熱面積の拡大を狙っ
て第2図に示すように管路3の外周にフイン6を設けて
いる(以下、この管路をフィン付伝熱管と称す)。
[Problems to be Solved by the Invention] The boiler 11 has heat transfer tube groups SH, -SH5 through which cooling water flows in the high-temperature circulating gas flow path 15, and in particular, the heat transfer tube groups SH. , S.H. In order to increase the heat recovery efficiency, the pipes 3 are arranged closely, and fins 6 are provided around the outer circumference of the pipes 3 as shown in Fig. 2 to increase the heat transfer area (hereinafter referred to as fins 3). , this conduit is called a finned heat exchanger tube).

一方、スロービングフリュ−5から冷却塔1内の小塊コ
ークスや粉コークスか高温の循環ガスに伴って飛来する
On the other hand, small coke and coke breeze in the cooling tower 1 are flown from the throbbing flue 5 along with high temperature circulating gas.

この飛来した小塊コークス、粉コークスにより前記伝熱
管群SH,〜S H sの管路が損傷を受けて破孔し冷
却水か漏洩する。この管路が破孔すると直たちに冷却塔
1での灼熱コークスの冷却を中止して、該破孔した管路
を補修しなければならず、その補修には多大の時間と労
力を有するものてあり、特に一基の乾式冷却装置で操業
しているコークス炉においてはその間は灼熱コークスの
冷却が出来ず重大な問題となるものであった。
The flown small coke and powder coke damage the pipelines of the heat exchanger tube groups SH, -SHs, causing holes and leaking cooling water. When a hole breaks in this pipe, cooling of the scorching coke in the cooling tower 1 must be immediately stopped and the pipe with the hole must be repaired, which requires a great deal of time and effort. Especially in coke ovens operating with a single dry cooling device, the scorching coke cannot be cooled during that time, which is a serious problem.

本発明は乾式冷却装置が操業している状態で前記伝熱管
群SHI〜SHSの管路の破孔を予知し、その予知に基
づいて、破孔原因を取除くことにより上記問題を惹起す
ることなく安定した操業を行うことを課題とするもので
ある。
The present invention prevents the above problem by predicting a hole in the pipeline of the heat transfer tube group SHI to SHS while the dry cooling device is in operation, and removing the cause of the hole based on the prediction. The challenge is to ensure stable operation without any problems.

[課題を解決するための千段コ 本発明者等はボイラー11内の伝熱管群SH,〜SHs
の管路が破孔する際には、ボイラー11内の圧損か大き
くなることの知見を得、これを基に本発明はなされたも
のであり、その特徴とする手段(1)は、灼熱コークス
を上部より装入し、下部より冷却したコークスを切出す
冷却塔と、高温ガス通路に冷却媒体を流通する伝熱管を
配設して、該高温ガス通路を流通する高温循環ガスの熱
を回収するボイラーと、前記冷却塔の胴部から導出した
高温循環ガスを前記ボイラーに供給し、該ボイラーで熱
を奪われて流出した低温循環ガスを前記冷却塔下部から
冷却塔内に循環供給する循環ガス路を有するコークスの
乾式冷却装置において、前記ボイラーの出入口に圧力測
定器を設け、両圧力測定器で測定したボイラー比人口部
の循環ガス圧力値から圧力差を演算し、該圧力差により
伝熱管の異状を検知するものてある。
[Thousand Steps to Solve the Problem] The present inventors have developed heat exchanger tube groups SH, ~SHs in the boiler 11.
The present invention was developed based on the knowledge that the pressure drop inside the boiler 11 increases when a hole breaks in the pipe line of the boiler 11. A cooling tower is installed in which coke is charged from the top and the cooled coke is cut out from the bottom, and heat transfer tubes are installed to circulate cooling medium through the high-temperature gas passage, and the heat of the high-temperature circulating gas flowing through the high-temperature gas passage is recovered. a boiler that supplies high-temperature circulating gas led out from the body of the cooling tower to the boiler, and circulates and supplies low-temperature circulating gas that has been stripped of heat in the boiler and flows out from the lower part of the cooling tower into the cooling tower. In a coke dry cooling system having a gas path, a pressure measuring device is installed at the entrance and exit of the boiler, and a pressure difference is calculated from the circulating gas pressure value of the boiler ratio population measured by both pressure measuring devices, and the pressure difference is used to transmit information. There is a device that detects abnormalities in heat pipes.

