JPH0252240A - Solution circulation type automatic absorption analysis - Google Patents

Solution circulation type automatic absorption analysis

Info

Publication number
JPH0252240A
JPH0252240A JP20283688A JP20283688A JPH0252240A JP H0252240 A JPH0252240 A JP H0252240A JP 20283688 A JP20283688 A JP 20283688A JP 20283688 A JP20283688 A JP 20283688A JP H0252240 A JPH0252240 A JP H0252240A
Authority
JP
Japan
Prior art keywords
absorbance
ion
measured
average value
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20283688A
Other languages
Japanese (ja)
Inventor
Kengo Senoo
妹尾 健吾
Kunio Shiratori
白取 久仁雄
Kenichiro Nishimura
西村 研一郎
Norio Yamashita
憲男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNITSUTETSU JOHO TSUSHIN SYST KK
Nippon Steel Corp
Nippon Steel Information and Communication Systems Inc
FUJIWARA Manufacturing CO Ltd
Original Assignee
SHINNITSUTETSU JOHO TSUSHIN SYST KK
Nippon Steel Corp
Nippon Steel Information and Communication Systems Inc
FUJIWARA Manufacturing CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNITSUTETSU JOHO TSUSHIN SYST KK, Nippon Steel Corp, Nippon Steel Information and Communication Systems Inc, FUJIWARA Manufacturing CO Ltd filed Critical SHINNITSUTETSU JOHO TSUSHIN SYST KK
Priority to JP20283688A priority Critical patent/JPH0252240A/en
Publication of JPH0252240A publication Critical patent/JPH0252240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To enhance the accuracy of an automatic absorption analysis and to shorten the time required for the analysis by testing and rejecting an abnormal value from plural times of measured values and computing the average value, then determining an ion quantity with a computing device which is previously set in the calibration curve of the absorbance and ion quantity. CONSTITUTION:While the standard sample soln. is introduced from a sample soln. tank 1 into a reaction vessel 2, reagents are introduced from reagent tanks 3a-3e into the vessel 2. While the sample soln. (chromatic ion) is kept heated by a heater 4 and is circulated and moved to a flow cell 6 by suction from an air suction pipe 5, light is emitted from a luminous body 7 and the absorbance of the chromatic ion coloration region is measured by a photocell 8. The average value is computed by a computing element 9 after the abnormal value is tested and rejected. The color forming reagents are then introduced from the reagent tanks 3a-3e to the reaction vessel 2 and while the reagents are moved as color forming ions to the flow cell 6, the light is emitted from the luminous body 7. The absorbance is measured by the photocell 8 and the average value is computed by the computing device 9. The computed result is computed together with the measured result of the chromatic ion coloration region. The ion quantity is determined from the calibration curve which is previously set in the computing element 9 and the result is displayed on a printer 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶液循環型自動吸光分析方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a solution circulation type automatic absorption analysis method.

(従来の技術) P、Mn、■、A1等の分析方法として溶液Wi環型自
動吸光分析方法が広く知られているが、このような分析
方法においては、例えば、特開昭48−31987号に
開示されているように、測定そのものは自動的になされ
ても、有色イオン呈色域と発色域での吸光度測定が1回
ずつであるため時として誤差が発生し、分析値が不正確
になることがある。また、測定後の分析は主として人手
によることになり、結果として迅速性に欠ける等の欠点
をともなうものである。そこで、本出願人は予め吸光度
とイオン量の検量線を演算器に設定しておき、有色イオ
ン呈色域と発色域でそれぞれ複数回ずつ吸光度測定し、
それぞれの測定値の平均値を前記演算器へ導いて検量線
からイオン量を決定するようにした溶液循環型自動吸光
分析方法を開発し、特願昭62−150710号として
先に出願したが、この方法は複数回測定した有色イオン
呈色域と発色域の吸光度測定値の平均値を求め、それぞ
れの平均値を演算器へ導入するようにしているため、異
常値の棄却検定基準の不統一などによって分析値に誤差
が生じ、また、完全な自動吸光分析とは言い難いもので
あった。
(Prior art) A solution Wi ring type automatic absorption spectrometry method is widely known as an analysis method for P, Mn, ■, A1, etc.; As disclosed in , even though the measurement itself is performed automatically, the absorbance is measured once in the colored ion coloring region and once in the coloring region, so errors sometimes occur and the analytical values may be inaccurate. It may happen. Furthermore, analysis after measurement is mainly done manually, resulting in disadvantages such as a lack of speed. Therefore, the applicant presets a calibration curve of absorbance and ion amount in a calculator, and measures the absorbance multiple times each in the colored ion coloring region and the coloring region.
He developed a solution circulation type automatic absorption spectrometry method in which the average value of each measured value was guided to the above-mentioned calculator to determine the amount of ions from the calibration curve, and he filed an application earlier as Japanese Patent Application No. 150710/1986. In this method, the average value of the absorbance measurements of the colored ion color region and the color region measured multiple times is calculated, and each average value is introduced into the calculator, so there is no uniformity in the test criteria for rejecting abnormal values. Errors occurred in the analytical values due to such factors, and it could not be said to be a completely automatic absorption analysis.

