JPH0252567B2 - - Google Patents

Info

Publication number
JPH0252567B2
JPH0252567B2 JP57201616A JP20161682A JPH0252567B2 JP H0252567 B2 JPH0252567 B2 JP H0252567B2 JP 57201616 A JP57201616 A JP 57201616A JP 20161682 A JP20161682 A JP 20161682A JP H0252567 B2 JPH0252567 B2 JP H0252567B2
Authority
JP
Japan
Prior art keywords
protrusion
tube
circular
circular tube
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57201616A
Other languages
Japanese (ja)
Other versions
JPS5992122A (en
Inventor
Eiji Iri
Yukio Yamamoto
Masao Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP20161682A priority Critical patent/JPS5992122A/en
Publication of JPS5992122A publication Critical patent/JPS5992122A/en
Publication of JPH0252567B2 publication Critical patent/JPH0252567B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D15/00Corrugating tubes
    • B21D15/04Corrugating tubes transversely, e.g. helically
    • B21D15/06Corrugating tubes transversely, e.g. helically annularly

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は平行波つけ管の製造方法、主としてケ
ーブル等の被覆に用いられたり又同軸ケーブルの
外部導体として用いられる、いわゆるコルゲート
管の外周部に平行な環状の波形を形成するのに好
適な平行波つけ管の製造方法に関するものであ
る。 [従来技術] 従来の波つけ方法としては、波つけ加工すべき
円管をその軸方向に送りながら、外周壁に喰い込
んだダイス内周部の突条をその周壁に沿つて円周
方向に回転させる方法によるものが知られてい
る。ところがその方法により形成される溝は螺旋
状で長手方向に連続したものであるため、該螺旋
状波つけ管を同軸ケーブルの外部導体に採用した
場合には、螺旋状の連続した通路を通つてケーブ
ル内部に湿気が侵入しやすいため、内部に乾燥空
気を循環させたり、ケーブルコネクタを気密構造
にする必要が生じ、保守の点で煩雑であつた。そ
こで、上記長手方向の連続通路を遮断して上記不
具合を解消するため、外部導体として円管にそれ
ぞれ独立した円周溝が互いに平行に多数形成され
た平行波つけ管を用い、該管の谷部を絶縁体に喰
い込ませた構造の同軸ケーブルが提案されてお
り、又このような平行波つけ管の製造方法(装
置)が既に提案されている(特公昭49−43069号、
特開昭53−142965号)。ところがそれら従来の例
に基づいて平行波つけ管を製造した場合には、円
管上に形成された平行波の仕上りが良好でなく、
偏平となるばかりかたたき傷やへこみが生じ、形
成された波に加工上の歪が残ることから、施工時
に割れ、ひび等が生じ易く、機械的強度に欠ける
不具合があるばかりでなく、同軸ケーブルに採用
した場合には充分な遮水効果が得られないばかり
か、所望の電気的性能が得られない等の不具合が
あつた。 [発明の開示] 本発明は上記不具合に鑑み、潰れ、偏平、たた
き傷等のないきれいな平行波を有する波つけ管を
容易に得ることができる平行波つけ管の製造方法
を提供し、平行波つけ管の品質を向上させ、波の
形状が直接、電気的特性あるいは遮水特性に影響
を与える、遮水性の同軸ケーブルの外部導体や遮
水性の通信ケーブルの外装等として用い得る平行
波つけ管を実現させることを目的としている。 上記目的を達成するため本発明は、遮水性の同
軸ケーブルの外部導体や遮水性の通信ケーブルの
外装等として用いる平行波つけ管の製造方法であ
つて、螺旋状の内向き突条を設けたダイスを用
い、該突条は、少なくとも1ピツチ分の長さを有
しかつ半径0.5mm程度の円弧状断面の滑らかな先
端形状を有し、突条の内径より小さい外径を有す
る波つけ加工すべき円管の外周壁に該突条を押圧
し、その押圧箇所を円管の周方向に移動させる工
程と、前記円管をその軸方向に、前記突条による
押圧箇所の移動に伴う螺旋の進みに相当する速度
をもつて送る工程とを有し、前記突条の内径を
D、円管の外径をd、形成される波の高さをhと
し、kを(D−d)/2+hとした場合に、 で与えられるFの値を0.45以下となるように設定
し、前記突条の円管への押圧箇所を円管の周方向
に移動させるに際して、突条を自転させずに公転
させることを特徴としている。 [発明の一実施例] まず第1図、第2図及び第7図に基づいて本発
明の実施のための平行波つけ管の製造装置を説明
する。 第1図は製造装置の模式的正面断面図であり、
第2図は第1図の矢視−の側面図(円管4は
図示せず)である。また、第7図は第2図の矢視
−の断面図である。全体として中空円柱状を
なすフライヤ1は基台2にころがり軸受3を介し
て回転のみ可能に支持され、その中空部には矢印
V方向(軸方向)に強制的に送られる波つけ加工
すべき円管4が配置されている。図示の装置にお
いては円管4が直接前記中空部内を走行するので
はなく、別の中空円柱状のガイドスリーブ5によ
つて案内されている。フライヤ1に固着されたプ
ーリー6は、モータ7により回転駆動される。中
空円柱状をなし内周壁にピツチPを有する螺旋状
の波つけ突条8の1ピツチ分だけ形成された波つ
けダイス9は、フライヤ1に対してガイドプレー
ト24,24により固着されたダイスホルダ10
にころがり軸受11を介して回転自在に取り付け
られている。ダイス9は、フライヤ1に対して偏
心して固定されているが、その取り付け方を以下
に説明する。即ち、第2図、第7図に示す通り、
ダイスホルダ10の両側のフランジ部101,1
01がフライヤ1の端面とガイドプレート24の
段部241,241の間に挟持されているので、
ボルト25,…を緩め、第2図の上下方向に必要
な寸法だけ、ダイスホルダ10を偏心させボルト
25…を締めることによつて、ダイス9は、フラ
イヤ1に対して必要寸法偏心して固定される。な
お波つけダイス9と円管4に関しては、上記偏心
の操作により円管4が波つけダイス9に内接し、