手段(2−)は手段(1)のボイラー出入口の循環ガス
圧力測定器に加えて、ボイラー内の循環ガス流れ方向に
複数の圧力測定器を設け、各圧力測定器で測定した各位
置における循環ガス圧力値から各位置間の圧力差を演算
し、該圧力差により伝熱管の異状を検知するものである
In addition to the circulating gas pressure measuring device at the boiler inlet and outlet of the means (1), means (2-) is provided with a plurality of pressure measuring devices in the circulating gas flow direction within the boiler, and the circulating gas pressure measuring device at each position measured by each pressure measuring device is provided. The pressure difference between each position is calculated from the gas pressure value, and abnormalities in the heat exchanger tube are detected based on the pressure difference.

[作   用コ 本発明の作用を第1図から第4図を参照して説明する。[Made for production] The operation of the present invention will be explained with reference to FIGS. 1 to 4.

本発明者等はボイラー内の伝熱管群SH.〜SH5の管
路が破孔する原因について、種々調査していくうちに蔦
3図に示すように、■ 伝熱管群SH,〜SH5の管路
が破孔する際にはボイラー11内の圧損が急激に高くな
る。
The present inventors have developed a heat exchanger tube group SH in a boiler. After conducting various investigations into the causes of holes in the ~SH5 pipelines, we found that, as shown in Figure 3, ■When holes occur in the heat exchanger tube groups SH and ~SH5 pipelines, pressure loss within the boiler 11 is the cause. increases rapidly.

■ 伝熱管群SH,−SH5の管路の破孔を補修する際
、伝熱管群SH,%SH.の管路に付着堆積した小塊コ
ークス、粉コークスを取除いて操業を開始した当初はボ
イラー11内の圧損は低いこと の知見を得た。
■ When repairing the holes in the pipes of the heat exchanger tube groups SH, -SH5, the heat exchanger tube groups SH, %SH. It was found that the pressure drop inside the boiler 11 was low when the operation was started after removing small coke particles and coke powder that had accumulated in the pipes.

これについて、更に、検討を重ねた結果、ボイラー内上
部域の伝熱管群SH,〜sH3は40mm〜50mmの
間隔を持って管路を配設しているのに対し、ボイラー内
下部域の伝熱管群SH4,SH5の管路3は10+nm
 〜20mmの間隔て配設し、しかも、前記のように管
路3の周囲にフイン6を取付けており、フィン6相互は
平面的に見たとぎに第2図に示すように重なった状態に
ある。
As a result of further study on this issue, we found that the heat transfer tube groups SH, ~sH3 in the upper region of the boiler have pipes arranged with an interval of 40 mm to 50 mm, whereas the heat transfer tubes in the lower region of the boiler Pipe line 3 of heat tube groups SH4 and SH5 is 10+nm
The fins 6 are arranged at intervals of ~20 mm, and the fins 6 are attached around the conduit 3 as described above, and the fins 6 overlap each other as shown in FIG. 2 when viewed from above. be.

このため、冷却塔1より高温の循環ガスに伴って流入し
た小塊コークスが前記ボイラー11下部伝熱管群SH4
,SHSのフィン付伝熱管3のフィン6間、又はフイン
6と該伝熱管3の間に挟まフて目詰まりを起こし、更に
、この上に前記同様に高温の循環ガスに伴って流入した
粉コークスが付着堆積する。
Therefore, the small coke that has flowed in from the cooling tower 1 along with the high temperature circulating gas is transferred to the lower heat exchanger tube group SH4 of the boiler 11.
, Powder that is caught between the fins 6 of the finned heat exchanger tube 3 of the SHS, or between the fins 6 and the heat exchanger tube 3, causing clogging, and furthermore, powder that has flowed in with the high temperature circulating gas as above. Coke adheres and accumulates.

しかし、何らかの原因によりフィン6間、又はフイン6
と該伝熱管3の間に挟まっていた小塊コークスが脱却し
た場合、又は、粉コークス量の堆積高さか高くなり過ぎ
ると、小塊コークス、粉コークスの付看堆積層が壊れて
、ボイラー11内を流れる循環ガスに伴って流下する。
However, due to some reason, the gap between the fins 6 or
If the small coke sandwiched between the heat exchanger tube 3 and the heat transfer tube 3 escapes, or if the piled up height of the amount of coke powder becomes too high, the small coke and the accumulated layer of coke powder will break and the boiler 11 It flows down with the circulating gas flowing inside.

