JPH0252474A - Compound piezoelectric film - Google Patents

Compound piezoelectric film

Info

Publication number
JPH0252474A
JPH0252474A JP63202750A JP20275088A JPH0252474A JP H0252474 A JPH0252474 A JP H0252474A JP 63202750 A JP63202750 A JP 63202750A JP 20275088 A JP20275088 A JP 20275088A JP H0252474 A JPH0252474 A JP H0252474A
Authority
JP
Japan
Prior art keywords
piezoelectric
film
ceramic powder
piezoelectric ceramic
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63202750A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kurata
保幸 蔵田
Masamichi Kuramoto
政道 倉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63202750A priority Critical patent/JPH0252474A/en
Publication of JPH0252474A publication Critical patent/JPH0252474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PURPOSE:To obtain a thin compound piezoelectric film and high piezoelectric constant by specifying the maximum grain diameter of a piezoelectric ceramic powder and the amount of carbon black added. CONSTITUTION:A piezoelectric ceramic powder and a piezoelectric macromolecules material are subjected to heating and kneading and are formed on a thin film. Then, the maximum grain diameter of this piezoelectric ceramic powder is equal to or less than 80% of the film thickness of a compound piezoe lectric film. As the maximum grain diameter of the piezoelectric ceramic powder becomes smaller, the amount of carbon black added increase and a weight part of 4.0-5.40 is added to this piezoelectric macromolecular material. When the grain diameter of the piezoelectric ceramic powder exceeds 80% of the film thickness of the compound piezoelectric film, short-circuiting results and no polarization results. Also, it is necessary to add 4.0 weight part or more of carbon black to the piezoelectric macromolecular to achieve a specific dielec tric constant of epsilonr=240 or more. The amount of this addition increases as the piezoelectric ceramic with a small grain diameter is used.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は圧電性セラミックス粉末と圧電性高分子とを
混練させてなる複合圧電体膜、特に薄膜状とされた複合
圧電体膜に1関するものである。
[Detailed Description of the Invention] A. Industrial Application Field This invention relates to a composite piezoelectric film made by kneading piezoelectric ceramic powder and a piezoelectric polymer, particularly to a composite piezoelectric film in the form of a thin film. It is something.

B1発明の概要 この発明は、圧電性セラミックス粉末と圧電性高分子と
を加熱混練してなる薄膜状複合圧電体膜であって、カー
ボンブラックを、該圧電性セラミックス粉末の最大粒径
が複合圧電対膜の膜厚の80%以下であり、該圧電性セ
ラミック粉末の最大粒径が小さくなるのに対応させて、
カーボンブラックの添加量が増加され、該圧電性高分子
に対して4.0〜5.40重量部添加されて成ることに
より、膜厚が200μm以下に薄膜化でき、しかも高い
圧電定数を有する複合圧電体膜を得たものである。
B1 Summary of the Invention This invention provides a thin composite piezoelectric film formed by heating and kneading a piezoelectric ceramic powder and a piezoelectric polymer, and in which carbon black is added to a composite piezoelectric film in which the maximum particle size of the piezoelectric ceramic powder is It is 80% or less of the film thickness of the opposite film, and in correspondence with the fact that the maximum particle size of the piezoelectric ceramic powder is small,
By increasing the amount of carbon black added and adding 4.0 to 5.40 parts by weight to the piezoelectric polymer, the film thickness can be reduced to 200 μm or less, and the composite has a high piezoelectric constant. A piezoelectric film was obtained.

C1従来の技術 圧電体相料は種々の機器に組込んで使用されている。こ
の圧電体材料には、チタン酸鉛(PbTiO5)やチタ
ン酸ジルコン酸鉛(以下、「PZT」という。) (P
b (zR,Ti)03)などの圧電性セラミックスと
、ポリフッ化ビニリデン(以下、rPVDFJという。
C1 Prior Art Piezoelectric materials are used by being incorporated into various devices. This piezoelectric material includes lead titanate (PbTiO5) and lead zirconate titanate (hereinafter referred to as "PZT") (P
b (zR,Ti)03) and polyvinylidene fluoride (hereinafter referred to as rPVDFJ).