その加工時において波つけ突条8の半径方向内側
の端縁が円管4の所望の波の谷部に合致するよう
な任意の位置関係に配置されるようになつてい
る。 また、ダイス9の側面にはピン23が垂直に固
設されている。さらに、ダイス9の右方には第1
図のようにスタンド(図示せず)に固定されたホ
ルダー20を設け、そのダイス側端には、下方に
延びる形でブラケツト21が固着されている。該
ブラケツト21には上下方向に長くかつダイス9
に向かつて開き、ピン23が嵌合し得る幅を有す
る長穴22が形成されている。従つて、フライヤ
1が回転しても、ダイス9はブラケツト21の長
穴22によつて回転運動を規制されるので、ダイ
ス9は自転せず単に公転のみすることとなる。 次に上記第1図、第2図及び第7図の装置を用
いた場合の本発明による平行波つけ管の製造方法
を説明する。 いまフライヤ1を回転させると波付ダイス9は
ブラケツト21の長穴22により回転運動を規制
され、円管4の外周を辷りながら公転して円管4
に波つけを施し、フライヤ1が1回転すると再び
円管4上に新しく次の円周溝の加工が始まる。一
方フライヤ1が1回転する間に、円管4は波つけ
突条8のちようど1ピツチP分だけV方向に送ら
れる。 波つけの原理を第1図、第8〜10図を用いて
以下に説明する。第1図の状態をスタートとし、
この状態からフライヤ1が90度回転した状態を第
1図の直角方向断面で示したのが第8図である。
図のようにダイス9の突条8は一条のみが側方か
ら(第2図の右方から)円管4を押圧加工してい
る。この状態で円管は第1図の状態から、1/4ピ
ツチ分右方に前進している。第9図はさらに90度
フライヤ1が回転した状態であり、第1図の突条
8の下方部分で円管4を押圧加工していることと
なる。円管4は第8図の状態からさらに1/4ピツ
チ分右方に進行している。第10図は、さらにフ
ライヤ1を90度回転させた状態の第8図同様の断
面図である。これも突条8は側方から(第2図の
左方から)円管4を押圧加工している。この状態
で円管4は第9図の状態からさらに1/4ピツチ右
方に進行している。そして、さらに90度フライヤ
が回転し、円管が1/4ピツチ右方に進行すると、
第1図の状態に戻り、次の波つけ加工が開始され
ることとなる。このようにして、次々に、平行波
つけ加工が続けられる。 本発明による製造方法では、第3図に示すよう
に突条8の内径をD、円管4の外径をd、形成さ
れる波12(第1図)の波高さをhとした場合
に、次の条件が必須の要件となる。なお点O1
ダイス9の中心、点O2は円管4の中心である。
ここで中心O1と中心O2との間の距離をkとする
と、 k=D−d/2+h …(1) ここで突条8の中心である点O1を座標の中心
とすると突条8の内周端は、X2+Y2=(D/2)2
であらわされ、円管4の中心である点O2の軌跡
は、x2+(y−k)2=(d/2)2で表わされる(実
際はO2が回転中心である)。そこで第3図中、突
条8と円管4との接触部分のうち両端部t1,t2
の距離fは次式で表現される。 距離fの1/2を円管4の外径dで徐して、指標
Fが与えられる。 この(3)式で求められるFを0.45以下に設定する
ことが本発明の必須の要件となる。 次にF≦0.45とすることを本発明の要件とする
根拠となる実験結果の一例を表1に示す。なお試
作No.1及びNo.8が従来の通常設定条件である。又
ここでの円管4は0.4〜0.5mm厚の銅テープを直径
26.5mmと14.2mmに仕上げたものを使用し、ダイス
9としては、第4図、第5図及び第6図に示す形
状のものを使用した。23はその端面に垂直に固
設したピンである。なお、ダイス9の形状は、第
1図では模式的に示しているが実際の形は第4
図、第5図、第6図に示した形状である。
[Technical Field] The present invention relates to a method for manufacturing a parallel corrugated tube, which is a method for forming parallel corrugated tubes on the outer periphery of a so-called corrugated tube, which is mainly used for coating cables, etc., or as an outer conductor for coaxial cables. The present invention relates to a method of manufacturing a parallel corrugated tube suitable for. [Prior art] In the conventional corrugating method, while feeding the circular tube to be corrugated in its axial direction, the protrusion on the inner circumferential part of the die cut into the outer circumferential wall is moved in the circumferential direction along the circumferential wall. A method using rotation is known. However, since the grooves formed by this method are spiral and continuous in the longitudinal direction, when the spirally corrugated tube is used as the outer conductor of a coaxial cable, the grooves are formed through a continuous spiral path. Since moisture easily enters the inside of the cable, it is necessary to circulate dry air inside the cable or to make the cable connector an airtight structure, which is complicated in terms of maintenance. Therefore, in order to eliminate the above problem by interrupting the continuous passage in the longitudinal direction, a parallel corrugated tube in which a large number of independent circumferential grooves are formed parallel to each other in a circular tube is used as an external conductor. A coaxial cable with a structure in which the part is cut into an insulator has been proposed, and a method (equipment) for manufacturing such a parallel corrugated tube has already been proposed (Japanese Patent Publication No. 49-43069,