この流下する多量の粉コークス及び小塊コークスが下方
のフィン付伝熱管3に]j突するが、これは多量の粉コ
ークス及び小塊コークスを伝熱管3に局部的に吹付けら
れたのと同様になり該伝熱管3及びフイン6を順次摩滅
して薄肉化し、ついには該伝熱管3が破孔に到ることが
判明した。
This large amount of coke powder and small coke flowing down hits the finned heat exchanger tube 3 below, but this is because a large amount of coke powder and small coke are locally blown onto the heat exchanger tube 3. Similarly, it was found that the heat exchanger tube 3 and the fins 6 were sequentially worn away and thinned, and finally the heat exchanger tube 3 became ruptured.

これから、ボイラー11内下部のフィン付伝熱管3が破
孔に到るには該伝熱管3に塊コークス及び粉コークスが
付着堆積する量に比例して第4図に示すように該ボイラ
ー11内の圧損が増大することの知見を得た。
From now on, in order for the finned heat exchanger tubes 3 in the lower part of the boiler 11 to reach a hole, the amount of lump coke and fine coke deposited on the heat exchanger tubes 3 is proportional to the amount of coke inside the boiler 11 as shown in FIG. We obtained the knowledge that the pressure drop increases.

つまり、本発明のように、ボイラー11の出入口、好ま
しくは該ボイラー11の高さ方向に多数の圧力測定器2
0〜23を設け、該圧力測定器20〜23で測定した循
環ガスの圧力差からボイラー11内の所定位置間の圧力
差、つまり、圧損を演算し、この演算圧力差により小塊
コークス、粉コークスの付着堆積量を推定し、この推定
付着堆積量が所定以上になると、ボイラー11への循環
ガスの供給を停止し、この付着堆積した小塊コークス、
粉コークスを除去することにより、ボイラー11の伝熱
管群SHI〜SHSの各管路の減肉化又は破孔を防止す
るものである。
That is, as in the present invention, a large number of pressure measuring instruments 2 are provided at the entrance and exit of the boiler 11, preferably in the height direction of the boiler 11.
0 to 23 are provided, and the pressure difference between predetermined positions in the boiler 11, that is, the pressure loss, is calculated from the pressure difference of the circulating gas measured by the pressure measuring devices 20 to 23. The amount of coke deposited is estimated, and when the estimated amount of deposited coke exceeds a predetermined value, the supply of circulating gas to the boiler 11 is stopped, and the small coke particles that have been deposited are removed.
By removing the coke powder, thinning of the pipes or holes in the heat transfer tube groups SHI to SHS of the boiler 11 are prevented.

[実 施 例] 本発明の一実施例を第1図を参照して以下に説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

図中、SH,〜SH5はボイラー11内に設けた伝熱管
群であり、SH4,SH,はフィン付伝熱管群、SH,
〜SH3はフィン等を付けていない単なる伝熱管(裸管
)群である。
In the figure, SH, to SH5 are heat exchanger tube groups provided in the boiler 11, SH4, SH are finned heat exchanger tube groups, SH,
~SH3 is simply a group of heat exchanger tubes (bare tubes) without fins or the like.

20〜23はボイラー11内に設けた圧力計であり、圧
力計20はボイラー11の入側に設けられて、その圧力
P1を測定している。圧力計23はボイラー11の出側
に設けられて、その圧力P4を測定している。圧力計2
1は伝熱管群S H 3とフィン付伝熱管群SH4の間
に設けられて、その圧力P2を測定している。圧力計2
2はフィン付伝熱管群SH.とフィン付伝熱管群SHs
の間に設けられて、その圧力P3を測定している。24
はボイラー11の出側に設けた循環ガス流量計で、ボイ
ラー11内を通過する循環ガス流量Qを測定している。
20 to 23 are pressure gauges provided inside the boiler 11, and the pressure gauge 20 is provided on the inlet side of the boiler 11 to measure the pressure P1. A pressure gauge 23 is provided on the outlet side of the boiler 11 and measures its pressure P4. Pressure gauge 2
1 is provided between the heat exchanger tube group SH3 and the finned heat exchanger tube group SH4, and measures the pressure P2. Pressure gauge 2
2 is a finned heat exchanger tube group SH. and finned heat exchanger tube group SHs
The pressure P3 is measured. 24
is a circulating gas flow meter installed on the outlet side of the boiler 11, which measures the circulating gas flow rate Q passing through the boiler 11.