(発明が解決しようとする課題) 本発明が解決しようとするところは前記のような欠点を
なくし、自動吸光分析の精度を高めるとともに分析所要
時間を短縮するところにある。
(Problems to be Solved by the Invention) The present invention aims to eliminate the above-mentioned drawbacks, improve the precision of automatic absorption analysis, and shorten the time required for analysis.

(課題を解決するための手段) 本発明の溶液循環型自動吸光分析方法は、予め吸光度と
イオン量の検量線を演算器に設定しておき、有色イオン
呈色域と発色域でそれぞれ複数回ずつ吸光度測定し、そ
れぞれの測定値を前記演算器へ導いて異常値の棄却検定
を行った後平均値を算出し検量線からイオン量を決定す
ることを特徴とするものである。
(Means for Solving the Problems) In the solution circulation type automatic absorption analysis method of the present invention, a calibration curve of absorbance and ion amount is set in advance in a calculator, and a plurality of calibration curves are set in advance in the colored ion coloring region and coloring region. The method is characterized in that the absorbance is measured for each sample, each measured value is led to the arithmetic unit, a test for rejecting abnormal values is performed, the average value is calculated, and the amount of ions is determined from the calibration curve.

本発明においては、まず、予め吸光度とイオン量との関
係を標準検量線として演算器へ設定しておき、実測定に
際しては、有色イオン呈色域と発色域でそれぞれ複数回
ずつ吸光度を測定する。つまり、従来この両域ではそれ
ぞれ1回ずつの測定にとどまっており、これが不正確な
分析結果の一因となっていることが明らかになったので
、有色イオン呈色域と発色域での吸光度測定をそれぞれ
複数回行い、それぞれの測定値の平均値を基準としよう
とするものであり、また、吸光度測定を複数回繰り返す
ことにより生ずる時間のロスは、測定後に行う分析を予
め吸光度とイオン量との関係を標準検量線として設定し
ておいた演算器で行って迅速化することにより解決した
ものである。すなわち、有色イオン呈色域では、例えば
、鋼中の不純物分析においては、Fe3+→Fe2すの
還元作用が施され、呈色用溶液との攪拌、空気抜き等が
行われることから測定に異常値が出ることがあるので、
本発明においては、上記のごとくこの有色イオン呈色域
での吸光度測定を複数回行って測定値を逐次演算器へ導
いた後異常値をグラハスならびにデイクソン検定により
除いた値を平均化する。また、発色域においても発色用
溶液と試料溶液との攪拌が行われて前記有色イオン呈色
域での吸光度測定の場合と同様に測定に異常値が出るの
で、この発色域においても複数回吸光度測定し、有色イ
オン呈色域での吸光度測定の場合と同様な演算処理をし
た後、その平均値を上記有色イオン呈色域の測定平均値
とともに検量線と照合し、これによりイオン量を決定す
るものであって、これらのイオン量の決定は演算器にお
いて処理するため極めて迅速に測定結果に基く分析がで
き、複数回ずつ吸光度測定することにより生ずる時間の
ロスは補償される。なお、上記複数回の吸光度測定は多
い程正確な分析ができるが、測定時間等の関係から1回
/秒×5〜10回位が適当であり、さらにまた、このよ
うな分析方法は、P、Mn、■、A1、Siのほか従来
吸光度分析方法による各種の分析にを効に適用すること
ができる。
In the present invention, first, the relationship between absorbance and ion amount is set in advance as a standard calibration curve in the calculator, and during actual measurement, the absorbance is measured multiple times each in the colored ion coloring region and the coloring region. . In other words, in the past, only one measurement was taken in each of these regions, and it became clear that this was a contributing factor to inaccurate analysis results. Each measurement is performed multiple times, and the average value of each measurement value is used as the standard.Also, to avoid time loss caused by repeating absorbance measurements multiple times, it is necessary to calculate the absorbance and ion content in advance for the analysis to be performed after the measurement. This problem was solved by speeding up the calculation by calculating the relationship between the two using a calculator that had been set as a standard calibration curve. That is, in the colored ion coloring region, for example, in the analysis of impurities in steel, the reduction action of Fe3+ → Fe2 is performed, stirring with the coloring solution, air removal, etc., so abnormal values may occur in the measurement. Because it may occur,
