JPH0252825B2 - - Google Patents

Info

Publication number
JPH0252825B2
JPH0252825B2 JP56503292A JP50329281A JPH0252825B2 JP H0252825 B2 JPH0252825 B2 JP H0252825B2 JP 56503292 A JP56503292 A JP 56503292A JP 50329281 A JP50329281 A JP 50329281A JP H0252825 B2 JPH0252825 B2 JP H0252825B2
Authority
JP
Japan
Prior art keywords
reaction vessel
oxygen
dilution
constant
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56503292A
Other languages
Japanese (ja)
Other versions
JPS57501886A (en
Inventor
Furiidoritsuhi Uiruherumu Jiipuman
Mikaeru Toretsushaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOITSUSHAA MIKAERU
Original Assignee
TOITSUSHAA MIKAERU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOITSUSHAA MIKAERU filed Critical TOITSUSHAA MIKAERU
Publication of JPS57501886A publication Critical patent/JPS57501886A/ja
Publication of JPH0252825B2 publication Critical patent/JPH0252825B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Water biological or chemical oxygen demand (BOD or COD)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/115831Condition or time responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/117497Automated chemical analysis with a continuously flowing sample or carrier stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/12Condition responsive control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/207497Molecular oxygen
    • Y10T436/209163Dissolved or trace oxygen or oxygen content of a sealed environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25625Dilution

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Emergency Medicine (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A process and apparatus for measuring the degree of pollution, the degradableness, and the level of toxicity of aqueous liquids such as effluent. A partial stream is withdrawn from the liquid undergoing examination and diluted with biologically neutral water. The diluted partial stream is oxygenated and continuously flows through a biological bath in a reaction vessel having a constant living mass. The dilution of the partial stream is regulated in such a manner through measurement of the oxygen content upstream and downstream of the reaction vessel, that with constant volume flow through the reaction vessel, the difference between the measurement values obtained remains essentially constant at a predetermined value, so that the amount of dilution serves for the indication of the level of pollution. Additional reaction vessels connected in parallel or in series with the first reaction vessel and having associated oxygen electrodes allows measurement of the toxicity and degradableness of the pollution.

Description

請求の範囲 1 検査すべき溶液を分岐採取して酸素で曝気
し、反応容器内で、濾床の微生物量をほぼ一定の
水準に維持した生物濾床を連続的に通過させた
後、残存酸素量を測定するごとき、たとえば廃水
等の検査すべき溶液の、生物学的に分解可能な毒
性成分を検査するための汚濁の検査方法にして、
分岐流を生物学的に中性の水で希釈し、反応容器
入口で溶存酸素量を測定し、残存酸素量の測定結
果と比較して、反応容器を通過する流量が一定の
場合に、上記測定値の差が設定値に対して一定と
なるように、分岐流の希釈度が制御され、その際
に汚濁度を表わすために希釈度が用いられること
を特徴とする溶液の生物学的に分解可能な毒性の
成分を検査するための方法。
Claim 1: The solution to be tested is sampled in branches, aerated with oxygen, and continuously passed through a biological filter in which the amount of microorganisms in the filter bed is maintained at a substantially constant level in a reaction vessel. A pollution testing method for testing biologically degradable toxic components of a solution to be tested, such as wastewater, such as measuring the amount of
Dilute the branched flow with biologically neutral water, measure the amount of dissolved oxygen at the inlet of the reaction vessel, and compare it with the measurement result of the amount of residual oxygen. Biological analysis of a solution, characterized in that the dilution of the branched flow is controlled so that the difference between the measured values is constant with respect to a set value, and the dilution is used to express the degree of contamination. Method for testing degradable toxic components.

2 上記反応容器に供給され希釈される栄養物の
濃度が、生体の反応生成速度と栄養物供給量が近
似的に直線関係となる範囲内に選ばれることを特
徴とする、上記請求の範囲第1項に記載の方法。
2. The concentration of the nutrient supplied to the reaction container and diluted is selected within a range where the reaction production rate of the living body and the nutrient supply amount are approximately linearly related. The method described in Section 1.

3 上記反応容器に供給され希釈される栄養物の
濃度が、生体の反応生成速度が最大反応生成速度
の1/2を越えないように選ばれることを特徴とす
る、上記請求の範囲第1項または第2項に記載の
方法。
3. The concentration of the nutrients supplied and diluted to the reaction vessel is selected such that the reaction production rate of the living body does not exceed 1/2 of the maximum reaction production rate. or the method described in Section 2.

4 栄養物供給量をBOD5で測定して、1〜15
mg/の間で一定にすることを特徴とする、上記
請求の範囲第1項乃至第3項に記載の方法。
4. Nutrient supply measured by BOD 5 , 1-15
4. The method according to claim 1, wherein the method is made constant between mg/mg/ml.

5 PH値の変動による阻害作用に対して、検査液
に生物学的に中性の緩衝液が投与されることを特
徴とする、上記請求の範囲第1項乃至第4項に記
載の方法。
5. The method according to any one of claims 1 to 4 above, characterized in that a biologically neutral buffer solution is administered to the test solution to counter the inhibitory effect caused by fluctuations in PH value.

6 検査液をわずかに加圧した状態で流すことを
特徴とする、上記請求の範囲第1項乃至第5項に
記載の方法。
6. The method according to any one of claims 1 to 5 above, characterized in that the test liquid is flowed under a slightly pressurized state.

7 検査溶液をもう1つの第2の分岐流として採
取して先に処理をした第1の分岐流と同様の処理
をし、このとき第2の分岐流の希釈度は一定の倍
率(m)だけ第1の分岐流のそれより小さくなる
ように調節しており、第2の反応容器の入口と出
口の測定値の差の変化を、第1の分岐流での測定
値の差の変化と比較して毒性成分に関連する毒性
の程度が表示されることを特徴とする、上記請求
の範囲第1項に記載の方法。
7. Collect the test solution as another second branch stream and process it in the same way as the first branch stream that was treated earlier, and at this time, the dilution of the second branch stream is a constant magnification (m). is adjusted to be smaller than that of the first branch flow, and the change in the difference between the measured values at the inlet and outlet of the second reaction vessel is compared with the change in the difference between the measured values in the first branch flow. 2. A method according to claim 1, characterized in that the degree of toxicity associated with the toxic components is displayed in comparison.

8 倍率(m)は、予想される毒性の種類に従つ
て2〜20の間で選ばれることを特徴とする、上記
請求の範囲第7項に記載の方法。
8. Method according to claim 7, characterized in that the multiplier (m) is chosen between 2 and 20 according to the type of toxicity expected.

9 生物濾床には、生体の生長膜を有する多数の
自由浮遊物体が充填されており、常に乱れて動い
ていることを特徴とする、上記請求の範囲第1項
乃至第8項に記載の方法。
9. The biological filter bed according to claims 1 to 8 above, characterized in that the biological filter bed is filled with a large number of free-floating objects having biological growth membranes, and is constantly moving in a turbulent manner. Method.

10 水溶液の分岐流を通す曝気槽と反応容器を
具備し、かつ、反応容器の出口導管中に酸素電極
を具備した廃水等の水溶液の生物学的に分解可能
な毒性成分を検査するための汚濁の検査方法を実
施するための装置にして、曝気槽3の入口側に分
岐流の導管31と希釈水の導管32が接続され、
希釈水の導管32中に制御装置12と接続した流
量制御装置2が設置され、曝気槽3の流出口33
と反応容器7の流入口71を結ぶ導管60中に、
制御装置12と接続したもう1つ別の酸素電極1
0を具備し、その際制御装置は、流量制御装置2
のための比較器と制御信号発信器をもつことを特
徴とする、溶液の生物学的に分解可能な毒性の成
分を検査するための装置。
10 Pollution for testing biologically degradable toxic components of aqueous solutions such as wastewater, comprising an aeration tank and a reaction vessel through which branch streams of the aqueous solution are passed, and an oxygen electrode in the outlet conduit of the reaction vessel. As an apparatus for implementing the inspection method, a branch flow conduit 31 and a dilution water conduit 32 are connected to the inlet side of the aeration tank 3,
A flow rate control device 2 connected to a control device 12 is installed in a dilution water conduit 32, and an outlet 33 of an aeration tank 3 is installed.
In the conduit 60 connecting the inlet 71 of the reaction vessel 7,
Another oxygen electrode 1 connected to a control device 12
0, in which case the control device comprises a flow control device 2
Device for testing biologically degradable toxic components of a solution, characterized in that it has a comparator for and a control signal transmitter.

11 分岐流の導管31と希釈水の導管32には
それぞれ定量ポンプ1,2が設置されていること
を特徴とする、上記請求の範囲第10項に記載の
装置。
11. The apparatus according to claim 10, characterized in that metering pumps 1 and 2 are installed in the branch flow conduit 31 and the dilution water conduit 32, respectively.

12 反応容器7が、別のポンプ8によつて反応
容器7内の流体が連続的に圧送される循環管路8
1と接続されていることを特徴とする、上記請求
の範囲第10項または第11項に記載の装置。
12 The reaction vessel 7 is connected to a circulation pipe 8 through which the fluid in the reaction vessel 7 is continuously pumped by another pump 8.
12. Device according to claim 10 or 11, characterized in that it is connected to 1.

13 反応容器7内に保有されている生物濾床に
は、生体の生長膜を有する多数の自由浮遊物体9
が含まれていることを特徴とする、上記請求の範
囲第10項乃至第12項に記載の装置。
13 The biological filter bed held in the reaction vessel 7 contains a large number of free floating objects 9 having biological growth membranes.
13. A device according to claims 10 to 12, characterized in that it comprises:

14 自由浮遊物体9は、機械的な作用から保護
された生長膜を有することを特徴とする、上記請
求の範囲第13項に記載の装置。
14. Device according to claim 13, characterized in that the free-floating body 9 has a growth membrane that is protected from mechanical effects.

15 自由浮遊物体9は、その内面に自由な生長
膜を有する中空物体であることを特徴とする、上
記請求の範囲第13項または第14項に記載の装
置。
15. Device according to claim 13 or 14, characterized in that the free-floating body 9 is a hollow body with a free growing membrane on its inner surface.

16 先の処理での第1の反応容器を出た分岐流
が、生物濾床を有する次に処理する第2の反応容
器を通して送られ、第1の反応容器中の酸素消費
量と第2の反応容器中の酸素消費量の差が、分岐
流中の汚濁の分解性に対する尺度として検知され
ることを特徴とする、上記請求の範囲第1項に記
載の方法。
16 The branch stream leaving the first reaction vessel from the previous treatment is routed through a second reaction vessel for subsequent treatment having a biological filter bed, and the oxygen consumption in the first reaction vessel and the second reaction vessel are 2. Process according to claim 1, characterized in that the difference in oxygen consumption in the reaction vessel is detected as a measure for the degradability of the pollution in the branched streams.