)に代表される圧電性高分子とがある。) are typified by piezoelectric polymers.

前者は圧電定数d31は高いが、硬くて脆いのに対し、
後者は成形性は良いか、圧電定数d31は低い。
The former has a high piezoelectric constant d31, but is hard and brittle;
The latter has good moldability or has a low piezoelectric constant d31.

そこで、近年、成形性と圧電定数d31の両方を満足さ
せる圧電体材料として、圧電性高分子をマトリックスと
し、これに圧電性セラミックス粉末を加熱混練・分散さ
せてなる高分子−セラミックス系の複合圧電体材料が研
究されている。
Therefore, in recent years, as a piezoelectric material that satisfies both formability and piezoelectric constant d31, a piezoelectric material based on a polymer-ceramic system, which is made by using a piezoelectric polymer as a matrix and heat-kneading and dispersing piezoelectric ceramic powder into the matrix, has been developed. Body materials are being studied.

しかし、この高分子−セラミックス系の複合圧電体材料
は圧電定数d31が圧電性高分子の圧電定数d31と同
程度の値のものしか得られなかった。
However, the piezoelectric constant d31 of this polymer-ceramic composite piezoelectric material was only comparable to the piezoelectric constant d31 of the piezoelectric polymer.

この出願の発明者等は、この高分子−セラミックス系の
複合圧電体材料に更に高話電率発現物質としてカーボン
ブラックを添加すれは、それまで知られていた複合圧電
体材料の圧電定数631の2倍近くの圧電定数d31を
有する複合圧電体材料が得られることを見出した。
The inventors of this application believe that by adding carbon black as a substance exhibiting high electrical conductivity to this polymer-ceramic composite piezoelectric material, the piezoelectric constant of the previously known composite piezoelectric material was 631. It has been found that a composite piezoelectric material having a piezoelectric constant d31 nearly twice as large can be obtained.

D1発明が解決しようとする問題点 ところで、複合圧電体膜は薄膜になるほど同一の電圧を
印加した場合、変位量(電気=機械変換効率)が大きく
なる。従フて、各種の応用面を考えると複合圧電体材料
はできるだけ薄膜にする必要がある。そして、特に実用
的に有用な膜厚200μm以下のものが要望されていた
D1 Problems to be Solved by the Invention By the way, the thinner the composite piezoelectric film is, the larger the amount of displacement (electricity=mechanical conversion efficiency) when the same voltage is applied to it. Therefore, considering various applications, it is necessary to make the composite piezoelectric material as thin as possible. In particular, a practically useful film thickness of 200 μm or less has been desired.

この発明はかかる問題点を解決するためになされたもの
で、膜厚が200μm以下と薄く、しかも圧電定数d3
1が大きい複合圧電体膜を得ることを目的とするもので
ある。
This invention was made to solve such problems, and has a thin film thickness of 200 μm or less, and a piezoelectric constant of d3.
The purpose of the present invention is to obtain a composite piezoelectric film having a large value of 1.

E1問題点を解決するための手段 この発明に係る複合圧電体膜は、圧電性セラミックス粉
末と圧電性高分子とを加熱混練して薄膜状に形成されて
成る複合圧電体膜において、該圧電性セラミックス粉末
の最大粒径か、複合圧電体膜の膜厚の80%以下であり
、該圧電性セラミックス粉末の最大粒径が小さくなるの
に対応させて、カーボンブラックの添加量か増加され、
該圧電性高分子に対して4.0〜5.40重量部添加し
て上記問題点を解決したものである。
Means for Solving Problem E1 A composite piezoelectric film according to the present invention is a composite piezoelectric film formed into a thin film by heating and kneading a piezoelectric ceramic powder and a piezoelectric polymer. The maximum particle size of the ceramic powder is 80% or less of the film thickness of the composite piezoelectric film, and as the maximum particle size of the piezoelectric ceramic powder becomes smaller, the amount of carbon black added is increased,
The above problem was solved by adding 4.0 to 5.40 parts by weight of the piezoelectric polymer.