(Japanese Patent Application Laid-open No. 142965/1983). However, when parallel corrugated tubes were manufactured based on these conventional examples, the parallel waves formed on the circular tube did not have a good finish;
Not only will the cable become flat, but scratches and dents will also occur, and processing distortions will remain in the formed waves, making it more likely to crack and crack during construction. When this method was adopted, not only was it not possible to obtain a sufficient water-blocking effect, but there were also problems such as not being able to obtain the desired electrical performance. [Disclosure of the Invention] In view of the above-mentioned problems, the present invention provides a method for manufacturing a parallel corrugated tube that can easily obtain a corrugated tube having clean parallel waves without crushing, flattening, nicks, etc. Parallel corrugated tube that can be used as the outer conductor of water-shielding coaxial cables and the exterior of water-shielding communication cables, etc., which improves the quality of the pipe and whose wave shape directly affects electrical and water-shielding properties. The aim is to realize this. In order to achieve the above object, the present invention provides a method for manufacturing a parallel corrugated tube used as an outer conductor of a water-shielding coaxial cable, an exterior of a water-shielding communication cable, etc., in which a spiral inward protrusion is provided. Using a die, the protrusion has a length of at least one pitch, has a smooth tip shape with an arcuate cross section with a radius of about 0.5 mm, and has an outer diameter smaller than the inner diameter of the protrusion. a step of pressing the protrusion against the outer circumferential wall of the circular pipe to be processed and moving the pressed part in the circumferential direction of the circular pipe; and a step of moving the circular pipe in the axial direction of the circular pipe as the pressed part by the protrusion moves in the spiral direction. The inner diameter of the protrusion is D, the outer diameter of the circular tube is d, the height of the formed wave is h, and k is (D-d). /2+h, The value of F given by is set to be 0.45 or less, and when moving the pressing point of the protrusion against the circular pipe in the circumferential direction of the circular pipe, the protrusion is made to revolve without rotating. There is. [One Embodiment of the Invention] First, a parallel corrugated tube manufacturing apparatus for carrying out the present invention will be described based on FIGS. 1, 2, and 7. FIG. 1 is a schematic front sectional view of the manufacturing device,