17 先の処理での第1の反応容器を出た分岐流
を希釈した後に次に処理する第2の反応容器に流
入させること、および第1の反応容器に流入する
分岐流の希釈度を、第2の反応容器を通過する流
量が一定の場合に、第2の反応容器の入口、出口
の測定値の差が設定値に対してほぼ一定となるよ
うに制御し、その際、第2の反応容器での希釈度
を第1の反応容器でのそれより一定の倍率mだけ
大きくなるように調節し、第2の反応容器前後で
の測定値の差が、第1の反応容器での測定値の差
と比較され、毒性成分に関連する毒性の程度とし
て表示されることを特徴とする、上記請求の範囲
第1項に記載の方法。
17 Diluting the branched stream that exited the first reaction vessel in the previous treatment and then allowing it to flow into the second reaction vessel to be treated next, and adjusting the degree of dilution of the branched stream flowing into the first reaction vessel, When the flow rate passing through the second reaction vessel is constant, the difference between the measured values at the inlet and outlet of the second reaction vessel is controlled to be approximately constant with respect to the set value. The degree of dilution in the reaction vessel is adjusted to be larger than that in the first reaction vessel by a constant magnification m, and the difference between the measured values before and after the second reaction vessel is the same as that measured in the first reaction vessel. 2. Method according to claim 1, characterized in that the difference in values is compared and expressed as the degree of toxicity associated with the toxic component.

18 先の処理での第1の反応容器7の流出管7
2が次に処理する第2の反応容器17の流入管7
1′に接続されており、第2の反応容器17の後
にもう1つの酸素電極16が取付けられ、導線4
6′によつて制御装置12,12と接続されてい
ることを特徴とする上記請求の範囲第10項に記
載の装置。
18 Outflow pipe 7 of the first reaction vessel 7 in the previous treatment
2 is the inflow pipe 7 of the second reaction vessel 17 to be treated next.
1', another oxygen electrode 16 is installed after the second reaction vessel 17, and a conductor 4
11. Device according to claim 10, characterized in that it is connected to the control devices 12, 12 by means of 6'.

19 流出管72はオーバーフロー19をもつタ
ンク18に接続され、タンクには、その排出口を
第2の反応容器17の流入管71′とつないだ定
量ポンプ13を具備する排出管22が取付けら
れ、また、定量ポンプ14を具備する希釈水導管
32′が流入管71′に接続され、第2の反応容器
17の前後にそれぞれ酸素電極が設置されている
ことを特徴とする、上記請求の範囲第17項に記
載の方法を実施するための、上記請求の範囲第1
8項に記載の装置。
19 The outflow pipe 72 is connected to a tank 18 with an overflow 19, which is fitted with an outflow pipe 22 equipped with a metering pump 13, which connects its outlet with the inflow pipe 71' of the second reaction vessel 17; Further, a dilution water conduit 32' equipped with a metering pump 14 is connected to the inflow pipe 71', and oxygen electrodes are installed before and after the second reaction vessel 17, respectively. Claim 1 for carrying out the method according to claim 17
The device according to item 8.

20 第2の曝気槽3′、第2の反応容器17お
よび第2の反応容器17の前後にそれぞれ取付け
た酸素電極15,16を具備するもう1つの同じ
装置bと並列に設置し、第2の曝気槽3′に前置
した流量制御装置13,14を、第2の分岐流の
希釈度を第1の分岐流の希釈度と一定の倍率mだ
け変えるように、制御装置12によつて調節作動
させることを特徴とする、上記請求の範囲第10
項に記載の装置。
20 A second aeration tank 3', a second reaction vessel 17, and another same apparatus b equipped with oxygen electrodes 15 and 16 installed before and after the second reaction vessel 17, respectively, are installed in parallel, and the second The flow rate control devices 13 and 14 installed in front of the aeration tank 3' are controlled by the control device 12 so as to change the dilution of the second branch flow from the dilution of the first branch flow by a constant magnification m. Claim 10
The equipment described in section.

明細書 本発明は、検査すべき溶液を分岐採取して酸素
で曝気し、反応容器内で、濾床の微生物量をほぼ
一定の水準に維持した生物濾床を連続的に通過さ
せた後、残存酸素量を測定するごとき、たとえ
ば、廃水等の水溶液中での汚濁度として、生物学
的に分解可能な毒性の成分を検査するための方法
とその装置に関するものである。
Description: The present invention provides a method for collecting a solution to be tested, aerating it with oxygen, and continuously passing it through a biological filter in which the amount of microorganisms in the filter bed is maintained at a substantially constant level in a reaction vessel. The present invention relates to a method and apparatus for testing biologically degradable toxic components, such as measuring the amount of residual oxygen, for example, as the degree of pollution in an aqueous solution such as wastewater.

生物化学的酸素要求量の決定は、従来はたいて
い、5日後に結果が判明する(BOD5)ごとき、
抽出試験法で行なわれてきた。これに対する条件
は「ドイツ標準試験法H4」に定められている。
このための連続作動装置は未だ知られていない。
Determination of biochemical oxygen demand has traditionally been done with results usually available after 5 days (BOD 5 ).
It has been carried out using the extraction test method. The conditions for this are stipulated in the "German Standard Test Method H4".
A continuous operating device for this purpose is not yet known.

水溶液の毒性成分を調べるためには、概して魚
類または微生物増殖による試験が行なわれる。こ
のときの判定は有か無で表わされる。DE−OS25
14609には水溶液の毒性成分の測定のための方法
と装置が開示されている。ただし、これでも、た
とえば廃水に対して汚濁と弱い毒性成分との区別
をすることはできない。したがつて、この場合も
有か無で表わされる。
Fish or microbial growth tests are generally used to determine the toxic components of aqueous solutions. The determination at this time is expressed as presence or absence. DE−OS25
No. 14609 discloses a method and apparatus for the determination of toxic components in aqueous solutions. However, even with this, it is not possible to distinguish between pollution and weakly toxic components, for example in wastewater. Therefore, this case is also expressed as presence or absence.

本発明は、生物学的に分解可能な汚濁を連続測
定可能ならしめる様な溶液成分の検査方法と装置
を提案することを課題としている。たとえば、水
溶液、とくに廃水または流水中に毒性成分が存在
することによる微生物の増殖阻害を調べることが
可能でなければならない。
SUMMARY OF THE INVENTION An object of the present invention is to propose a method and apparatus for testing solution components that enable continuous measurement of biologically degradable contamination. For example, it must be possible to investigate the inhibition of microbial growth due to the presence of toxic components in aqueous solutions, especially wastewater or running water.

この課題を解決するためには、多くの実験によ
り確認されたMichaelis−Mentenのモデルが、
理論的基礎として用いられる。生物学的反応生成
物は、栄養物量に対して次の双曲線型の式で表わ
される。
In order to solve this problem, the Michaelis-Menten model, which has been confirmed through many experiments, is
Used as a theoretical basis. Biological reaction products are expressed in terms of nutrient content by the following hyperbolic equation:

V=Vmax・L/Km+L (1) ただし、 V:反応生成速度 Vmax:最大反応生成速度 L:栄養物(または基質、Nahvstoff)量(基質
濃度) Km:Michaelis定数 栄養物量が少ない場合、Michaelisの式は第1
近似で1次式で表わされる。
V=Vmax・L/Km+L (1) However, V: Reaction production rate Vmax: Maximum reaction production rate L: Amount of nutrients (or substrate, Nahvstoff) (substrate concentration) Km: Michaelis constant When the amount of nutrients is small, the Michaelis constant The formula is the first
Approximately expressed by a linear equation.

V=Vmax・L/Km (2) 実際上(2)式の意味するところは次の通りであ
る: 基質濃度が低い場合には、反応生成速度は濃度
に比例する。すなわち、この範囲では、栄養物量
の増加に伴い酸素消費量が直線的に増加する。た
だし、その前提条件は、溶存酸素量がその飽和値
の15%以下には低下せず、したがつて「Schrit
tmacher reaktion(逐次反応)」は生じないとし
ている。
V=Vmax·L/Km (2) In practice, the meaning of equation (2) is as follows: When the substrate concentration is low, the reaction production rate is proportional to the concentration. That is, in this range, oxygen consumption increases linearly as the amount of nutrients increases. However, the prerequisite is that the amount of dissolved oxygen does not fall below 15% of its saturation value and therefore
tmacher reaktion (sequential reaction) does not occur.

Michaelisの式は厳密な意味では、基質濃度が
変化して酸素量が一定で、酸素に対する栄養物の
拡散が妨げられない場合にのみ成立する。これら
の条件は、従来の研究でも示されているように、
微生物の生長膜としての浮遊流動する中空物体を
反応容器内で一定の速い循環速度で流動させ、そ
の結果、微生物の成長速度と洗浄速度を等しくす
ることによつて満足される。
Strictly speaking, the Michaelis equation holds true only when the substrate concentration changes, the amount of oxygen remains constant, and the diffusion of nutrients to oxygen is unhindered. These conditions, as shown in previous studies,
This is achieved by allowing the suspended flowing hollow body as a growth film of the microorganisms to flow at a constant high circulation rate within the reaction vessel, so that the growth rate of the microorganisms and the cleaning rate are equal.

以上のことから、本発明において本課題の解決
法は、分岐流(Teilstrom)を生物学的に中性の
水で希釈し、この分岐流の希釈度は、反応容器入
口での溶存酸素量を測定し、残存酸素量の測定結
果と比較して、反応容器を通過する流量が一定の
場合に、上記の測定値の差が設定値に対してほぼ
一定となるように制御され、その際、溶液成分に
関連して汚濁度を表わすために希釈度が用いられ
ることを特徴とする、前記のDE−OS25 14609号
明細書で周知の方法の変法によるものである。
Based on the above, the solution to this problem in the present invention is to dilute the branched stream (Teilstrom) with biologically neutral water, and the dilution degree of this branched stream is determined by the amount of dissolved oxygen at the inlet of the reaction vessel. When the flow rate passing through the reaction vessel is constant, the difference in the measured value is controlled to be approximately constant with respect to the set value, and in this case, This is a modification of the method known from DE-OS 25 14609 mentioned above, characterized in that the degree of dilution is used to express the degree of turbidity in relation to the solution components.