F2作用 添加される圧電性セラミックス粉末は、複合圧電体膜の
膜厚に対して当然のことながら、粒径が小さくなければ
ならない。しかし、圧電性セラミックス粉末の粒径か、
複合圧電体膜の膜厚の80%以上の大きさになると、実
施例にも示すように短絡をおこして、分極ができなくな
るので、圧電性セラミックスの最大粒径は、複合圧電体
膜の膜厚の80%以下とする。ところで複合圧電体膜の
比誘導率ε、と圧電定数d31は比例関係にあり、大き
な圧電定数d31を得るためには、比誘導率ε、の高い
ものが良い。
Naturally, the piezoelectric ceramic powder added by F2 action must have a small particle size with respect to the film thickness of the composite piezoelectric film. However, the particle size of piezoelectric ceramic powder
If the size exceeds 80% of the film thickness of the composite piezoelectric film, a short circuit will occur as shown in the example, and polarization will not be possible. Therefore, the maximum particle size of the piezoelectric ceramic is The thickness should be 80% or less. Incidentally, the specific inductivity ε of the composite piezoelectric film and the piezoelectric constant d31 are in a proportional relationship, and in order to obtain a large piezoelectric constant d31, a composite piezoelectric film having a high specific inductivity ε is preferable.

高い比誘導率ε、を得るためにカーボンブラックが複合
圧電体膜に加えられている。このカーボンブラックの添
加量によって、比誘電率ε、は、変動するが、はぼ比誘
電率ε、=240以上とするためには、カーボンブラッ
クを圧電性高分子に対して4.0重量部以上添加しなけ
ればならない、この添加量は、粒径の小さい圧電性セラ
ミックスを用いるに従って増加する。
Carbon black is added to the composite piezoelectric film to obtain a high specific dielectric constant ε. The relative permittivity ε varies depending on the amount of carbon black added, but in order to achieve a relative permittivity ε=240 or more, 4.0 parts by weight of carbon black should be added to the piezoelectric polymer. The amount that must be added increases as piezoelectric ceramics with smaller particle sizes are used.

G、実施例 実施例1 圧電性高分子としてPVDFを、圧電セラミックスとし
てPZT(PE−60A 、富士チタン・′1勺製)を
、高話電率発現物質としてカーボンブラック(ケッチエ
ンブラックECX 、ライオンアクソ■製)を用いた。
G. Examples Example 1 PVDF was used as the piezoelectric polymer, PZT (PE-60A, manufactured by Fuji Titanium) was used as the piezoelectric ceramic, carbon black (Ketchen Black ECX, Lion (manufactured by Axo ■) was used.

まず、PVDFと所定量のカーボンブラック(以下、r
ECXJという。)を加圧ニーダにて溶融混練させたも
の(P V D F + E CX ) J#100g
準備した。
First, PVDF and a predetermined amount of carbon black (hereinafter referred to as r
It's called ECXJ. ) was melted and kneaded in a pressure kneader (PVD F + E CX) J#100g
Got ready.

これに所定の粒径に調整したPZT400gを先はどの
(PVDF+ECX)100g中に没入し、溶融混練さ
せた。
400 g of PZT adjusted to a predetermined particle size was first immersed in 100 g of PVDF+ECX and melt-kneaded.

出来上がったものから100gを取り出し、PZTlo
ogと再び混練させた。
Take out 100g of the finished product and add it to PZTlo.
og and kneaded again.

コノ混練によッテP V D F + E CX + 
P Z T (7)3成分系からなる複合体が形成され
た。このとき、PZTは90wt考である。
Cono kneading P V D F + E CX +
P Z T (7) A complex consisting of a ternary system was formed. At this time, PZT is considered to be 90wt.

この複合体をプレス、ロールを用いて圧延し、薄膜化さ
せた。
This composite was rolled using a press and a roll to form a thin film.