FIG. 2 is a side view taken in the direction of the arrow in FIG. 1 (the circular tube 4 is not shown). Further, FIG. 7 is a sectional view taken along the arrow - in FIG. 2. The fryer 1, which has a hollow cylindrical shape as a whole, is supported by a base 2 via a rolling bearing 3 so as to be rotatable, and the hollow portion thereof should be corrugated so as to be forcibly sent in the direction of arrow V (axial direction). A circular tube 4 is arranged. In the illustrated device, the circular tube 4 does not run directly within the hollow portion, but is guided by another hollow cylindrical guide sleeve 5. A pulley 6 fixed to the fryer 1 is rotationally driven by a motor 7. A corrugating die 9 formed by one pitch of a spiral corrugating protrusion 8 having a hollow cylindrical shape and having a pitch P on the inner circumferential wall is attached to a die holder 10 fixed to the flyer 1 by guide plates 24, 24.
It is rotatably attached via a rolling bearing 11. The die 9 is eccentrically fixed to the flyer 1, and how to attach it will be explained below. That is, as shown in FIGS. 2 and 7,
Flange parts 101, 1 on both sides of the die holder 10
01 is held between the end surface of the flyer 1 and the step portions 241, 241 of the guide plate 24,
By loosening the bolts 25, ..., making the die holder 10 eccentric by the necessary dimension in the vertical direction in FIG. 2, and tightening the bolts 25, the die 9 is fixed eccentrically by the necessary dimension with respect to the flyer 1. . Regarding the corrugating die 9 and the circular tube 4, the circular tube 4 is inscribed in the corrugating die 9 by the eccentric operation described above,
During processing, the radially inner edge of the corrugated ridge 8 is arranged in an arbitrary positional relationship such that it matches the desired wave trough of the circular tube 4. Further, a pin 23 is vertically fixed to the side surface of the die 9. Furthermore, to the right of die 9 is the first
As shown in the figure, a holder 20 is provided which is fixed to a stand (not shown), and a bracket 21 is fixed to the die side end of the holder 20 so as to extend downward. The bracket 21 has a vertically long die 9.
An elongated hole 22 is formed which opens towards the side and has a width that allows the pin 23 to fit therein. Therefore, even if the fryer 1 rotates, the rotational movement of the dice 9 is restricted by the elongated holes 22 of the bracket 21, so the dice 9 do not rotate but only revolve. Next, a method of manufacturing a parallel corrugated tube according to the present invention using the apparatuses shown in FIGS. 1, 2, and 7 will be described. When the flyer 1 is rotated now, the corrugated die 9 is restricted from rotating by the elongated hole 22 of the bracket 21, and revolves around the outer periphery of the circular tube 4.
When the flyer 1 rotates once, machining of the next circumferential groove on the circular tube 4 starts again. On the other hand, while the flyer 1 rotates once, the circular tube 4 is sent in the V direction by one pitch P after the corrugated ridge 8. The principle of corrugation will be explained below using FIG. 1 and FIGS. 8 to 10. Starting from the state shown in Figure 1,