検査すべき液体からの分岐流の溶存酸素量は、
その内部に微生物の生長膜を保有する反応容器の
流入口および流出口で測定され、溶存酸素量の差
が小さい場合は希釈水量を減少させ、差が大きい
場合は増加させることによつて、溶存酸素量の差
がわずかの変動幅で一定値に保たれる。これによ
つて、反応容器内での基質供給量および微生物の
酸素消費量が確実に一定に保たれる。容器内にお
ける成長表面が一定である場合は、絶えず擦られ
洗浄されることによつて、微生物量も一定にな
る。とくに、摩擦に対して保護された生長膜とな
る浮遊流動する中空物体が適している。
The amount of dissolved oxygen in the branched flow from the liquid to be tested is:
It is measured at the inlet and outlet of the reaction vessel that has a growth film of microorganisms inside. The difference in oxygen content is maintained at a constant value with only a small fluctuation range. This ensures that the substrate supply and the microorganism oxygen consumption in the reaction vessel remain constant. If the growth surface in the container is constant, the amount of microorganisms will also be constant due to constant scrubbing and cleaning. Particularly suitable are floating, flowing hollow bodies that form a growth film that is protected against friction.

本発明の実施態様では、反応容器に供給される
濃度Lk(第3図参照)は、生体の反応生成速度と
栄養物供給量が近似的に直線関係となる範囲内に
選ばれる。これは一般に、反応生成速度が最大反
応生成速度の1/2以下(Vk<Vmax/2)のとき
成立つと予想される。この範囲では、濃度変動に
対する生体の非常に自然な反応生成を期待し得る
とともに、直線的関係を基礎とすることも可能で
ある。
In an embodiment of the present invention, the concentration Lk (see FIG. 3) supplied to the reaction vessel is selected within a range where the reaction production rate of the living organism and the amount of nutrients supplied are approximately linearly related. This is generally expected to hold true when the reaction production rate is 1/2 or less of the maximum reaction production rate (Vk<Vmax/2). In this range, we can expect a very natural reaction of the living body to the concentration fluctuation, and it is also possible to base it on a linear relationship.

検査すべき液体のPH変動が予想される場合に
は、微生物に対する阻害作用は生物学的に中性の
緩衝液を適当に投与することによつて避けること
ができる。
If pH fluctuations in the liquid to be tested are expected, inhibitory effects on microorganisms can be avoided by appropriate administration of biologically neutral buffers.

装置をわずかに加圧することにより、酸素溶解
度を高めることができるとともに、装置の一部で
のキヤビテーシヨンの発生を避けることも可能で
ある。
By slightly pressurizing the device, oxygen solubility can be increased and cavitation in parts of the device can be avoided.

本発明のごとく反応容器内での微生物の活性を
一定に保持した場合、希釈率ならびに測定した
O2量の差および温度から、検査液体の生物学的
に分解可能な毒性成分に関連する汚濁度が決定さ
れ得る。そしてこれは、比較測定および装置の検
定により、直接BOD5値として表示することも可
能である。このBOD測定法の適用範囲は、たと
えば浄化装置における生物学的に分解可能な汚濁
負荷の記録・および実際の酸素要求量に従つて
の、かかる装置の制御である。
When the activity of microorganisms in the reaction vessel is kept constant as in the present invention, the dilution rate and the measured
From the difference in the amount of O 2 and the temperature, the degree of pollution associated with the biologically degradable toxic components of the test liquid can be determined. This can also be directly expressed as a BOD 5 value through comparative measurements and equipment validation. The scope of application of this BOD measurement method is, for example, the recording of biologically degradable pollution loads in purification plants and the control of such plants according to the actual oxygen demand.

検査液体中に毒性物質が存在する場合には、毒
性物質の濃度に依存して微生物の増殖が阻害され
る。
When a toxic substance is present in the test liquid, the growth of microorganisms is inhibited depending on the concentration of the toxic substance.

本発明による方法を実行して溶液の毒性成分を
検査するためには、検査溶液をもう1つの分岐流
として採取し、同様に処理する。このとき第2の
分岐流の希釈度は一定の倍率(m)だけ第1の分
岐流のそれより小さくなるように調節しており、
第2の反応容器の入口と出口の測定値の差を、第
1の分岐流の測定値の差と比較して毒性成分に関
連する毒性度が表示される。
To carry out the method according to the invention and test the toxic components of the solution, the test solution is taken as another branch stream and treated in the same way. At this time, the degree of dilution of the second branch flow is adjusted to be smaller than that of the first branch flow by a certain magnification (m),
The difference in measurements at the inlet and outlet of the second reaction vessel is compared to the difference in measurements in the first branch stream to indicate the degree of toxicity associated with the toxic component.

第1の反応容器では前述の方法で希釈度を制御
し、第2の容器には、毒性物質が常に第1の容器
のm倍の濃度になるように、常に倍率「1/m」
だけ希釈度の少ない分岐流が流入するようにし
て、2台の反応容器を並列に運転する場合、第1
の反応容器において、毒性物質が阻害作用を起こ
さない程度にその希釈度を調節するとき、第2の
反応容器における酸素消費量の減少から毒性の有
無とその程度が推定可能である。
In the first reaction vessel, the dilution level is controlled by the method described above, and in the second vessel, a magnification of "1/m" is always set so that the concentration of the toxic substance is always m times that of the first vessel.
When operating two reaction vessels in parallel so that a branch flow with a lower dilution level flows in, the first
When the dilution level of the toxic substance is adjusted to such an extent that it does not cause an inhibitory effect in the second reaction vessel, the presence or absence of toxicity and its degree can be estimated from the decrease in the amount of oxygen consumed in the second reaction vessel.

本発明による毒性測定法では、希釈度を変えて
2台並列で実施するBODの測定が問題になる。
濃度が高くなると、毒性物質の阻害作用が比例的
(u¨ber proportional)以上に強くなるので、その
毒性は、第1の容器の希釈度を基準として、両分
岐流a,bで測定された活性度の比BODa/
BODbで表わされる。
In the toxicity measurement method according to the present invention, BOD measurement is carried out in parallel with two different dilutions.
As the concentration increases, the inhibitory effect of the toxic substance becomes more proportional, so its toxicity was measured in both branch streams a and b with reference to the dilution of the first container. Activity ratio BODa/
Expressed in BODb.

本発明の適用範囲は、毒性成分をもつ廃水の排
水口に前置する浄水装置の生物処理部に組込まれ
る警報機構である。
The scope of application of the present invention is an alarm mechanism built into a biological treatment section of a water purification system installed in front of a drain outlet for wastewater containing toxic components.

本発明による別の方法では、水溶液の毒性成分
を絶対値で定めるために、まずはじめに既知の組
成の基質を保有する反応容器内で、毒性成分を流
入させずに「標準生物」を培養・保持しておく。
その後、毒性成分のある水溶液が「標準生物」に
導かれ、予備測定を基準にして呼吸能力に対して
阻害のないときをいわゆる0点とし、微生物の活
性が記録される。このように検定し、断続的に測
定することによつて、「標準生物」を基準とした
毒性成分の絶対値が定められる。
In another method according to the present invention, in order to determine the toxic components of an aqueous solution in absolute values, a "standard organism" is first cultured and maintained in a reaction vessel containing a substrate of known composition without introducing toxic components. I'll keep it.
Thereafter, the aqueous solution containing the toxic component is introduced into a "standard organism" and the activity of the microorganism is recorded, with the so-called 0 point being defined as the time when there is no inhibition of the respiratory ability based on the preliminary measurements. By testing and measuring intermittently in this manner, the absolute value of the toxic component can be determined based on the "standard organism."

本発明は、さらに、水溶液、とくに廃水および
流水中の生物学的に分解可能な汚濁の測定、なら
びに微生物に対する毒性物質の阻害作用の測定の
ための溶液成分の検査装置に関する。
The invention furthermore relates to a device for testing solution components for the determination of biologically degradable pollution in aqueous solutions, in particular wastewater and running water, and for the determination of the inhibitory effect of toxic substances on microorganisms.

水溶液からの分岐流を通す曝気槽と反応容器を
具備し、かつ、反応容器の出口導管中に酸素電極
を具備した、本発明の方法を実施するための装置
は、曝気槽の入口側に分岐流の導管と希釈水の導
管が接続され、希釈水の導管中に制御装置と接続
した流量制御装置が設置され、曝気槽の流出口と
反応容器の流入口を結ぶ導管中に、制御装置と接
続したもう1つの別の酸素電極を具備し、その際
制御装置は、流量制御装置のための比較器と制御
信号発信器をもつことを特徴としている。流量制
御は、目的に応じて、分岐流の導管と希釈水の導
管にそれぞれ定量ポンプを設置することにより実
施することができる。
An apparatus for carrying out the method of the invention, comprising an aeration tank and a reaction vessel through which a branch stream from an aqueous solution is passed, and an oxygen electrode in the outlet conduit of the reaction vessel, comprises a branch on the inlet side of the aeration tank. A flow conduit and a dilution water conduit are connected, a flow control device connected to a control device is installed in the dilution water conduit, and a flow rate control device connected to a control device is installed in a conduit connecting an aeration tank outlet and a reaction vessel inlet. A further oxygen electrode is connected, the control device being characterized in that it has a comparator for the flow control device and a control signal transmitter. Flow rate control can be implemented by installing metering pumps in each of the branch flow conduit and the dilution water conduit, depending on the purpose.

反応容器内の生長膜は、摩擦に対して保護され
た生長膜をもつ、自由に浮遊する物体でできてい
る。この物体および反応容器の内容物は、目的に
応じて撹拌装置または循環装置によつて常に混合
される。曝気槽の導管前部で、場合によつては検
査液体をさらに均質化するために、ストレーナお
よび撹拌器を通すことも可能である。
The growth film within the reaction vessel is made up of free-floating objects with the growth film protected against friction. The mass and the contents of the reaction vessel are constantly mixed, depending on the purpose, by a stirring device or a circulation device. At the front of the conduit of the aeration tank, it is possible to optionally pass a strainer and a stirrer in order to further homogenize the test liquid.

O2の測定値により、反応容器の通過流量が一
定の場合にO2の差が一定値になるように、また、
流出口で下限値より低下しないように、計算機を
用いて検査液体と希釈水の流量比が制御される。
この制御値が指標として示される。
The measured value of O 2 ensures that the difference in O 2 is a constant value when the flow rate through the reaction vessel is constant;
A computer is used to control the flow rate ratio of the test liquid and dilution water so that the flow rate does not drop below the lower limit at the outlet.
This control value is shown as an index.

第1の反応容器と並列に結ばれ、その前後に各
1個の酸素電極を具備した、同様の第2の反応容
器は、分岐流の毒性成分に関連する汚濁度の測定
か、あるいは毒性成分検出のために用いられる。
A similar second reaction vessel, connected in parallel with the first reaction vessel and equipped with one oxygen electrode before and after it, is used for measuring the degree of pollution related to the toxic components of the branched streams or Used for detection.