25は圧力計20〜23て測定したボイラー11内の圧
力P1〜P4の各圧力差ΔP l1+ ΔP21,ΔP
3+を演算する圧力差演算部、26は圧力補正係数演算
部であり、ボイラー11内を流れるガス量が変化すると
該ボイラー11内の圧力が変動することから、循環ガス
流量計24で測定した循環ガス流ftQと設定器27か
らの基準ガス流量Q0とを比較して各圧力差ΔPI 1
 +ΔP2、,ΔP31の補正係数αを演算する。28
は圧力差演算部25で演算したボイラー11内の各位置
間に於ける圧力差ΔP】1,ΔP21,ΔP3lを圧力
?rti正係数演算器26で演算した補正係数αにより
補正演算する圧力補正演算部、29は圧力補正演算部2
8で演算した補正圧力差ΔP12,ΔP22,ΔP32
と設定器30からの基準圧力差ΔPOOとを比較して、
各補正圧力差ΔP12,ΔP22,ΔP32が基準圧力
差ΔP0。より大きくなったときに警報器31に異状警
報信号を出力する比較部である。この警報器31は比較
部29からの異状警報信号により警報を発する。
25 is each pressure difference ΔP l1+ ΔP21, ΔP between the pressures P1 to P4 in the boiler 11 measured by the pressure gauges 20 to 23
26 is a pressure correction coefficient calculating section which calculates 3+, and 26 is a pressure correction coefficient calculating section. Since the pressure inside the boiler 11 changes when the amount of gas flowing inside the boiler 11 changes, the circulation measured by the circulating gas flow meter 24 Comparing the gas flow ftQ and the reference gas flow rate Q0 from the setting device 27, each pressure difference ΔPI 1
+ΔP2, , ΔP31 correction coefficient α is calculated. 28
is the pressure difference ΔP]1, ΔP21, ΔP3l between each position in the boiler 11 calculated by the pressure difference calculation unit 25? A pressure correction calculation unit 29 performs a correction calculation using the correction coefficient α calculated by the rti positive coefficient calculation unit 26;
Corrected pressure difference ΔP12, ΔP22, ΔP32 calculated in 8
and the reference pressure difference ΔPOO from the setting device 30,
Each corrected pressure difference ΔP12, ΔP22, ΔP32 is the reference pressure difference ΔP0. This is a comparison unit that outputs an abnormality alarm signal to the alarm device 31 when the alarm becomes larger. This alarm device 31 issues an alarm in response to an abnormality alarm signal from the comparator 29.

つまり、乾式冷却装置によりコークス炉(図示せず)よ
り押土した赤熱コークスを冷却すると、小塊、粉コーク
スは循環ガスに伴ってボイラー11内に流入して、伝熱
管群SH,〜SH5に順次付着堆積する、特にフィン付
伝熱管群SH4.SH5は付着堆積する小塊、粉コーク
ス量か多い。
In other words, when red-hot coke pressed from a coke oven (not shown) is cooled by a dry cooling device, the small lumps and coke breeze flow into the boiler 11 along with the circulating gas and flow into the heat transfer tube groups SH, to SH5. In particular, the finned heat exchanger tube group SH4. SH5 has a large amount of small lumps and coke powder that adhere and accumulate.

この、ボイラー11内における循環ガスは第5図と同様
に該ボイラー11の下流側に設けたブロワー13により
吸弓されているので、ボイラー11の圧力は底部が負圧
が高く、上部になるに従って負圧が低くなっている。
This circulating gas in the boiler 11 is sucked up by the blower 13 installed downstream of the boiler 11 as shown in FIG. Negative pressure is low.