In the present invention, as described above, absorbance measurements in this colored ion coloring region are carried out a plurality of times, the measured values are sequentially led to a calculator, and then abnormal values are removed by Grahas and Dickson tests and the values are averaged. Also, in the coloring region, the coloring solution and the sample solution are stirred, and an abnormal value appears in the measurement as in the case of absorbance measurement in the colored ion coloring region, so the absorbance is measured multiple times in this coloring region. After measuring and performing the same calculation process as in the case of absorbance measurement in the colored ion coloring region, the average value is compared with the calibration curve along with the measured average value of the colored ion coloring region above, and the ion amount is determined from this. Since the determination of the amounts of these ions is processed in a computer, analysis based on the measurement results can be performed extremely quickly, and the time loss caused by measuring the absorbance multiple times can be compensated for. Note that the more times the absorbance is measured, the more accurate the analysis will be, but due to the measurement time, etc., it is appropriate to measure absorbance once per second x 5 to 10 times. , Mn, ■, A1, Si, and various other analyzes using conventional absorbance analysis methods.

次に、本発明方法の一例を図面により説明すれば、第1
図において(1)は試料溶液槽、(2)は反応槽、(3
a)、(3b)、(3c)、(3d)、(3e)はいず
れも試薬槽である。今、試料溶液槽(1)から試料溶液
を反応槽(2)へ導入する一方、試薬槽(3a)、(3
b)、(3c)、(3d)、(3e)から試薬を反応槽
(2)へ導き、ヒータ(4)で加熱しつつFe3士をF
e2+へ還元した後、試料溶液(有色イオン)を空気吹
込管(5)からの空気吹込みによりフローセル(6)へ
循環移動させつつ、該フローセル(6)に発光体(7)
から発光し、ホトマル(8)で、有色イオン呈色域の吸
光度を複数回測定しその測定値を予め吸光度とイオン量
の標準検量線を設定しておいた演算器(9)へ導入し、
異常値を検定棄却した後平均値を演算する。次いで、試
薬槽(3a)、(3b)、(3c)、(3d)、(3e
)から発色試薬を反応槽(2)へ導いて発色イオンとし
、これを上記同様にフローセル(6)へ循環移動させつ
つ発光体(7)から発光し、ホトマル(8)で発光域の
吸光度を複数回測定し、前記演算器(9)へ導いてその
平均値を演算したうえその結果を前記有色イオン呈色域
の測定結果と合わせて演算し、この演算器(9)に予め
設定しである検量線からイオン量を決定し、その結果を
プリンターα0)へ表示する。
Next, an example of the method of the present invention will be explained with reference to the drawings.
In the figure, (1) is the sample solution tank, (2) is the reaction tank, and (3) is the sample solution tank.
a), (3b), (3c), (3d), and (3e) are all reagent tanks. Now, while introducing the sample solution from the sample solution tank (1) into the reaction tank (2), the reagent tanks (3a) and (3
The reagents from b), (3c), (3d), and (3e) are led to the reaction tank (2), and the Fe3 is heated with the heater (4).
After being reduced to e2+, the sample solution (colored ions) is circulated to the flow cell (6) by air blowing from the air blowing tube (5), and a luminescent material (7) is placed in the flow cell (6).
The absorbance of the colored ion color range is measured multiple times using a photomultiplier (8), and the measured values are introduced into a calculator (9) in which a standard calibration curve of absorbance and ion amount has been set in advance.
After rejecting abnormal values, calculate the average value. Next, reagent tanks (3a), (3b), (3c), (3d), (3e
), the coloring reagent is led to the reaction tank (2) to form coloring ions, which are circulated to the flow cell (6) in the same manner as above, emitted from the luminescent body (7), and the absorbance of the luminescent region is measured with the photomul (8). The measurement is carried out multiple times, the average value is calculated by guiding the measurement to the arithmetic unit (9), the result is calculated together with the measurement result of the colored ion coloring region, and the result is set in advance in this arithmetic unit (9). The amount of ions is determined from a certain calibration curve, and the results are displayed on the printer α0).