BOD測定装置を直列に配置して毒性成分を検
出するためには、本発明による方法の実施態様に
おいて、検査液体は同じ方法で2度処理される。
そのとき第2の反応容器での希釈度を、第1の反
応容器のそれより一定の倍率(m)だけ小さくな
るように調節し、第2の反応容器前後での測定値
の差が、第1の反応容器の測定値と比較され、毒
性成分に関連する汚濁度、あるいは毒性成分の含
有度として表示される。
In order to detect toxic components by arranging BOD measuring devices in series, in an embodiment of the method according to the invention the test liquid is treated twice in the same way.
At that time, the dilution level in the second reaction vessel is adjusted to be smaller than that in the first reaction vessel by a certain magnification (m), and the difference between the measured values before and after the second reaction vessel is It is compared with the measured value of reaction vessel 1 and displayed as the degree of contamination related to the toxic component or the degree of content of the toxic component.

第1の反応容器では前述の方法で、ただし後置
した容器17の酸素電極によつて、希釈度を制御
し、第2の容器には、毒性物質が第1の容器の
1/m倍の濃度になるように、常に倍率「m」だ
け希釈度の大きい分岐流が流入するようにして2
台の反応容器を直列運転する場合、後方の反応容
器で毒性物質が阻害作用を起こさない程度にその
希釈度を調節するとき、第1の反応容器における
酸素消費量の減少から、毒性成分の有無とその程
度が推定可能である。
In the first reaction vessel, the degree of dilution is controlled in the manner described above, but by means of the oxygen electrode in the vessel 17 placed downstream, and in the second vessel, the toxic substance is 1/m times that of the first vessel. In order to maintain the same concentration, a branch flow with a higher dilution by the magnification "m" always flows in.
When operating two reaction vessels in series, when adjusting the dilution level to such an extent that the toxic substance does not cause an inhibitory effect in the rear reaction vessel, the presence or absence of toxic components can be determined from the decrease in oxygen consumption in the first reaction vessel. and its extent can be estimated.

本発明における毒性成分の検出方法では、希釈
度を変えた前後のBOD測定が問題になる。毒性
物質の阻害作用は、濃度が高くなると比例的
(u¨ber proportional)以上に高くなるので、第2
の反応容器での希釈度を基準として、両反応容器
で測定した活性度の比(BODの比)で毒性成分
に関連する毒性の程度としての毒性度が表わされ
る。
In the method for detecting toxic components in the present invention, BOD measurements before and after changing the dilution level are problematic. The inhibitory effect of toxic substances increases more than proportionally as the concentration increases;
The degree of toxicity as the degree of toxicity related to the toxic component is expressed as the ratio of the activities measured in both reaction vessels (ratio of BOD) based on the degree of dilution in the reaction vessel.

微生物が強い毒性作用により長時間にわたつて
損傷をうけたとき、繁殖物の付着した浮遊物体を
反応容器から取出し、毒性を受けていないフロツ
クを付着させたものと新たに取換えることが可能
である。
When microorganisms are damaged over a long period of time by strong toxic effects, it is possible to remove the floating mass with propagation from the reaction vessel and replace it with a new one with non-toxic flocs. be.

次に添付図面を用いて本発明を説明する。 Next, the present invention will be explained using the accompanying drawings.

第1図は本発明の一実施例として示すBOD測
定用設備、 第2図はBODと毒性の同時測定用設備、 第3図は反応線図、 第4図は本発明の別の実施例の図式説明、およ
び 第5図は本発明のさらに別の実施例の図式説明
である。
Fig. 1 is a BOD measurement equipment shown as an embodiment of the present invention, Fig. 2 is an equipment for simultaneous measurement of BOD and toxicity, Fig. 3 is a reaction diagram, and Fig. 4 is an example of another embodiment of the present invention. Diagrammatic Illustration and FIG. 5 is a diagrammatic illustration of yet another embodiment of the invention.

第1図に示すように、調査流体は定量ポンプ1
により、そして希釈水は混合液にPH−緩衝用の溶
液が導管4を通して加えられるところの曝気槽3
の吸込側の定量ポンプ2により供給される。導管
5から空気または気体状の酸素を供給することに
より、曝気槽3内の流体は酸素によつて増殖され
る。曝気槽3から流出管33を通つて排出された
流体の流れはポンプ6により一定流量で導管71
を経由して反応容器7に導かれる。ポンプ6と流
入管71を連結する導管60内には、酸素濃度と
流れている流体の温度を測定し、その測定値を制
御用の計算機12に送るところの第1番目の酸素
電極10が挿入される。
As shown in Figure 1, the investigation fluid is metering pump 1
and the dilution water is added to the mixture through an aeration tank 3 where a solution for PH-buffering is added through conduit 4.
is supplied by a metering pump 2 on the suction side. By supplying air or gaseous oxygen through the conduit 5, the fluid in the aeration tank 3 is enriched with oxygen. The flow of fluid discharged from the aeration tank 3 through the outflow pipe 33 is transferred to the conduit 71 at a constant flow rate by the pump 6.
It is guided to the reaction vessel 7 via. A first oxygen electrode 10 is inserted into the conduit 60 connecting the pump 6 and the inflow pipe 71 to measure the oxygen concentration and temperature of the flowing fluid and send the measured values to the control computer 12. be done.

導管71を経由し、その外側に結合された反応
容器7に流入する流体流れは反応容器7の反対側
の端に取り付けられ、もう一つの酸素電極11が
取り付けられているところの排水管72を通つて
反応容器7から流れ出る。酸素電極11は流出流
れの温度と酸素温度を測定し、測定値を信号の形
で計算機12に送る。排水管72は酸素電極11
の流出側で表示されていない排水容器内に注ぎ込
む。
Fluid flow entering the reaction vessel 7 coupled to its outside via conduit 71 is connected to a drain 72 attached to the opposite end of the reaction vessel 7 and to which another oxygen electrode 11 is attached. through which it flows out of the reaction vessel 7. Oxygen electrode 11 measures the temperature of the effluent stream and the oxygen temperature and sends the measured values in the form of a signal to computer 12. The drain pipe 72 is the oxygen electrode 11
Pour into a drainage container not shown on the outflow side.

反応容器7は、それを通つて反応容器7内にあ
る流体が循環ポンプにより絶えず循環されるとこ
ろの循環管路81,82に連結されている。循環
ポンプ8の流出側に連結された循環管路82は反
応容器7の底に流れ込み、そして反応容器7から
の流体を受け入れる循環管路81は多くの支管8
3,84を経由して反応容器7の天井に結合され
ている。
The reaction vessel 7 is connected to circulation lines 81, 82 through which the fluid present in the reaction vessel 7 is continuously circulated by a circulation pump. A circulation line 82 connected to the outlet side of the circulation pump 8 flows into the bottom of the reaction vessel 7, and a circulation line 81 receiving fluid from the reaction vessel 7 connects to a number of branch lines 8.
3 and 84 to the ceiling of the reaction vessel 7.

反応容器内には、反応容器7内で循環する流体
により絶えず動いているところの、微生物に対す
る生長膜をもつ多数の浮遊物が含まれる。管8
3,84および72内に流れ込むところの反応容
器7の開口部の前には浮遊物9に比べて小さい網
目のフイルター9a,9b,9cが取り付けられ
ている。循環81,82とは別に反応容器7内に
は、表示されていないが、導管71からの流入に
よるかまたは外部とは分離して駆動される撹拌機
構が予め備えられている。
The reaction vessel contains a large number of floating bodies with growth films for microorganisms that are constantly in motion due to the fluid circulating within the reaction vessel 7. tube 8
Filters 9a, 9b, and 9c with meshes smaller than that of the suspended solids 9 are installed in front of the openings of the reaction vessel 7 into which the suspended solids 3, 84, and 72 flow. Although not shown, in addition to the circulations 81 and 82, a stirring mechanism is previously provided in the reaction vessel 7, which is driven by the inflow from the conduit 71 or separately from the outside.

制御装置は計算機12により計算されたBOD
値を示したり、または印字したりするところの計
算機12により制御されるインデイケータを含む
計算機12から、曝気槽3に対する流入管31内
の定量ポンプ1への制御ケーブル40、および希
釈水に対する流入管32内の定量ポンプ2への制
御ケーブル42が出ている。第1の酸素電極10
および第2の酸素電極11と計算機12の間の制
御ケーブル44,46は酸素電極によつて測定さ
れた測定値を計算機12に送る。
The control device uses the BOD calculated by the computer 12.
A control cable 40 from the calculator 12 containing an indicator controlled by the calculator 12 for displaying or printing out values to the metering pump 1 in the inlet pipe 31 for the aeration tank 3 and the inlet pipe 32 for the dilution water. A control cable 42 to the metering pump 2 inside is coming out. First oxygen electrode 10
Control cables 44, 46 between the second oxygen electrode 11 and the computer 12 send the measured values measured by the oxygen electrodes to the computer 12.

第2図には第1図による設備が上半分にもう一
度図式的に表示され、下半分には毒性成分の検出
に対するもう一つの同様の設備が図式的に説明さ
れている。このもう一つの設備は基本的には上述
の設備と同じ装置と構成部品からなり、従つて曝
気槽3′の流入側には汚濁溶液の供給用の導管3
1′がついている。その際導管31′内には更に定
量ポンプ13が取り付けられている。二本の導管
31と31′が表示されていない容器において汚
濁した調査溶液と結合されるように、上流側では
導管31′は導管31の上流側と連結されている。
もう一つの曝気槽3′の流入側には定量ポンプ1
4とともに希釈水用の流入管32′がある。曝気
槽3′からの排水管60′内には、電極の測定値の
差をとるところの演算器12′を経由して制御ケ
ーブル44′により計算機12に流体流れの濃度
と温度を伝えるところの酸素電極15がさらに取
り付けられている。酸素電極15は、反応容器7
と同じでそして同様に循環管路81′に連結され
ているところの反応容器17に流入管71′を経
由して結合されている。反応容器17からの排水
管72′には、排水の測定された酸素濃度と温度
を演算器12′を経由し制御ケーブル46′を通し
て計算機12に導くところのもう一つの酸素電極
16がある。計算機12から制御ケーブル48が
流入する汚濁流水に対する定量ポンプ13に、そ
して制御ケーブル49が希釈水用の定量ポンプ1
4につながれている。計算機12は曝気槽3′に
供給された流体の未浄化流体濃度が曝気槽3に供
給された流体の対応する濃度の常にm倍であるよ
うに制御ケーブル48,49を通じて定量ポンプ
13,14を動かす。酸素電極15と16の測定
値を酸素電極10と11で得られる測定値と比較
することにより、微生物に対して起こるかも知れ
ない毒素成分の阻害を防止することができる。
In FIG. 2, the installation according to FIG. 1 is once again shown diagrammatically in the upper half, and in the lower half another similar installation for the detection of toxic components is diagrammatically illustrated. This further installation basically consists of the same equipment and components as the above-mentioned installation, so that on the inlet side of the aeration tank 3' there is a conduit 3 for supplying the pollutant solution.
1' is attached. A metering pump 13 is also installed in the conduit 31'. On the upstream side, conduit 31' is connected to the upstream side of conduit 31, so that the two conduits 31 and 31' are connected with the contaminated investigation solution in a container not shown.
A metering pump 1 is installed on the inflow side of the other aeration tank 3'.
4 as well as an inlet pipe 32' for dilution water. In the drain pipe 60' from the aeration tank 3', there is a system that transmits the concentration and temperature of the fluid flow to the computer 12 by means of a control cable 44' via a computer 12' that takes the difference between the measured values of the electrodes. An oxygen electrode 15 is further attached. The oxygen electrode 15 is connected to the reaction vessel 7
It is connected via an inlet pipe 71' to the reaction vessel 17, which is the same as and also connected to a circulation line 81'. In the drain pipe 72' from the reaction vessel 17 there is another oxygen electrode 16 which conducts the measured oxygen concentration and temperature of the waste water to the computer 12 via the computer 12' and through the control cable 46'. A control cable 48 from the computer 12 is connected to the metering pump 13 for inflowing polluted water, and a control cable 49 is connected to the metering pump 1 for dilution water.
It is connected to 4. The calculator 12 controls the metering pumps 13, 14 through control cables 48, 49 so that the unpurified fluid concentration of the fluid supplied to the aeration tank 3' is always m times the corresponding concentration of the fluid supplied to the aeration tank 3. move. By comparing the measurements of the oxygen electrodes 15 and 16 with the measurements obtained with the oxygen electrodes 10 and 11, it is possible to prevent inhibition of toxin components that may occur against microorganisms.