このために、上記のように伝熱管群SH,〜SHSに小
塊、粉コークスが付着堆積するに従って循環ガスの流通
か悪くなり、前記圧力計20〜23で測定した負圧力は
小さく(つまり正圧力方向となる)なる。例えばフィン
付伝熱管群SH.に小塊、粉コークスが付着し始めると
、圧力;d22,23の圧力測定値P3,P4は殆と変
化しないか、圧力計20.21の圧力?定値P,,P2
は順次負圧力か小さくなっていく。
For this reason, as small lumps and coke breeze accumulate on the heat exchanger tube groups SH, ~SHS as described above, the circulation of the circulating gas deteriorates, and the negative pressure measured by the pressure gauges 20 to 23 becomes small (in other words, the positive (in the pressure direction). For example, the finned heat exchanger tube group SH. When small lumps and coke powder start to adhere to the pressure; the pressure measurements P3 and P4 at d22 and 23 hardly change, or is the pressure at the pressure gauge 20 and 21? Fixed value P,,P2
The negative pressure gradually decreases.

かくして圧力計21と22の圧力差ΔP2■は順次大き
くなる。この結果、圧力補正演算部28で補正後の補正
圧力差ΔP22が順次大きくなり、基準圧力差ΔPOO
を上回った段階で比較部29より異状警報信号を発して
警報器31から警報を発する。
Thus, the pressure difference ΔP2■ between the pressure gauges 21 and 22 gradually increases. As a result, the corrected pressure difference ΔP22 after correction in the pressure correction calculating section 28 becomes larger sequentially, and the reference pressure difference ΔPOO
When the value exceeds this value, the comparator 29 issues an abnormality alarm signal and the alarm device 31 issues an alarm.

この警報器31の警報によりオペレータはボイラー11
への循環ガスの供給を停止して該ボイラー11をイ令却
する。
This alarm 31 alerts the operator to the boiler 11.
The supply of circulating gas to the boiler 11 is stopped and the boiler 11 is retired.

このボイラー11の冷却後、フィン付伝熱管群SH4に
付着堆積した小塊、粉コークスを除去し、再びボイラー
11の稼動を再開する。
After this boiler 11 has been cooled, the small lumps and coke powder that have adhered and accumulated on the finned heat exchanger tube group SH4 are removed, and the operation of the boiler 11 is resumed.

尚、本実施例ではボイラー11の異状を自動的に検知す
るようにしたが、本発明はこれに限ることなく、圧力差
演算部25で演算した各圧力差ΔP I1.ΔP2■,
ΔP3+をオペレータが直接監視しておき、この圧力差
により異状を検知するようにしてもよい。
Incidentally, in this embodiment, abnormalities in the boiler 11 are automatically detected, but the present invention is not limited to this, and each pressure difference ΔPI1. ΔP2■,
An operator may directly monitor ΔP3+ and detect any abnormality based on this pressure difference.

また、圧力計20と23のみを設置しておき、これによ
りボイラー11全体の異状を検知し、該ボイラー11の
冷却後に小塊、粉コークスの付着堆積している伝熱管群
SH,〜SH,をオペレータか検知して、付着堆積した
小塊、粉コークスを除去するようにしても良いが、この
際、多少再稼動までには時間がかかるが操業的に大きな
問題となることはない。
In addition, only pressure gauges 20 and 23 are installed, and with these, abnormalities in the entire boiler 11 can be detected. The operator may detect this and remove the accumulated small lumps and coke powder, but in this case, it will take some time to restart the operation, but it will not pose a major problem in terms of operation.

[効   果] 本発明はボイラー内の伝熱管が破損に到る前に異状を検
出して、伝熱管の破損の原因となる小塊、粉コークスを
除去するので、伝熱管が破損して冷却水が外部に流出す
ることなく、しかも破損修理が必要とならないことから
、ボイラーの再稼動を短時間にすることが可能となり、
特に一基の乾式冷却装置で赤熱コークスを消火冷却して
いるコークス炉に於いて有効なものであり、この分野に
於ける効果は多大なものである。
[Effects] The present invention detects abnormalities before the heat exchanger tubes in the boiler break down and removes small lumps and coke powder that cause the heat exchanger tubes to break. Since water does not leak outside and there is no need to repair damage, it is possible to restart the boiler in a short time.
It is particularly effective in coke ovens where red-hot coke is extinguished and cooled using a single dry cooling device, and its effects in this field are significant.

4 .4.