FIG. 8 shows a state in which the flyer 1 has been rotated 90 degrees from this state in a cross section taken in a direction perpendicular to FIG. 1.
As shown in the figure, only one protrusion 8 of the die 9 is pressed against the circular tube 4 from the side (from the right side in FIG. 2). In this state, the circular tube has moved forward by 1/4 pitch to the right from the state shown in Figure 1. FIG. 9 shows a state in which the flyer 1 has been further rotated by 90 degrees, and the circular tube 4 is being pressed by the lower portion of the protrusion 8 in FIG. The circular tube 4 has moved further to the right by 1/4 pitch from the state shown in FIG. FIG. 10 is a sectional view similar to FIG. 8 with the fryer 1 further rotated by 90 degrees. Also in this case, the protrusion 8 is formed by pressing the circular tube 4 from the side (from the left in FIG. 2). In this state, the circular tube 4 has moved further 1/4 pitch to the right from the state shown in FIG. Then, the flyer rotates another 90 degrees and the circular tube moves 1/4 pitch to the right.
The state returns to the state shown in FIG. 1, and the next corrugating process is started. In this way, parallel corrugation processing is continued one after another. In the manufacturing method according to the present invention, as shown in FIG. 3, when the inner diameter of the protrusion 8 is D, the outer diameter of the circular tube 4 is d, and the wave height of the formed waves 12 (FIG. 1) is h, , the following conditions are essential requirements. Note that the point O 1 is the center of the die 9 and the point O 2 is the center of the circular tube 4.
Here, if the distance between the center O 1 and the center O 2 is k, then k = D - d / 2 + h ... (1) If the point O 1 , which is the center of the protrusion 8, is the center of coordinates, the protrusion The inner peripheral edge of 8 is X 2 + Y 2 = (D/2) 2
The trajectory of point O2 , which is the center of the circular tube 4, is expressed as x2 +(y-k) 2 =(d/2) 2 ( O2 is actually the center of rotation). Therefore, in FIG. 3, the distance f between both ends t 1 and t 2 of the contact portion between the protrusion 8 and the circular tube 4 is expressed by the following formula. An index F is given by dividing 1/2 of the distance f by the outer diameter d of the circular tube 4. It is an essential requirement of the present invention to set F determined by this equation (3) to 0.45 or less. Next, Table 1 shows an example of experimental results that serve as the basis for setting F≦0.45 as a requirement of the present invention. Note that prototypes No. 1 and No. 8 are the conventional normal setting conditions. Also, the circular pipe 4 here is made of copper tape with a thickness of 0.4 to 0.5 mm.
Dies finished to 26.5 mm and 14.2 mm were used, and the die 9 had the shape shown in FIGS. 4, 5, and 6. 23 is a pin fixed perpendicularly to the end surface. The shape of the die 9 is shown schematically in FIG. 1, but the actual shape is
It has the shape shown in FIG. 5, FIG. 6, and FIG.