第2図による設備はまた標準生物を用いた間欠
的な測定による毒性成分の検出器として用いられ
る。測定中断時には標準生物の培養と再生のため
に標準化された(栄養)基質液を用いた両方の装
置が使用される。
The installation according to FIG. 2 can also be used as a detector of toxic components by intermittent measurements using reference organisms. During measurement interruptions, both devices are used with standardized (nutrient) substrate solutions for culture and regeneration of reference organisms.

第3図は横軸を基質濃度、縦軸の上方を反応速
度、下方を希釈比1:nとして示すもので、一定
の微小な基質濃度“Lk”により有機物は常に理
想化された線形領域で作用する。
In Figure 3, the horizontal axis shows the substrate concentration, the upper part of the vertical axis shows the reaction rate, and the lower part shows the dilution ratio of 1:n.With a constant minute substrate concentration "Lk", organic matter is always kept in an idealized linear region. act.

V=Vmax・L/Kmn+1=L/Lk 基質濃度Lが大きい場合のV1とV2および考慮
すべき測定誤差が明確に区別し難い範囲ではnと
Lは常に互いに比例している。
V=Vmax·L/Kmn+1=L/Lk When the substrate concentration L is large, n and L are always proportional to each other in the range where V1 and V2 and the measurement error to be considered are difficult to clearly distinguish.

第4図による設備の場合は、返送流aの流出管
72には、第2の酸素電極15と結合され、流入
管71′を経由して第2の反応容器17と、そし
てまた制御ケーブル44′を経由して制御用の演
算器12′と連結しているところの輸送管73が
つながれている。反応容器17の送出管72′内
に挿入されている酸素電極16は制御ケーブル4
6′を経由して演算器12′と接続されている。二
つの反応容器7と17の直列接続はBOD測定の
他にまた返送流a内の毒性成分に関連する汚濁度
の測定をも可能にする。一定の大きさのBOD値
は、分解性がより良い、又はより悪い物質から起
り得る。今まで人はこの事情を、BOD5値とCOD
(化学的酸素必要量)と結びつけて調べることに
より斟酌してきた。第4図による設備を用いた実
行可能な方法の場合は、第1の反応容器内の微生
物に返送流a内の一定の汚濁が供給される。この
汚濁は、汚濁の組成に依存し第1の反応容器内の
残存量にまで分解される。輸送管73を通り抜け
る返送流内のこの残存汚濁はその量に応じて、第
2の反応容器17を通過して流れる場合に酸素電
極15と16の間の酸素量の種々の差を引き起こ
す。この種々の酸素量の差は返送流a内に含まれ
る汚濁の分解性の評価基準を示す。
In the case of the installation according to FIG. 4, the outlet pipe 72 of the return stream a is connected to the second oxygen electrode 15 and via the inlet pipe 71' to the second reaction vessel 17 and also to the control cable 44. A transport pipe 73 which is connected to a control computing unit 12' is connected via '. The oxygen electrode 16 inserted into the delivery pipe 72' of the reaction vessel 17 is connected to the control cable 4.
It is connected to the arithmetic unit 12' via 6'. The series connection of the two reaction vessels 7 and 17 makes it possible, in addition to the BOD measurement, also to measure the degree of pollution associated with toxic components in the return stream a. BOD values of a certain magnitude can result from better or worse degradable materials. Until now, people have considered this situation to be BOD 5 value and COD
This has been taken into account by examining the relationship with (chemical oxygen requirement). In a viable method using the installation according to FIG. 4, the microorganisms in the first reaction vessel are supplied with a certain contamination in the return stream a. This pollution is decomposed to a residual amount in the first reaction vessel depending on the composition of the pollution. Depending on its amount, this residual contamination in the return flow passing through the transport tube 73 causes various differences in the amount of oxygen between the oxygen electrodes 15 and 16 when flowing through the second reaction vessel 17. The difference in the various amounts of oxygen indicates the evaluation criterion for the decomposability of the contaminant contained in the return flow a.

第5図による設備は、もし導管73が流出管2
2の結合されているタンク18につながれている
ならば、液流の毒性成分に関連する毒性度の測定
にもまた利用され得る。流出管22は定量ポンプ
13を通つて酸素電極15に、そしてそこから流
入管71′を経由して第2の反応容器17に達す
る。タンク18にはオーバーフロー管19がつい
ている。定量ポンプ13と酸素電極15の間の管
途中に、導管32′からの希釈水用の定量ポンプ
14の流出側が開口し、その際導管内には定量ポ
ンプ13,14を通つて流体が逆流するのを妨げ
る機構が予め備えられている。必要な場合には導
管の途中23にさらに、表示されていない曝気槽
が連結されねばならない。その場合、制御装置は
定量ポンプ1と2が酸素電極15と16からの信
号によつて制御されるように設定される。定量ポ
ンプ13はケーブル48を通した制御により、定
量ポンプ1が供給する量よりも一定の割合だけ少
ない流体をタンク18からとり出す。定量ポンプ
14は、希釈水を相当量付加することにより反応
容器17を通る流れの必要な体積定数を保証する
ようにケーブル49を通じて制御される。タンク
18のオーバーフロー管19を通つて排出される
流体の量は上述の条件に応じてポンプ14を通し
て調節されねばならない。
The installation according to FIG.
If connected to two connected tanks 18, it can also be used to measure the degree of toxicity associated with the toxic components of the liquid stream. Outflow pipe 22 passes through metering pump 13 to oxygen electrode 15 and from there to second reaction vessel 17 via inflow pipe 71'. An overflow pipe 19 is attached to the tank 18. The outflow side of the metering pump 14 for dilution water from the conduit 32' is opened in the middle of the pipe between the metering pump 13 and the oxygen electrode 15, and at this time, fluid flows back into the conduit through the metering pumps 13 and 14. A mechanism is provided in advance to prevent this. If necessary, an aeration tank (not shown) must also be connected to the middle of the conduit 23. In that case, the control device is set such that metering pumps 1 and 2 are controlled by signals from oxygen electrodes 15 and 16. The metering pump 13 is controlled through the cable 48 to draw a fixed percentage less fluid from the tank 18 than the metering pump 1 supplies. The metering pump 14 is controlled via a cable 49 to ensure the required volumetric constant of flow through the reaction vessel 17 by adding a substantial amount of dilution water. The amount of fluid discharged through the overflow pipe 19 of the tank 18 must be regulated through the pump 14 depending on the conditions mentioned above.

もし導管73を通つて流れる返送流aが一定の
割合づつ希釈されるならば、第2の反応容器17
内の微生物の活動が全く阻害されないか、または
少ししか阻害されないので、流入管71′を通つ
て第2の反応容器17に流れ込む返送流の毒性は
希釈に応じて減少する。この結果、酸素電極15
と16により測られた測定値の差が酸素電極10
と11により測られた濃度の差と相違するという
ことになる。差のこの相違から計算機には返送流
aで選ばれる物質にある毒性成分を与える。ポン
プ13と14は反応容器17内の濃度が反応容器
7内よりも一定の割合で小さくなるように流体の
流れを混合する。その場合両方の容器内の体積流
量は一定でなければならなく、そして等しくする
ことができる。
If the return stream a flowing through the conduit 73 is diluted in proportions, the second reaction vessel 17
The toxicity of the return stream flowing into the second reaction vessel 17 through the inlet tube 71' decreases as a function of dilution, since the microbial activity therein is not inhibited at all or only to a small extent. As a result, the oxygen electrode 15
The difference between the measured values measured by the oxygen electrode 10 and 16 is
This means that it is different from the difference in concentration measured by and 11. This difference in difference gives the calculator a certain toxic content in the selected material in return stream a. Pumps 13 and 14 mix the fluid flows such that the concentration in reaction vessel 17 is proportionally lower than in reaction vessel 7. The volumetric flow rates in both containers must then be constant and can be equal.

本発明は勿論上述の実施態様だけに限られるも
のではない。なお第4図による設備の場合には、
酸素電極15は省くことができ、そのときは電極
11と16の測定酸素値の差は計算機12によつ
て処理される。また必要に応じて反応容器17に
さらに曝気槽が直列に接続される。
The invention is of course not limited to the embodiments described above. In addition, in the case of equipment according to Figure 4,
Oxygen electrode 15 can be omitted, in which case the difference between the measured oxygen values of electrodes 11 and 16 is processed by computer 12. Further, an aeration tank is further connected in series to the reaction vessel 17 as required.

予備測定 反応時間:5分 体積流量:1/分 従つて20℃で760Torrの場合9mgO2/、すな
わち9mgO2/分に規定される。運転圧力がより
高い場合には規定された酸素はHenryの法則Cs
=Ks・Ptにより計算される。
Preliminary measurement reaction time: 5 minutes Volume flow rate: 1/min Therefore, at 20° C. and 760 Torr, it is defined as 9 mgO 2 /min, that is, 9 mgO 2 /min. If the operating pressure is higher, the prescribed oxygen is Henry's law Cs
= Calculated by Ks・Pt.

電極11での最小酸素量は2mgO2/に規定
される。したがつて、酸素消費許容量は最大7
mg/となる。
The minimum amount of oxygen at the electrode 11 is defined as 2 mgO 2 /. Therefore, the oxygen consumption capacity is up to 7
mg/.