この薄膜を所定のサイズに切り出し、蒸着にて上下から
電極付けを行ない、厚みに対し10kV/minの電界
を80℃の温度で30分間印加させ、複合圧電体1摸と
した。
This thin film was cut to a predetermined size, electrodes were attached from above and below by vapor deposition, and an electric field of 10 kV/min was applied to the thickness at a temperature of 80° C. for 30 minutes to obtain a composite piezoelectric material.

実施例2 実施例1の方法で作成した複合圧電体膜について、圧電
セラミックスの最大粒径と、複合圧電体膜の膜厚との関
係を調へた。結果を第1表に示す。
Example 2 Regarding the composite piezoelectric film produced by the method of Example 1, the relationship between the maximum particle size of the piezoelectric ceramic and the film thickness of the composite piezoelectric film was investigated. The results are shown in Table 1.

この結果より、圧電性セラミックスの最大粒径か複合圧
電体膜の膜厚の80%以下でなければ、分極処理が不可
能であることが判明した。
From this result, it was found that polarization treatment is impossible unless the maximum particle size of the piezoelectric ceramic is 80% or less of the film thickness of the composite piezoelectric film.

実施例3 所定の粒径に調整されたPZTおよび所定量のECXを
用いて実施例1の方法で作成した複合圧電体膜の比誘電
率6rおよび圧電定数d31を調へた。結果を第2表に
示す。
Example 3 The relative dielectric constant 6r and piezoelectric constant d31 of a composite piezoelectric film produced by the method of Example 1 using PZT adjusted to a predetermined particle size and a predetermined amount of ECX were determined. The results are shown in Table 2.

第1表に示す通りECXがPZTに対して40重量部〜
540重量部添加されることにより膜厚200μm以下
でほぼe、=240以上の比誘電率を有する複合圧電体
膜が得られる。
As shown in Table 1, ECX is 40 parts by weight based on PZT.
By adding 540 parts by weight, a composite piezoelectric film having a thickness of 200 μm or less and a relative dielectric constant of approximately e=240 or more can be obtained.

さらに実施例1〜3で得られた結果を第1図に示す。Furthermore, the results obtained in Examples 1 to 3 are shown in FIG.

これより、上述した通り、圧電性セラミックスの最大粒
径が複合圧電体膜の膜厚の80%以下で、カーホンブラ
ックの添加量が圧電性高分子に対してほぼ4.0〜54
0重量部てしかも、添加される圧電性セラミックスの粒
径が小さくなるに従って、添加するカーボンブラックの
添加量を増加させることによって、ll1J!J 20
0μm以下で、はぼ比誘電率ε+’ = 240の複合
圧電体膜か得られる。
From this, as mentioned above, when the maximum particle size of the piezoelectric ceramic is 80% or less of the film thickness of the composite piezoelectric film, the amount of carbon black added is approximately 4.0 to 54% relative to the piezoelectric polymer.
0 parts by weight.Moreover, by increasing the amount of carbon black added as the particle size of the piezoelectric ceramics added becomes smaller, ll1J! J20
A composite piezoelectric film with a relative dielectric constant ε+'=240 can be obtained with a thickness of 0 μm or less.

第1表 第2表 H8発明の効果 この発明は以上説明したとおり、添加させる圧電性セラ
ミックス粉末の最大粒径を複合圧電体膜の膜厚の80%
以下とし、また添加されるカーボンブラックの添加量を
圧電性セラミックス粉末の最大粒径が小さくなるのに対
応して、増加され、圧電性高分子に対して4.0〜5.
40重量部添加されるので、膜厚が薄く圧電定数d31
が高い複合圧電体膜を得ることができるという効果があ
る。
Table 1 Table 2 H8 Effects of the Invention As explained above, this invention allows the maximum particle size of the piezoelectric ceramic powder to be added to be 80% of the film thickness of the composite piezoelectric film.
The amount of carbon black added is increased as the maximum particle size of the piezoelectric ceramic powder becomes smaller, and the amount of carbon black added is increased from 4.0 to 5.0 with respect to the piezoelectric polymer.
Since 40 parts by weight is added, the film thickness is thin and the piezoelectric constant d31
This has the effect that it is possible to obtain a composite piezoelectric film with high .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合圧電体膜の膜厚と圧電定数との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the film thickness and piezoelectric constant of a composite piezoelectric film.