【図面の簡単な説明】[Brief explanation of drawings]

第3図は乾式冷却装置の稼動中に於けるボイラー内の圧
損値を示す図、第4図はボイラー内の伝熱管に付着堆積
する小塊コークス、粉コークス量と圧損の関係を示す図
、′j85図は従来例を示す図である。 1・・・冷却塔     2・・・投入口3・・・管路
      4・・・吹込口5・・・スロービングフリ
ュー 6・・・フィン 9・・・ダストキャッチャー 10・・・タクト     11・・・ボイラー12・
・・サイクロン  13・・・ブロワー14・・・冷却
器    15・・・循環ガス流通路20〜23・・・
圧力測定器 24・・・流量計    25・・・圧力演算部26・
・・圧力補正係数演算部 27・・・設定器    28・・・圧力差演算部29
・・・比較部 3 1 ・・・警報器 3 0・・・設定器 S H・・・伝熱管群 他4名
Fig. 3 is a diagram showing the pressure drop value inside the boiler during operation of the dry cooling system, Fig. 4 is a diagram showing the relationship between the small coke deposited on the heat transfer tubes in the boiler, the amount of fine coke and the pressure drop, Figure 'j85 is a diagram showing a conventional example. 1...Cooling tower 2...Inlet 3...Pipeline 4...Blowing port 5...Throwing flue 6...Fin 9...Dust catcher 10...Tact 11...・Boiler 12・
...Cyclone 13...Blower 14...Cooler 15...Circulating gas flow passages 20-23...
Pressure measuring device 24...flow meter 25...pressure calculation section 26.
...Pressure correction coefficient calculation section 27...Setter 28...Pressure difference calculation section 29
... Comparison section 3 1 ... Alarm device 3 0 ... Setting device S H ... Heat exchanger tube group and 4 others

Claims (1)

【特許請求の範囲】 1 灼熱コークスを上部より装入し、下部より冷却した
コークスを切出す冷却塔と、高温ガス通路に冷却媒体を
流通するボイラーチューブを配設して、該高温ガス通路
を流通する高温循環ガスの熱を回収するボイラーと、前
記冷却塔の胴部から導出した高温循環ガスを前記ボイラ
ーに供給し、該ボイラーで熱を奪われて流出した低温循
環ガスを前記冷却塔下部から冷却塔内に循環供給する循
環ガス路を有するコークスの乾式冷却装置において、前
記ボイラーの出入口に圧力測定器を設け、両圧力測定器
で測定したボイラー出入口部の循環ガス圧力値から圧力
差を演算し、該圧力差によりボイラーチューブの異状を
検知することを特徴とするコークス乾式冷却装置のボイ
ラーチューブの異状検知方法。 2 ボイラーの出入口の冷却ガス圧力測定器に加えて、
ボイラー内の循環ガス流れ方向に複数の圧力測定器を設
け、各圧力測定器で測定した各位置における循環ガス圧
力値から各位置間の圧力差を演算し、該圧力差によりボ
イラーチューブの異状を検知することを特徴とする請求
項1記載のコークス乾式冷却装置のボイラーチューブの
異状検知方法。
[Claims] 1. A cooling tower into which scorching coke is charged from the upper part and cooled coke is cut from the lower part, and a boiler tube through which a cooling medium flows through the high-temperature gas passage, and the high-temperature gas passage is A boiler that recovers the heat of the circulating high-temperature circulating gas, and a boiler that supplies the high-temperature circulating gas led out from the body of the cooling tower to the boiler, and collects the low-temperature circulating gas that has taken heat in the boiler and flows out to the lower part of the cooling tower. In a coke dry cooling system having a circulating gas path that circulates and supplies from the boiler to the cooling tower, a pressure measuring device is provided at the inlet and outlet of the boiler, and the pressure difference is calculated from the circulating gas pressure value at the boiler inlet and outlet measured by both pressure measuring devices. 1. A method for detecting an abnormality in a boiler tube of a coke dry cooling system, comprising calculating and detecting an abnormality in the boiler tube based on the pressure difference. 2 In addition to the cooling gas pressure measuring device at the boiler entrance and exit,
Multiple pressure measuring instruments are installed in the circulating gas flow direction within the boiler, and the pressure difference between each position is calculated from the circulating gas pressure value at each position measured by each pressure measuring instrument, and the abnormality of the boiler tube is detected based on the pressure difference. 2. The method for detecting abnormality in a boiler tube of a coke dry cooling system according to claim 1, further comprising detecting an abnormality in a boiler tube of a coke dry cooling system.
JP2013900A 1990-01-24 1990-01-24 Method for preventing rupture of boiler tube in coke dry cooling system Expired - Lifetime JPH0756026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013900A JPH0756026B2 (en) 1990-01-24 1990-01-24 Method for preventing rupture of boiler tube in coke dry cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013900A JPH0756026B2 (en) 1990-01-24 1990-01-24 Method for preventing rupture of boiler tube in coke dry cooling system