予備実験によれば、ある一定の品質濃度Lk、
a(5mgBOD5/に相当)の場合には酸素必要
量は2.5gO2/m2・日=1.7mgO2/m2・分となり、
Lk、b(25応BOD5/に相当)の場合は酸素必
要量は5gO2/m2・日=3.4mgO2/m2・分とな
る。
According to preliminary experiments, a certain quality concentration Lk,
a (equivalent to 5 mg BOD 5 /), the required amount of oxygen is 2.5 gO 2 /m 2 ·day = 1.7 mgO 2 /m 2 ·min,
In the case of Lk, b (equivalent to 25 BOD 5 /), the oxygen requirement is 5gO 2 /m 2 ·day = 3.4mgO 2 /m 2 ·min.

この仮定のもとで7mg/分の酸素供給量は浮遊
物9の表面に成長する4.1および2.05m2の生長膜
を介して消耗される。
Under this assumption, the 7 mg/min oxygen supply is consumed through the 4.1 and 2.05 m 2 of growth film grown on the surface of the float 9.

浮遊物としては次のようなものが選ばれる: 最もゆるく充填した場合に表面積比が2.1m2
である内径3mm、高さ3mmの中空円筒、これは
37037個/である。
The following floating objects are selected: When packed loosely, the surface area ratio is 2.1 m 2 /
A hollow cylinder with an inner diameter of 3 mm and a height of 3 mm, which is
37037 pieces/.

測定に応じて反応容器7は72310個の中空円筒
(4.1m2)で、そして反応容器17は36155個の中
空円筒(2.05m2)で満たされた。
According to the measurements, reaction vessel 7 was filled with 72,310 hollow cylinders (4.1 m 2 ) and reaction vessel 17 was filled with 36,155 hollow cylinders (2.05 m 2 ).

中空円筒は最もゆるく詰めた場合は反応容積の
39および19.5%を必要とする。従つて円筒は充分
運動することが可能である。
The hollow cylinder, when packed most loosely, has a reaction volume of
Requires 39 and 19.5%. Therefore, the cylinder can move sufficiently.

予備測定に従いLk、aを5mgBOD5/および
Lk、bを25mgBOD5/と定める。
According to preliminary measurements, Lk, a was 5 mg BOD 5 / and
Lk and b are determined to be 25mgBOD 5 /.

混合比1:nの場合には全基質濃度L−
BOD5/として測定された量−は次のように計
算される。
When the mixing ratio is 1:n, the total substrate concentration L-
The quantity measured as BOD 5 /- is calculated as follows.

BODa=Lk、a・(n+1)=L(mgBOD5/) BODb=Lk、b・(n+1)/m・ΔO2b
/ΔO2b、T(mgBOD5/) 計算機はLkの値を定数として処理せずに、10
と11の間の計算値ΔO2が0.1mgO2/づつ変化す
る毎にLk、aとLk、bの値を1.4%づつ高めたり
減らせたりする。
BODa=Lk, a・(n+1)=L(mgBOD 5 /) BODb=Lk, b・(n+1)/m・ΔO 2 b
/ΔO 2 b, T (mgBOD 5 /) The calculator does not treat the value of Lk as a constant, but instead calculates 10
Each time the calculated value ΔO 2 between and 11 changes by 0.1 mgO 2 /, the values of Lk, a and Lk, b can be increased or decreased by 1.4%.

計算式中の記号の意味: L=基質濃度 BOD=生化学的酸素必要量 BOD5=5日間の生化学的酸素必要量 Lk=BOD5(mg/)として測定された一定基質
濃度 a、b=容器7および17中の反応過程に対する
添字 ΔO2=予想されるべき廃水変動(浄水設備流入ま
たは−流出)に基づき生長膜の変化によつて調
整されるところの検定値 ΔO2b、T=検定値ΔO2bと比較されるところの制
御値 m=容器17中の基質濃度に対する補正係数 n=希釈水の割合 L(t)=時刻“t”における基質濃度 計算例による測定設備の作用の説明を定常な解
析状態(希釈比、廃水/希釈水1:n1)の説明か
ら始める。
Meaning of the symbols in the formula: L = Substrate concentration BOD = Biochemical oxygen requirement BOD 5 = Biochemical oxygen requirement for 5 days Lk = Constant substrate concentration a, b measured as BOD 5 (mg/) = subscript ΔO 2 for the reaction processes in vessels 7 and 17 = calibration value ΔO 2 b, T = adjusted by changes in the growth film based on the expected wastewater fluctuations (inflow or outflow of the water purification plant) Control value m compared with calibration value ΔO 2 b = correction factor n for substrate concentration in container 17 = proportion of dilution water L(t) = substrate concentration at time “t” Function of the measuring equipment according to the calculation example The explanation begins with an explanation of the steady analysis state (dilution ratio, waste water/dilution water 1:n 1 ).

反応容器7内の有機物に一定量の基質Lk、a
(例えば5mgBOD5/)が導かれる。混合比は
1:n1でBODa=Lk、a・(n1+1)=Lである。
電極10と11間の酸素量の差はΔO2a(例では7
mgO2/)となる。
A certain amount of substrate Lk, a is added to the organic matter in the reaction vessel 7.
(for example, 5 mg BOD 5 /) is derived. The mixing ratio is 1:n 1 , BODa=Lk, a·(n 1 +1)=L.
The difference in oxygen content between electrodes 10 and 11 is ΔO 2 a (7 in the example)
mgO 2 /).

汚濁濃度Lが増加した場合、有機物はより高い
呼吸活動性でもつて反応する。それにより電極1
0と11はより大きな酸素量差を記録する。
ΔO2a=7.1mgO2/の場合ポンプは、10と11
の間のO2差が7mgO2/に再調整されるまで汚
水割合(ポンプ1)は減少され、希釈水の割合
(ポンプ2)は増加されるようにコントロールさ
れる。
When the pollution concentration L increases, organic matter reacts with higher respiratory activity. Therefore, electrode 1
0 and 11 record a larger difference in oxygen content.
When ΔO 2 a = 7.1 mgO 2 /, the pumps are 10 and 11
The wastewater rate (pump 1) is controlled to be decreased and the dilution water rate (pump 2) to be increased until the O 2 difference between is readjusted to 7 mgO 2 /.

従つて新しい混合比は1:n2となり、そして
BODa=Lk、a・(n2+1)=Lとなる。
Therefore, the new mixing ratio is 1:n 2 , and
BODa=Lk, a・(n 2 +1)=L.

汚濁濃度Lを減少させた場合、過程は反対の方
向に動く。
If the pollution concentration L is decreased, the process moves in the opposite direction.

二つの反応容器の並列運転の場合、BOD測定
と同時の毒性成分の監視のときにはポンプ1,1
3と2,14は前述の方法で電極10と11を通
して制御される。ポンプ13はポンプ1のm倍供
給する。
In the case of parallel operation of two reaction vessels, pumps 1 and 1 are used when measuring BOD and monitoring toxic components at the same time.
3 and 2, 14 are controlled through electrodes 10 and 11 in the manner described above. Pump 13 supplies m times as much as pump 1.

電極15と16は反応容器17内の酸素消費量
のみを監視する。O2差ΔO2b、Tに対応して予備
測定値ΔO2b(例では7mgO2/)には何の抑制
もない。この場合BODaとBODbは等しい。
Electrodes 15 and 16 monitor only the oxygen consumption within reaction vessel 17. Corresponding to the O 2 difference ΔO 2 b, T, there is no suppression in the preliminary measured value ΔO 2 b (7 mgO 2 /in the example). In this case BODa and BODb are equal.

毒性の影響がある場合には、比BODa/BODb
から希釈率1:nと関連して、存在する消費抑制
の程度を知ることができる。
If there are toxic effects, the ratio BODa/BODb
The degree of consumption suppression that exists can be known in relation to the dilution ratio of 1:n.

本発明は上記実施例に詳記せる如く、検査すべ
き溶液を分岐採取して酸素で曝気し、反応容器内
で、濾床の微生物量をほぼ一定の水準に維持した
生物濾床を連続的に通過させた後、残存酸素量を
測定するごとき、たとえば廃水等の水溶液の、生
物学的に分解可能な毒性成分に関連する汚濁度、
分解性、あるいは毒性度を測定するための方法お
よび装置に関し、分岐流は生物学的に中性の水で
希釈され、反応容器入口で溶存酸素量を測定し、
残存酸素量の測定結果と比較して、反応容器を通
過する流量が一定の場合に、上記測定値の差が設
定値に対してほぼ一定となるように、分岐流の希
釈度が制御され、その際に汚濁溶液の汚濁度を表
わすために希釈度が用いられる一方、酸素電極を
具備する反応容器を2基並列または直列に接続し
て、第2の反応容器を流れる分岐流の希釈度を、
第1の分岐流の希釈度に対して一定の倍率とし、
第1および第2の反応容器における酸素消費量の
変化を知ることにより、汚濁物の毒性成分を検出
することが可能であり、また第1の反応容器から
出た分岐流を、直接第2の反応容器に導くとき、
両反応容器における酸素消費量の差でいわゆる汚
濁の分解性あるいは毒性成分に関連する毒性度を
表示することが可能になるものである。
As detailed in the above embodiments, the present invention involves branching and sampling a solution to be tested, aerating it with oxygen, and continuously forming a biological filter bed in which the amount of microorganisms in the filter bed is maintained at a substantially constant level in a reaction vessel. The degree of pollution associated with biologically degradable toxic components of aqueous solutions such as wastewater, such as measuring the amount of residual oxygen after passing through a
Regarding the method and apparatus for measuring degradability or toxicity, the branched stream is diluted with biologically neutral water and the amount of dissolved oxygen is measured at the inlet of the reaction vessel;
Compared with the measurement result of the amount of residual oxygen, when the flow rate passing through the reaction vessel is constant, the dilution of the branched flow is controlled so that the difference in the measured value is approximately constant with respect to the set value, In this case, dilution is used to express the degree of contamination of the polluted solution, while two reaction vessels equipped with oxygen electrodes are connected in parallel or in series to express the dilution of the branched flow flowing through the second reaction vessel. ,
A constant magnification with respect to the dilution of the first branch flow,
By knowing the changes in the oxygen consumption in the first and second reaction vessels, it is possible to detect the toxic components of the pollutants, and also to direct the branched flow from the first reaction vessel to the second reaction vessel. When leading to the reaction vessel,
The difference in the amount of oxygen consumed in both reaction vessels makes it possible to indicate the so-called degradability of pollution or the degree of toxicity related to toxic components.

以下、本発明にかかる溶液中の分解可能な毒性
の成分を検査するための方法および装置の種々の
実施の態様を例記する。
Below, various embodiments of the method and apparatus for testing degradable toxic components in solutions according to the invention will be illustrated.