Claims (1)

【特許請求の範囲】[Claims]  圧電性セラミックス粉末と圧電性高分子とを加熱混練
し薄膜状としてなる複合圧電体膜において、該圧電性セ
ラミックス粉末の最大粒径が、該複合圧電体膜の膜厚の
80%以下であり、該圧電性セラミックス粉末の最大粒
径が小さくなるに対応して、カーボンブラックの添加量
が増加され、該圧電性高分子に対して、4.0〜5.4
0重量部添加されてなることを特徴とする複合圧電体膜
In a composite piezoelectric film formed into a thin film by heating and kneading a piezoelectric ceramic powder and a piezoelectric polymer, the maximum particle size of the piezoelectric ceramic powder is 80% or less of the film thickness of the composite piezoelectric film, Corresponding to the decrease in the maximum particle size of the piezoelectric ceramic powder, the amount of carbon black added is increased to 4.0 to 5.4 with respect to the piezoelectric polymer.
A composite piezoelectric film characterized in that 0 part by weight is added.
JP63202750A 1988-08-16 1988-08-16 Compound piezoelectric film Pending JPH0252474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202750A JPH0252474A (en) 1988-08-16 1988-08-16 Compound piezoelectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202750A JPH0252474A (en) 1988-08-16 1988-08-16 Compound piezoelectric film

Publications (1)

Publication Number Publication Date
JPH0252474A true JPH0252474A (en) 1990-02-22

Family

ID=16462545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202750A Pending JPH0252474A (en) 1988-08-16 1988-08-16 Compound piezoelectric film

Country Status (1)

Country Link
JP (1) JPH0252474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281470A (en) * 1991-03-01 1994-01-25 Cci Co., Ltd. Vibration damper
JP2015192120A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 Polymer composite piezoelectric material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281470A (en) * 1991-03-01 1994-01-25 Cci Co., Ltd. Vibration damper
JP2015192120A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 Polymer composite piezoelectric material

Similar Documents

Publication Publication Date Title
EP2654094B1 (en) Polymer composite piezoelectric body and method for producing same
US20210184100A1 (en) Electret
JPH04130682A (en) Piezoelectric ceramic composition for actuator
Bowen et al. Piezoelectric properties of internally electroded PZT multilayers
CN116114401A (en) Piezoelectric composite material and method
JPH0252474A (en) Compound piezoelectric film
Kumar et al. Energy harvesting with flexible piezocomposite fabricated from a biodegradable polymer
JPS60102779A (en) Piezo-electric ceramic composition
CN105645957B (en) A kind of high mechanical-electric coupling performance lead zirconate titanate fine grain piezoelectric ceramics and preparation method thereof
JPH10223475A (en) Method for regulating capacitor capacitance
JP3781317B2 (en) Piezoelectric ceramic material
JPH03104179A (en) Piezoelectric ceramic composition for actuator
JPS59205779A (en) Manufacture of high molecular piezoelectric material
JPS6048120B2 (en) Method for manufacturing laminated piezoelectric porcelain
JPH04331770A (en) Piezoelectric ceramic composition
JPS63217674A (en) Composite piezoelectric material
JP3127673B2 (en) A sputtering target material capable of forming a ferroelectric thin film having a very small local variation in the Pb content in the thin film
JPH0629140B2 (en) Piezoelectric element material and manufacturing method thereof
JPS62133784A (en) Composite piezoelectric material which can be formed into sheet
JP2021097212A (en) Electret
JPH0469108B2 (en)
JPH0788253B2 (en) Piezoelectric composition
JPH01126266A (en) Piezo-electric ceramics composition for actuator
JPS5889882A (en) Manufacture of piezoelectric macromolecular composite material
JPH04224168A (en) Piezoelectric ceramic composition