(実施例) 次に本発明の実施例を比較例とともに挙げる。(Example) Next, examples of the present invention will be listed together with comparative examples.

(鋼中Pの分析例) 鋼の切削試料0.1gを硝酸5cc、過塩素酸(60%
)6ccを加えて加熱溶解し、白煙処理をして過塩素酸
の残量をl cc以下にする。これに水を加えて塩類を
溶解したのち、全容を正確に25 ccとしてこれを試
料溶液とする。次に、上記試料溶液を反応槽に移し、亜
硫酸水素すl−IJウム溶液(20%)10ccを加え
、Fe3?をF e Z+ ヘ還元した後、ニッケル、
クロム等による有色イオンの吸光度を測定間隔1回/秒
で5回測定したところ、このときの吸光度(A)は、0
.007.0007.0、006.0.010、O,O
O7であった。
(Example of analysis of P in steel) 0.1 g of cut steel sample was mixed with 5 cc of nitric acid and perchloric acid (60%
) Add 6 cc of perchloric acid, heat and dissolve, and treat with white smoke to reduce the remaining amount of perchloric acid to less than 1 cc. After adding water to dissolve the salts, the total volume is adjusted to exactly 25 cc, and this is used as the sample solution. Next, the above sample solution was transferred to a reaction tank, 10 cc of sodium hydrogen sulfite solution (20%) was added, and Fe3? After reducing to Fe Z+, nickel,
When the absorbance of colored ions such as chromium was measured 5 times at a measurement interval of 1 time/sec, the absorbance (A) at this time was 0.
.. 007.0007.0, 006.0.010, O, O
It was O7.

次いで、発色試薬としてモリブデン酸アンモニウム(2
,5%)10ccと、硫酸ヒドラジン溶液(3%)14
ccを加え、呈色が完結したのち吸光度を測定間隔1回
/秒で5回測定したところ、このときの吸光度(B)は
0.050.0.050.0.058.0.051.0
.055であった。ところで、一般に溶液循環型の自動
吸光分析においては反応槽と吸光度測定セル間を通気に
よって循環する方式をとっているため、この際に気泡の
まき込みによって発生頻度3凹/25回程度で異常値を
示すことがあるが、グラハスならびにデイクソン検定に
より異常値を除いた値を平均し、弐B−AK (K−液
量補正係数)で演算した値(補正吸光度)を、予め検量
線を設定しである演算器へ導き、P= 19.5μg/
g と決定した。
Next, ammonium molybdate (2
, 5%) 10cc and hydrazine sulfate solution (3%) 14
cc was added and after the color development was completed, the absorbance was measured 5 times at a measurement interval of 1 time/second, and the absorbance (B) at this time was 0.050.0.050.0.058.0.051.0
.. It was 055. By the way, in general, in solution circulation type automatic absorption analysis, a method is used in which circulation is carried out between the reaction tank and the absorbance measurement cell by ventilation, so abnormal values may occur at a frequency of about 3 dents/25 times due to the inclusion of air bubbles. However, by averaging the values after removing abnormal values using the Grahas and Dickson tests, and calculating the value (corrected absorbance) using 2B-AK (K - liquid volume correction coefficient), set a calibration curve in advance. P = 19.5μg/
It was decided that g.