1 分岐流を生物学的に中性の水で希釈し、反応
容器入口で溶存酸素量を測定し、残存酸素量の
測定結果と比較して、反応容器を通過する流量
が一定の場合に、上記測定値の差が設定値に対
してほぼ一定となるように、分岐流の希釈度が
制御され、その際に汚濁溶液の汚濁度を表わす
ために希釈度が用いられることを特徴とする。
検査すべき溶液を分岐採集して酸素で曝気し、
反応容器内で、濾床の微生物量をほぼ一定の水
準に維持した生物濾床を連続的に通過させた
後、残存酸素量を測定するごとき、たとえば廃
水等の水溶液の、生物学的に分解可能な成分の
検査方法。
1 Dilute the branched flow with biologically neutral water, measure the amount of dissolved oxygen at the inlet of the reaction vessel, and compare it with the measurement result of the amount of residual oxygen.When the flow rate passing through the reaction vessel is constant, The dilution level of the branched flow is controlled so that the difference between the measured values is approximately constant with respect to the set value, and the dilution level is used to represent the turbidity of the polluted solution.
The solution to be tested is collected in branches and aerated with oxygen,
Biological decomposition of an aqueous solution such as wastewater, for example, by measuring the amount of residual oxygen after passing it continuously through a biological filter in which the amount of microorganisms in the filter bed is maintained at a nearly constant level in a reaction vessel. Possible ingredient testing methods.

2 反応容器に供給され希釈される栄養物の濃度
が、生体の反応生成速度と栄養物供給量が近似
的に直線関係となる範囲内に選ばれることを特
徴とする、上記第1項に記載の方法。
2. The method according to item 1 above, wherein the concentration of the nutrient supplied to the reaction container and diluted is selected within a range where the reaction production rate of the living body and the nutrient supply amount are approximately linearly related. the method of.

3 反応容器に供給され希釈される栄養物の濃度
が、生体の反応生成速度が最大反応生成速度の
1/2を越えないように選ばれることを特徴とす
る、上記第1項または第2項に記載の方法。
3. The above item 1 or 2, wherein the concentration of the nutrient supplied and diluted to the reaction container is selected so that the reaction production rate of the living body does not exceed 1/2 of the maximum reaction production rate. The method described in.

4 栄養物供給量をBOD5で測定して、1〜15
mg/の間で一定にすることを特徴とする、上
記項目に記載の方法。
4. Nutrient supply measured by BOD 5 , 1-15
The method according to the above item, characterized in that the amount is constant between mg/.

5 PH値の変動による阻害作用に対して、検査液
に生物学的に中性の緩衝液が投与されることを
特徴とする、上記項目に記載の方法。
5. The method described in the above item, characterized in that a biologically neutral buffer solution is administered to the test solution against the inhibitory effect caused by fluctuations in PH value.

6 わずかに加圧した状態で流すことを特徴とす
る、上記項目に記載の方法。
6. The method described in the above item, which is characterized by flowing under a slightly pressurized state.

7 検査溶液をもう1つの分岐流として採取して
同様の処理をし、このとき第2の分岐流の希釈
度は一定の倍率(m)だけ第1の分岐流のそれ
より小さくなるように調節しており、第2の反
応容器の入口と出口の測定値の差の変化を、第
1の分岐流での測定値の差の変化と比較して毒
性成分に関連する毒性の程度が表示されること
を特徴とする、上記項目に記載の方法。
7. Collect the test solution as another branch stream and process it in the same way, adjusting the dilution of the second branch stream to be smaller than that of the first branch stream by a certain factor (m). The degree of toxicity associated with the toxic component is indicated by comparing the change in the difference between the measurements at the inlet and outlet of the second reaction vessel with the change in the difference in the measurements at the first branch stream. The method described in the above item, characterized in that:

8 倍率(m)は、予想される毒性の種類に従つ
て2〜20の間で選ばれることを特徴とする、上
記第7項に記載の方法。
8. Method according to item 7 above, characterized in that the multiplier (m) is chosen between 2 and 20 according to the type of toxicity expected.

9 生物濾床には、生体の生長膜を有する多数の
自由浮遊物体が充填されており、常に乱れて動
いていることを特徴とする、上記項目に記載の
方法。
9. The method described in the above item, wherein the biological filter bed is filled with a large number of free floating objects having biological growth membranes, and is constantly moving in a turbulent manner.

10 曝気槽3の入口側に分岐流の導管31と希釈
水の導管32が接続され、希釈水の導管32中
に制御装置12と接続した流量制御装置2が設
置され、曝気槽3の流出口3と反応容器7の流
入口71を結ぶ導管60中に、制御装置12と
接続したもう1つ別の酸素電極10を具備し、
その際制御装置は、流量制御装置2のための比
較器と制御信号発信器をもつことを特徴とす
る、水溶液の分岐流を通す曝気槽と反応容器を
具備し、かつ、反応容器の出口導管中に酸素電
極を具備した、上記項目に記載の方法を実施す
るための装置。
10 A branch flow conduit 31 and a dilution water conduit 32 are connected to the inlet side of the aeration tank 3, and a flow rate control device 2 connected to the control device 12 is installed in the dilution water conduit 32, Another oxygen electrode 10 connected to the control device 12 is provided in a conduit 60 connecting the inlet 71 of the reaction vessel 7 and the oxygen electrode 12.
In this case, the control device comprises an aeration tank and a reaction vessel through which the branched flow of the aqueous solution passes, characterized in that it has a comparator and a control signal transmitter for the flow rate control device 2, and an outlet conduit of the reaction vessel. An apparatus for carrying out the method described in the above item, comprising an oxygen electrode therein.

11 分岐流の導管31と希釈水の導管32にはそ
れぞれ定量ポンプ1,2が設置されていること
を特徴とする、上記第10項に記載の装置。
11. The device according to item 10 above, characterized in that metering pumps 1 and 2 are installed in the branch flow conduit 31 and the dilution water conduit 32, respectively.

12 反応容器7が、別のポンプ8によつて反応容
器7内の流体が連続的に圧送される循環管路8
1と接続されていることを特徴とする、上記第
10項または第11項に記載の装置。
12 The reaction vessel 7 is connected to a circulation pipe 8 through which the fluid in the reaction vessel 7 is continuously pumped by another pump 8.
1.
Apparatus according to paragraph 10 or paragraph 11.

13 反応容器7内に保有されている生物濾床に
は、生物の生長膜を有する多くの自由浮遊物体
9が含まれていることを特徴とする、上記第10
〜12項に記載の装置。
13. The tenth aspect of the above, characterized in that the biological filter bed held in the reaction vessel 7 contains many free-floating objects 9 having biological growth membranes.
Apparatus according to paragraphs 12 to 12.

14 自由浮遊物体9は、機械的な作用から保護さ
れた生長膜を有することを特徴とする、上記第
13項に記載の装置。
14 The free-floating object 9 is characterized in that it has a growth membrane protected from mechanical action.
The device described in paragraph 13.

15 自由浮遊物体9は、その内面に自由な生長膜
を有する中空物体であることを特徴とする、上
記第13項または第14項に記載の装置。
15. The device according to item 13 or 14 above, characterized in that the free-floating object 9 is a hollow object having a free growth membrane on its inner surface.

16 反応容器7を出た分岐流が、生物濾床を有す
る第2の反応容器17を通して送られ、第1の
反応容器中の酸素消費量と第2の反応容器中の
酸素消費量の差が、分岐流中の汚濁の分解性に
対する尺度として検知されることを特徴とす
る、上記第1〜6項または第9項に記載の方
法。
16 The branched stream leaving the reaction vessel 7 is sent through a second reaction vessel 17 having a biological filter bed so that the difference between the oxygen consumption in the first reaction vessel and the oxygen consumption in the second reaction vessel is , is detected as a measure for the degradability of contamination in the branched flow.

17 反応容器を出た分岐流を希釈した後に第2の
反応容器に流入させること、および第1の反応
容器に流入する分岐流の希釈度を、第2の反応
容器を通過する流量が一定の場合に、第2の反
応容器の入口、出口の測定値の差が設定値に対
してほぼ一定となるように制御し、その際、第
2の反応容器での希釈度を第1の反応容器での
それより一定の倍率mだけ大きくなるように調
節し、第2の反応容器前後での測定値の差が、
第1の反応容器での測定値の差と比較され、毒
性成分に関連する毒性の程度として表示される
ことを特徴とする、上記第1〜6項または第9
項に記載の方法。
17 The branched stream leaving the reaction vessel is diluted before flowing into the second reaction vessel, and the degree of dilution of the branched stream entering the first reaction vessel is controlled such that the flow rate passing through the second reaction vessel is constant. In this case, the difference between the measured values at the inlet and outlet of the second reaction vessel is controlled to be approximately constant with respect to the set value, and in this case, the degree of dilution in the second reaction vessel is controlled to be equal to that of the first reaction vessel. The difference between the measured values before and after the second reaction vessel is
Items 1 to 6 or 9 above, characterized in that the difference in the measured value in the first reaction vessel is compared and displayed as the degree of toxicity related to the toxic component.
The method described in section.

18 第1の反応容器7の流出管72が第2の反応
容器17の流入管71′に接続されており、第
2の反応容器17の後にもう1つの酸素電極1
6が取付けられ、導線46′によつて制御装置
12,12と接続されていることを特徴とする
上記第16項に記載の方法を実施するための、上
記第10〜15項に記載の装置。
18 The outflow pipe 72 of the first reaction vessel 7 is connected to the inflow pipe 71' of the second reaction vessel 17, and another oxygen electrode 1 is connected after the second reaction vessel 17.
10 to 15, for carrying out the method according to paragraph 16, characterized in that 6 is attached to the control device 12, 12 by a conductor 46'. .

19 流出管72はオーバーフロー19をもつタン
ク18に接続され、タンクには、その排出口を
第2の反応容器17の流入管71′とつないだ
定量ポンプ13を具備する排出管22が取付け
られ、また、定量ポンプ14を具備する希釈水
導管32′が流入管71′に接続され、第2の反
応容器17の前後にそれぞれ酸素電極が設置さ
れていることを特徴とする、上記第17項に記載
の方法を実施するための、上記第18項に記載の
装置。
19 The outflow pipe 72 is connected to a tank 18 with an overflow 19, which is fitted with an outflow pipe 22 equipped with a metering pump 13 whose outlet is connected to the inflow pipe 71' of the second reaction vessel 17; Further, according to the above item 17, the dilution water conduit 32' equipped with the metering pump 14 is connected to the inflow pipe 71', and oxygen electrodes are installed before and after the second reaction vessel 17, respectively. 19. Apparatus according to paragraph 18 above for carrying out the method described.