【表】 表1で明らかなように、Fの値が0.45を超える
場合(No.1、No.4等)は製品としての波つけ管の
質が悪く、たたき傷やへこみが発生したが、0.45
以下の場合(No.2、No.6等)ではそのような不具
合は発生せず高品質の波つけ管を得ることができ
た。因にアルミニウムや鋼を用いた場合もほぼ同
様の結果が得られた。又単なる管を製造した場合
と、同軸ケーブルのケーブルコア上に波付管を設
けた場合とで差異はなかつた。一方遮水効果の優
れた同軸ケーブルを製造するため、絶縁層に波つ
け管の谷部を充分喰い込ませるように波つけを行
うためには、第6図に示すように突条8の先端断
面の半径R1が0.5mm程度が望ましいことも確認し
ている。 [本発明による効果] 螺旋状の内向き突状を設けたダイスを用い、該
突状は、少なくとも1ピツチ分の長さを有しかつ
半径0.5mm程度の円弧状断面の滑らかな先端形状
を有し、突条8の内径より小さい外径を有する波
つけ加工すべき円管4の外周壁に該突状を押圧
し、その押圧箇所を円管4の周方向に移動させる
工程と、前記円管4をその軸方向に、前記突条8
による押圧箇所の移動に伴う螺旋の進みに相当す
る速度をもつて送る工程とを有し、前記突条8の
内径をD、円管の外径をd、形成される波の高さ
をhとし、kを(D−d)/2+hとした場合
に、 で与えられるFの値が0.45以下となるように設定
したので、円管4に形成された波には潰れ、偏
平、たたき傷等が発生しないことから、割れ、ひ
び等が生じ難く機械的強度に富むと共に波形を高
精度に形成でき、また突条8の円管4への押圧箇
所を円管4の周方向に移動させるに際して、少な
くとも1ピツチ分の長さを有する突条8を自転さ
せずに公転させるので、前記Fの値を前記のよう
に定めたことと相俟つて、円管4の波形をさらに
高精度に形成でき、さらに突条8の先端形状を半
径0.5mm程度の円弧状断面にしたので、波つけ管
の谷部を絶縁層に充分食い込ませることができ、
従つて、波の形状が直接、電気的特性あるいは遮
水特性に影響を与える、遮水性の同軸ケーブルの
外部導体や遮水性の通信ケーブルの外装等に採用
することにより、充分な遮水効果を有しかつ電気
的性能の優れたケーブルが得られる等、高品質の
平行波つけ管を容易に得ることができる利点があ
る。 [別の実施例] () ダイス9に形成する突条8の長さは1ピ
ツチ分に限らず、それ以上であればいくらでも
よい。 () 突条8の内方への突出量を円管4に最初
に当接する部分で小さく、後で当接する部分で
大きくして、波つけを徐々に深く行なうように
してもよい。
[Table] As is clear from Table 1, when the F value exceeds 0.45 (No. 1, No. 4, etc.), the quality of the corrugated tube as a product is poor, and scratches and dents occur. 0.45
In the following cases (No. 2, No. 6, etc.), such defects did not occur and high quality corrugated tubes could be obtained. Incidentally, almost similar results were obtained when aluminum or steel was used. Furthermore, there was no difference between the case where a simple tube was manufactured and the case where a corrugated tube was provided on the cable core of a coaxial cable. On the other hand, in order to manufacture a coaxial cable with excellent water shielding effect, in order to corrugate the insulating layer so that the troughs of the corrugated tube are sufficiently dug into the insulation layer, it is necessary to It has also been confirmed that the radius R 1 of the cross section is preferably about 0.5 mm. [Effects of the present invention] A die provided with a spiral inward protrusion is used, and the protrusion has a length of at least one pitch and has a smooth tip shape with an arcuate cross section with a radius of about 0.5 mm. a step of pressing the protrusion on the outer circumferential wall of the circular tube 4 to be corrugated and having an outer diameter smaller than the inner diameter of the protrusion 8, and moving the pressed part in the circumferential direction of the circular tube 4; The protrusion 8 is attached to the circular tube 4 in its axial direction.
The inner diameter of the protrusion 8 is D, the outer diameter of the circular tube is d, and the height of the waves formed is h. and when k is (D-d)/2+h, Since the value of F given by is set to be 0.45 or less, the waves formed on the circular tube 4 will not be crushed, flattened, or hit, so cracks and cracks will not occur easily and the mechanical strength will be improved. It is possible to form a waveform with high precision and to move the protrusion 8 having a length of at least one pitch on its own axis when moving the pressing point of the protrusion 8 against the circular pipe 4 in the circumferential direction of the circular pipe 4. Since the value of F is determined as described above, the waveform of the circular tube 4 can be formed with higher precision, and the tip shape of the protrusion 8 can be shaped into a circle with a radius of about 0.5 mm. The arcuate cross section allows the troughs of the corrugated tube to fully penetrate into the insulation layer.
Therefore, a sufficient water-shielding effect can be achieved by adopting it for the outer conductor of a water-shielding coaxial cable or the exterior of a water-shielding communication cable, where the wave shape directly affects the electrical or water-shielding properties. There are advantages in that high-quality parallel corrugated tubes can be easily obtained, such as a cable with excellent electrical performance. [Another Embodiment] () The length of the protrusion 8 formed on the die 9 is not limited to one pitch, and may be any length longer than that. () The amount of inward protrusion of the protrusion 8 may be made smaller at the part where it first contacts the circular tube 4 and larger at the part where it comes into contact later, so that the corrugation is gradually deepened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による製造方法を実施するため
の装置の模式的正面断面図、第2図は第1図の矢
視−の断面図、第3図はダイスと円管との関
係を示す概念図、第4図、第5図は本発明の実施
に用いるダイスの一例を示す正面図及び横断面
図、第6図は突条の一例を示す断面図、第7図は
第2図の矢視−の断面図、第8図〜第10図
は波つけ状態の説明図である。 4……円管、8……突条、D……突条の内径、
d……円管の外径、h……波の高さ。
FIG. 1 is a schematic front cross-sectional view of an apparatus for carrying out the manufacturing method according to the present invention, FIG. 2 is a cross-sectional view taken in the direction of the arrow in FIG. 1, and FIG. 3 shows the relationship between the die and the circular tube. A conceptual diagram, FIGS. 4 and 5 are a front view and a cross-sectional view showing an example of a die used in carrying out the present invention, FIG. 6 is a cross-sectional view showing an example of a protrusion, and FIG. The sectional views taken in the direction of the arrows - and FIGS. 8 to 10 are explanatory diagrams of the corrugated state. 4...Circular pipe, 8...Protrusion, D...Inner diameter of protrusion,
d...Outer diameter of the circular pipe, h...Height of the wave.