(比較例) 上記実施例と同条件の有色イオン呈色域で1回吸光度測
定した測定値である吸光度(A)=O1007と、発色
域で1回吸光度測定した測定値である吸光度(B)−〇
、050を前記式で演算しこの値を予め定めた検量線か
らP = 19.3μg/gと決定した。
(Comparative example) Absorbance (A) = O1007, which is the measured value obtained by measuring the absorbance once in the colored ion coloring region under the same conditions as in the above example, and Absorbance (B), which is the measured value obtained by measuring the absorbance once in the colored ion region -0,050 was calculated using the above formula, and this value was determined to be P = 19.3 μg/g from a predetermined calibration curve.

このようにして同一鋼中のPを実施例、比較例それぞれ
10回分析した結果、下表のごとく本発明における分析
においてはバラツキが少なく、精度を向上させることが
できた。
As a result of analyzing P in the same steel 10 times in each of the examples and comparative examples, as shown in the table below, the analysis according to the present invention had little variation and was able to improve accuracy.

標準値20.0ppm (発明の効果) 本発明は前記説明から明らかなように、有色イオン呈色
域と発色域での吸光度測定値はそれぞれ複数回の測定値
を演算器に導入し〜異常値を検定棄却後平均値を演算し
、測定後の分析は予め吸光度とイオン量の検量線を設定
しである演算器で行うことにより、分析精度を向上させ
て自動分析を極微量域まで適用可能とするとともに一連
の分析所要時間を短縮することができ、しかも、異常値
の棄却検定を演算器で行うため、測定回数を変更した場
合等に生じる棄却検定中の変動もその変動に対応するデ
ータを演算器に設定することにより容易に対処でき、ま
た演算器により平均値を演算するため、測定元素による
測定回数の変動にも容易に対処できることとなり、吸光
分析の自動化をより進めることができるもので、従来の
溶液循環型自動吸光分析方法の問題点を解決したものと
して業界の発展に寄与するところ大なものである。
Standard value: 20.0 ppm (Effects of the invention) As is clear from the above description, the present invention allows absorbance measurement values in the colored ion coloring region and the coloring region to be calculated by introducing a plurality of measured values into an arithmetic unit. After the test is rejected, the average value is calculated, and the analysis after measurement is performed using a calculator with a calibration curve of absorbance and ion amount set in advance. This improves analysis accuracy and allows automatic analysis to be applied down to the extremely trace amount range. In addition, the time required for a series of analyzes can be shortened, and since the rejection test for abnormal values is performed using a calculator, fluctuations during the rejection test that occur when the number of measurements is changed can also be processed using data corresponding to the fluctuations. can be easily dealt with by setting it in the calculator, and since the average value is calculated by the calculator, it is also possible to easily deal with fluctuations in the number of measurements depending on the measured element, making it possible to further automate absorption analysis. Therefore, it will greatly contribute to the development of the industry as it solves the problems of the conventional solution circulation type automatic absorption analysis method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するだめの装置の1例を示す
説明図である。
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 予め吸光度とイオン量の検量線を演算器に設定しておき
、有色イオン呈色域と発色域でそれぞれ複数回ずつ吸光
度測定し、それぞれの測定値を前記演算器へ導いて異常
値の棄却検定を行った後平均値を算出し検量線からイオ
ン量を決定することを特徴とする溶液循環型自動吸光分
析方法。
A calibration curve of absorbance and ion amount is set in the calculator in advance, and the absorbance is measured multiple times in the colored ion coloring region and the coloring region, and each measured value is led to the calculator to test for rejection of abnormal values. A solution circulation type automatic absorption analysis method characterized by calculating an average value after performing the above steps and determining the amount of ions from a calibration curve.
JP20283688A 1988-08-15 1988-08-15 Solution circulation type automatic absorption analysis Pending JPH0252240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20283688A JPH0252240A (en) 1988-08-15 1988-08-15 Solution circulation type automatic absorption analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20283688A JPH0252240A (en) 1988-08-15 1988-08-15 Solution circulation type automatic absorption analysis