20 本装置を、第2の曝気槽3′、第2の反応容
器17および第2の反応容器17の前後にそれ
ぞれ取付けた酸素電極15,16を具備するも
う1つの同じ装置bと並列に設置し、第2の曝
気槽3′に前置した流量制御装置13,14を、
第2の分岐流の希釈度を第1の分岐流の希釈度
と一定の倍率mだけ変えるように、制御装置1
2によつて調節変動させることを特徴とする、
上記第7〜9項に記載の方法を実施するため
の、上記第10〜15項に記載の装置。
20 This device is installed in parallel with another same device b, which is equipped with a second aeration tank 3', a second reaction vessel 17, and oxygen electrodes 15 and 16 installed before and after the second reaction vessel 17, respectively. The flow rate control devices 13 and 14 placed in front of the second aeration tank 3' are
The control device 1 controls the dilution level of the second branched stream to be different from the dilution level of the first branched stream by a constant magnification m.
2.
Apparatus according to items 10 to 15 above, for carrying out the method according to items 7 to 9 above.

JP56503292A 1980-10-10 1981-10-10 Expired - Lifetime JPH0252825B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803038305 DE3038305A1 (en) 1980-10-10 1980-10-10 METHOD AND DEVICE FOR DETECTING BIODEGRADABLE AND TOXIC INGREDIENTS AND AQUEOUS SOLUTIONS, e.g. SEWAGE

Publications (2)

Publication Number Publication Date
JPS57501886A JPS57501886A (en) 1982-10-21
JPH0252825B2 true JPH0252825B2 (en) 1990-11-14

Family

ID=6114084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56503292A Expired - Lifetime JPH0252825B2 (en) 1980-10-10 1981-10-10

Country Status (7)

Country Link
US (2) US4748127A (en)
EP (1) EP0049887B1 (en)
JP (1) JPH0252825B2 (en)
AT (1) ATE13598T1 (en)
DE (2) DE3038305A1 (en)
DK (1) DK156852C (en)
WO (1) WO1982001419A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1251279A (en) * 1986-05-16 1989-03-14 The Governors Of The University Of Alberta Determination of oxygen uptake rate in wastewater treatment plants
GB8824286D0 (en) * 1988-10-17 1988-11-23 Thames Water Authority Apparatus & system for monitoring impurity in liquid
DE3842734A1 (en) * 1988-12-19 1990-06-21 Hoechst Ag METHOD FOR CONTINUOUSLY MONITORING WASTEWATER
JPH0785072B2 (en) * 1990-02-05 1995-09-13 建設省土木研究所長 Toxic substance detection device and water quality monitoring system using the same
US5702951A (en) * 1990-07-04 1997-12-30 Commonwealth Scientific And Industrial Research Organisation Continuous RBCOD measurement
US5482862A (en) * 1991-04-04 1996-01-09 The Dow Chemical Company Methods for the on-line analysis of fluid streams
US5490933A (en) * 1991-04-04 1996-02-13 The Dow Chemical Company Self-regulated biological scrubber and/or gas stripper for the treatment of fluid streams
GB9108944D0 (en) * 1991-04-26 1991-06-12 South West Water Plc A method of,and apparatus for,continuously monitoring the level of a constituent of a flow
US5190728A (en) * 1991-10-21 1993-03-02 Nalco Chemical Company Apparatus for monitoring fouling in commercial waters
US5123438A (en) * 1991-11-20 1992-06-23 The United States Of America As Represented By The Secretary Of The Navy Flow control and diluter system for bioassay testing
KR960016715B1 (en) * 1993-04-16 1996-12-20 주식회사 유공 Fast biochemical bod measuring method and apparatus
US5665555A (en) * 1993-12-15 1997-09-09 Academy Of Natural Sciences Of Philadelphia Method of determining the effect of a test substance on a clone of a Centroptilum triangulifer mayfly
DE4406611C2 (en) * 1994-03-01 1998-12-24 Rudolf Dipl Chem Dr Mueller Procedure for determining the biological oxygen demand (BOD) in sewage treatment plants
US5688660A (en) * 1995-03-15 1997-11-18 Colgate-Palmolive Company Method for determining product biodegradability
US20050266548A1 (en) * 1995-03-28 2005-12-01 Kbi Biopharma, Inc. Biocatalyst chamber encapsulation system for bioremediation and fermentation with improved rotor
IT1277404B1 (en) * 1995-08-01 1997-11-10 Alberto Rozzi METHOD FOR CHECKING THE CONCENTRATION IN LIQUIDS OF SUBSTANCES WHICH ARE DEGRADED BY ACIDIFYING ORGANISMS OR
DE19538180A1 (en) * 1995-10-13 1997-04-17 Siepmann Friedrich W Method and device for determining the biological oxygen demand of waste water
KR100443563B1 (en) * 1996-09-10 2004-11-20 에스케이 주식회사 Method and apparatus for continuously measuring biochemical oxygen demand(bod) using microorganism with short measurement cycle
DE19640333A1 (en) * 1996-09-19 1998-04-02 Lar Analytik Und Umweltmestech Method and device for measuring the nitrification performance of activated sludge
ES2157135B1 (en) * 1997-12-04 2002-03-01 Univ Cantabria RESPIROMETER WITH FIXED BIOMASS ON GASES PERMEABLE SUPPORT.
KR20020066905A (en) * 2001-02-14 2002-08-21 이원바이오텍주식회사 Single-Staged Reactor Type BOD Sensor Using Capsules Containing Yeasts and Method to Measure BOD Using It
ITRM20110468A1 (en) * 2011-09-08 2013-03-09 Univ Roma DEVICE FOR THE AUTOMATIC REAL-TIME DETERMINATION OF THE ASPECIFIC TOXICITY OF AN ORGANIC LIQUID SUBSTRATE.
JP6098984B2 (en) 2012-08-30 2017-03-22 コーニング インコーポレイテッド Antimony-free glass, antimony-free frit, and glass package hermetically sealed with the frit
CN104122377A (en) * 2014-07-09 2014-10-29 华南师范大学 Water pollution early warning method based on metabolism level of bivalve mollusc corbicula fluminea
CN112897690A (en) * 2021-02-05 2021-06-04 诸城舜沃农业科技有限公司 Anaerobic fermentation device capable of being switched randomly based on one-stage two-stage fermentation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348409A (en) * 1963-09-19 1967-10-24 Robert M Arthur Method and apparatus for analyzing gas absorption and expiration characteristics
DE2007727C3 (en) * 1970-02-19 1974-11-21 Hartmann, Ludwig, 7500 Karlsruhe Process for the automatic control of the biochemical reaction sequence in a main fermenter as well as dosing device and analytical fermenter for carrying out the process
US3731522A (en) * 1970-09-30 1973-05-08 Robertshaw Controls Co Method and apparatus for determining oxygen consumption rate in sewage
US3740320A (en) * 1971-01-25 1973-06-19 R Arthur Apparatus and method for measuring the amount of gas absorbed or released by a substance
US3766010A (en) * 1971-08-26 1973-10-16 Ajinomoto Kk Method for controlling fermentation process
DE2146127A1 (en) * 1971-09-15 1973-03-22 Comp Nat Amenagement DEVICE FOR MEASURING THE BIOCHEMICAL OXYGEN DEMAND
US3813325A (en) * 1972-07-27 1974-05-28 Robertshaw Controls Co Continuous respirometer apparatus
DE2415771A1 (en) * 1974-04-01 1975-10-02 Friedrich Letschert Determination of toxicity of waste water - is for metabolic processes expressed by oxygen consumption
US4162195A (en) * 1974-04-04 1979-07-24 Aktiebolaget Kalle-Regulatorer Biological testing device and method of measuring toxicity of sewage
US4073692A (en) * 1975-04-21 1978-02-14 Ciaccio Leonard L Method and apparatus for automated measurement of energy oxygen
DE2728071C2 (en) * 1977-06-22 1983-06-30 Bayer Ag, 5090 Leverkusen Method for the detection of bacteria-damaging water constituents and device for carrying out the same
JPS5534120A (en) * 1978-08-31 1980-03-10 Fuji Electric Co Ltd Dissolved oxygen control method in activated sludge process
DE2951707C2 (en) * 1979-12-19 1985-03-07 Michael Dr.-Ing. 1000 Berlin Schmidt Device for determining the concentration of biodegradable substances in wastewater
US4330385A (en) * 1980-06-09 1982-05-18 Arthur Technology, Inc. Dissolved oxygen measurement instrument
US4314969A (en) * 1980-08-29 1982-02-09 Arthur Technology, Inc. Submersible respirometer

Also Published As

Publication number Publication date
DK156852B (en) 1989-10-09
JPS57501886A (en) 1982-10-21
WO1982001419A1 (en) 1982-04-29
EP0049887A2 (en) 1982-04-21
ATE13598T1 (en) 1985-06-15
DE3170743D1 (en) 1985-07-04
US4748127A (en) 1988-05-31
US4898829A (en) 1990-02-06
DE3038305A1 (en) 1982-05-19
EP0049887A3 (en) 1982-04-28
EP0049887B1 (en) 1985-05-29
DK156852C (en) 1990-03-05
DK261182A (en) 1982-06-10

Similar Documents

Publication Publication Date Title
JPH0252825B2 (en)
EP0053865B1 (en) Method for measuring biomass viability
Kim et al. Oxygen transfer performance of a supersaturated oxygen aeration system (SDOX) evaluated at high biomass concentrations
CN102288653A (en) Online biochemical oxygen demand (BOD) detector and detection method of same
KR960016715B1 (en) Fast biochemical bod measuring method and apparatus
CN102109512A (en) Device and method for detecting water toxicity
US5702951A (en) Continuous RBCOD measurement
CN202083662U (en) Online tester for biochemical oxygen demand BOD
Albertson et al. Biologically mediated inconsistencies in aeration equipment performance
CA2085374C (en) Continuous rbcod measurement
JPH0735741A (en) Bod measuring equipment
JPH04502275A (en) Continuous monitoring of effluent
JP2013215680A (en) Wastewater treatment method and wastewater treatment apparatus
ITMI951686A1 (en) METHOD FOR CHECKING THE CONCENTRATION IN LIQUIDS OF SUBSTANCES WHICH ARE DEGRADED BY ACIDIFYING ORGANISMS OR
CN209280427U (en) A kind of aeration BOD dilution adding set certainly
KR102000885B1 (en) Measurement of suspended solids concentration using turbidity sensor and Apparatus for determining the fraction of aerobic granule sludge
KR100363438B1 (en) Continuous activated sludge respiration and short term BOD analyzer based on tubular flow respiration chamber
JPH04136761A (en) Method for quantifying concentration of dissolved substance in bioreactor
Buswell et al. Study of the Nitrification Phase of the BOD Test: II. Development of an Incubation Vessel for Multiple Determinations
Boumansour et al. Propane as a tracer gas for reaeration tests
CA3215151A1 (en) System and process for measuring of a gas dissolved in a liquid
Sadar et al. The Determination of Settled Sludge Volume and Sludge Volume Index Using Process Methodologies
JPH0736281Y2 (en) Respiratory rate measuring device
Joint Determination of oxygen demand
JPH0656378B2 (en) BOD measuring device