Publications (2)

Publication Number Publication Date
JPH03217488A true JPH03217488A (en) 1991-09-25
JPH0756026B2 JPH0756026B2 (en) 1995-06-14

Family

ID=11846046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013900A Expired - Lifetime JPH0756026B2 (en) 1990-01-24 1990-01-24 Method for preventing rupture of boiler tube in coke dry cooling system

Country Status (1)

Country Link
JP (1) JPH0756026B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659230B2 (en) 2004-11-24 2010-02-09 E.I. Du Pont De Nemours And Company Thermoplastic resin composition containing mesoporous powders absorbed with lubricating oils
CN102977900A (en) * 2012-12-18 2013-03-20 中冶焦耐工程技术有限公司 Device and method for measuring pressure data of coke oven gas collector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044582A (en) * 1983-08-23 1985-03-09 Nippon Steel Corp Method for cleaning heat transfer surface of boiler in dry quenching apparatus of coke
JPS6354032U (en) * 1986-09-25 1988-04-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044582A (en) * 1983-08-23 1985-03-09 Nippon Steel Corp Method for cleaning heat transfer surface of boiler in dry quenching apparatus of coke
JPS6354032U (en) * 1986-09-25 1988-04-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659230B2 (en) 2004-11-24 2010-02-09 E.I. Du Pont De Nemours And Company Thermoplastic resin composition containing mesoporous powders absorbed with lubricating oils
CN102977900A (en) * 2012-12-18 2013-03-20 中冶焦耐工程技术有限公司 Device and method for measuring pressure data of coke oven gas collector

Also Published As

Publication number Publication date
JPH0756026B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JP2675684B2 (en) Abnormality monitoring device for heat exchanger
CN105065249B (en) Compressor performance detection device, air conditioning system with same and control method
CN102313471B (en) The function of cooling system monitors and/or control method and corresponding cooling system
CN208477398U (en) A kind of cooling height temp controller of high-precision second level
JP5542237B1 (en) Gas temperature control method for blast furnace gas dry dust collector and blast furnace gas dry dust collector
JP3646534B2 (en) Gas turbine power plant
CN105823282A (en) Discharge pressure control method used for optimized operation of carbon dioxide heat pump system
JPH03217488A (en) Method for detecting abnormality of boiler tube of coke dry type cooler
JP4672019B2 (en) Fuel gas supply facility and fuel gas moisture monitoring method
US9920998B2 (en) Air cooled condenser and power generating apparatus provided with the same
JP5652194B2 (en) Diagnostic method for furnace air preheater
CN112458222A (en) Blast furnace tuyere small sleeve leakage detection device and leakage detection method
KR101570075B1 (en) Leak detecting device of heat exchanger and leak detecting method thereof
JP2020041098A (en) Coke dry extinguishment facility and method for removing coke dust from boiler of coke dry extinguishment facility
JPH08285210A (en) Boiler heat-transfer pipe abnormality detecting method for coke dry-type quenching equipment
JP4215894B2 (en) Dust removal method
CN207610463U (en) A kind of freeze drying box
CN104321538B (en) Device for compressing wet gas current
CN205536636U (en) Refrigeration water installation and refrigerating system thereof
JP5721569B2 (en) Cooling device and cooling water leakage detection method
CN218584297U (en) Device for analyzing leakage of water tank of heat pipe exchanger on line
CN112387085A (en) Dryer, compressor installation and method for drying compressed gas
JP3264152B2 (en) Air blowing method in coke dry fire extinguishing equipment
CN218646883U (en) Device for analyzing failure of heat pipe exchanger on line
CN218349542U (en) Device for analyzing dust accumulated on surface of heat pipe exchanger on line