Publications (1)

Publication Number Publication Date
JPH0252240A true JPH0252240A (en) 1990-02-21

Family

ID=16463995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20283688A Pending JPH0252240A (en) 1988-08-15 1988-08-15 Solution circulation type automatic absorption analysis

Country Status (1)

Country Link
JP (1) JPH0252240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127058A (en) * 1990-09-19 1992-04-28 Nippon Steel Corp Method and apparatus for automatically analyzing acid value and saponification value of oil
JPH0921744A (en) * 1995-07-06 1997-01-21 Nec Corp Cell for spectrometer
CN103398965A (en) * 2013-08-19 2013-11-20 济宁利特纳米技术有限责任公司 Method for detecting manganese content in graphene oxide and graphene samples

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831987A (en) * 1971-08-27 1973-04-26
JPS56150334A (en) * 1980-04-23 1981-11-20 Olympus Optical Co Ltd Detection for abnormal value in turbidimetric analysis
JPS57171247A (en) * 1981-03-30 1982-10-21 Siemens Ag Analyzer for copper content in waste liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831987A (en) * 1971-08-27 1973-04-26
JPS56150334A (en) * 1980-04-23 1981-11-20 Olympus Optical Co Ltd Detection for abnormal value in turbidimetric analysis
JPS57171247A (en) * 1981-03-30 1982-10-21 Siemens Ag Analyzer for copper content in waste liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127058A (en) * 1990-09-19 1992-04-28 Nippon Steel Corp Method and apparatus for automatically analyzing acid value and saponification value of oil
JPH0921744A (en) * 1995-07-06 1997-01-21 Nec Corp Cell for spectrometer
CN103398965A (en) * 2013-08-19 2013-11-20 济宁利特纳米技术有限责任公司 Method for detecting manganese content in graphene oxide and graphene samples

Similar Documents

Publication Publication Date Title
US3987808A (en) Metering system
Pearson et al. Rapid, accurate method for determination of total chlolesterol in serum
US4587624A (en) Method and apparatus for correcting a curve relating an absorbance to a concentration
JPH0252240A (en) Solution circulation type automatic absorption analysis
CN101368909A (en) Method for measuring silicon, manganese and phosphor three constituent content in gray cast iron
US3459506A (en) Method and apparatus for determining amount of lubricant present on textile fibers
CN110174398A (en) Water body total chrome content on-line measuring device and method based on high-level oxidation technology
CN113340883B (en) Method for tracing magnetic particle chemiluminescence method in-vitro diagnostic reagent calibrator
JPS63314447A (en) Solution circulation type automatic absorption spectrochemical analysis
JP3279756B2 (en) Quantitative calculator
CN113095071A (en) System and method for marking English video or text difficulty pairs to domestic grades
CN112697957A (en) Analysis method for determining calcium fluoride in fluorite by adopting potentiometric titration method
CN114088654B (en) Method for evaluating effectiveness of glass fiber coating and application thereof
CN116203189B (en) Method for measuring chromic acid point in galvanized passivation solution by using automatic potentiometric titrator
JPS58140642A (en) Reagent for measurement of bilirubin
CN113702445B (en) PH value detection method and water quality analysis method
CN109211894A (en) For measuring paper-making process plain boiled water, in waste water or paper polyvinyl alcohol content method and system
CN106404815A (en) Method for determination of content of strontium in strontium carbonate for fireworks and firecrackers
CN110514645A (en) The method of impurity element As, Sb content in silicon bronze is accurately measured with ICP-AES
CN106770247B (en) Method for detecting iron content in industrial sodium hydroxide
JP2594936B2 (en) Method and apparatus for measuring nitrate nitrogen and nitrite nitrogen
CN111718979B (en) Gene amplification reference substance and application thereof
JP2513094B2 (en) X-ray fluorescence intensity correction method in X-ray fluorescence analysis method
CN117629982A (en) Photovoltaic fluorine-containing waste acid detection method
JPH0151139B2 (en)