Claims (1)

【特許請求の範囲】 1 遮水性の同軸ケーブルの外部導体や遮水性の
通信ケーブルの外装等として用いる平行波つけ管
の製造方法であつて、螺旋状の内向き突条を設け
たダイスを用い、該突条は、少なくとも1ピツチ
分の長さを有しかつ半径0.5mm程度の円弧状断面
の滑らかな先端形状を有し、突条の内径より小さ
い外径を有する波つけ加工すべき円管の外周壁に
該突条を押圧し、その押圧箇所を円管の周方向に
移動させる工程と、前記円管をその軸方向に、前
記突条による押圧箇所の移動に伴う螺旋の進みに
相当する速度をもつて送る工程とを有し、前記突
条の内径をD、円管の外径をd、形成される波の
高さをhとし、kを(D−d)/2+hとした場
合に、 で与えられるFの値を0.45以下となるように設定
し、前記突条の円管への押圧箇所を円管の周方向
に移動させるに際して、突条を自転させずに公転
させることを特徴とする平行波つけ管の製造方
法。
[Scope of Claims] 1. A method for manufacturing a parallel corrugated tube used as an outer conductor of a water-shielding coaxial cable, an exterior for a water-shielding communication cable, etc., using a die provided with spiral inward protrusions. , the protrusion has a length of at least one pitch, has a smooth tip shape with an arcuate cross section with a radius of about 0.5 mm, and has a circular shape to be corrugated having an outer diameter smaller than the inner diameter of the protrusion. a step of pressing the protrusion against the outer circumferential wall of the tube and moving the pressed point in the circumferential direction of the circular tube; and a step of moving the circular tube in the axial direction as the spiral progresses as the pressed point by the protrusion moves. the inner diameter of the protrusion is D, the outer diameter of the circular tube is d, the height of the formed wave is h, and k is (D-d)/2+h. In the event that The value of F given by is set to be 0.45 or less, and when moving the pressing point of the protrusion against the circular pipe in the circumferential direction of the circular pipe, the protrusion is caused to revolve without rotating. A method for manufacturing parallel corrugated tubes.
JP20161682A 1982-11-16 1982-11-16 Manufacture of parallel corrugated pipe Granted JPS5992122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20161682A JPS5992122A (en) 1982-11-16 1982-11-16 Manufacture of parallel corrugated pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20161682A JPS5992122A (en) 1982-11-16 1982-11-16 Manufacture of parallel corrugated pipe

Publications (2)

Publication Number Publication Date
JPS5992122A JPS5992122A (en) 1984-05-28
JPH0252567B2 true JPH0252567B2 (en) 1990-11-14

Family

ID=16444008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20161682A Granted JPS5992122A (en) 1982-11-16 1982-11-16 Manufacture of parallel corrugated pipe

Country Status (1)

Country Link
JP (1) JPS5992122A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310028A (en) * 1986-06-28 1988-01-16 Tookoo Seiki Kk Manufacture of fiexible tube
CN107470451B (en) * 2017-07-26 2019-09-27 西安理工大学 Incremental forming device inside and outside a kind of metal bellows

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155168A (en) * 1978-05-30 1979-12-06 Fujikura Ltd Corrugating method for metallic tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155168A (en) * 1978-05-30 1979-12-06 Fujikura Ltd Corrugating method for metallic tube

Also Published As

Publication number Publication date
JPS5992122A (en) 1984-05-28

Similar Documents

Publication Publication Date Title
US5831215A (en) High frequency coaxial cable
US4876869A (en) Inner grooving process for a metallic tube
JPH0252567B2 (en)
US3572074A (en) Corrugating methods and apparatus
CN109903897B (en) Mineral insulation corrugated copper sheath cable and preparation method thereof
CN1222376C (en) Equipment for making ring waveform metal pipe
JP3345225B2 (en) Manufacturing method of deformed pipe
JPH0232873B2 (en)
CN114825190B (en) Automatic processing device for cable recovery of power distribution cabinet
CN214227340U (en) Enameled wire depainting device
CN111313334B (en) Three-grab chuck type cable aluminum sheath cutting device and cutting method thereof
GB2183519A (en) Method of and apparatus for producing helically finned tubes
CN215681218U (en) Electric wire twisting machine
JPH035882B2 (en)
JPH0884418A (en) Insulation layer cut device
US4604882A (en) Forming apparatus for production of stranded conductor
CN218638291U (en) Outer pipe embossing equipment with adjustable embossing depth
CN220252928U (en) Cable stranded conductor device
JP3786789B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
CN213495651U (en) Copper tube rolling mill for cable production
JPS604797A (en) Heat transfer tube equipped with groove on inner surface thereof and manufacture thereof
JP3496444B2 (en) Manufacturing method of dimple tube
SU1094647A1 (en) Method of manufacturing siphons and device for effecting same
SU688255A1 (en) Method of manufacturing square bimetallic wire of copper-coated molybdenum
JPS6327845Y2 (en)