JPS63314447A - Solution circulation type automatic absorption spectrochemical analysis - Google Patents

Solution circulation type automatic absorption spectrochemical analysis

Info

Publication number
JPS63314447A
JPS63314447A JP15071087A JP15071087A JPS63314447A JP S63314447 A JPS63314447 A JP S63314447A JP 15071087 A JP15071087 A JP 15071087A JP 15071087 A JP15071087 A JP 15071087A JP S63314447 A JPS63314447 A JP S63314447A
Authority
JP
Japan
Prior art keywords
ion
absorbance
color
amount
arithmetic unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15071087A
Other languages
Japanese (ja)
Inventor
Kunio Shiratori
白鳥 久仁雄
Kenichiro Nishimura
西村 研一郎
Norio Yamashita
憲男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNITSUTETSU JOHO TSUSHIN SYST KK
Nippon Steel Corp
Nippon Steel Information and Communication Systems Inc
FUJIWARA Manufacturing CO Ltd
Original Assignee
SHINNITSUTETSU JOHO TSUSHIN SYST KK
Nippon Steel Corp
Nippon Steel Information and Communication Systems Inc
FUJIWARA Manufacturing CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNITSUTETSU JOHO TSUSHIN SYST KK, Nippon Steel Corp, Nippon Steel Information and Communication Systems Inc, FUJIWARA Manufacturing CO Ltd filed Critical SHINNITSUTETSU JOHO TSUSHIN SYST KK
Priority to JP15071087A priority Critical patent/JPS63314447A/en
Publication of JPS63314447A publication Critical patent/JPS63314447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To enable reduction in a required analysis time while achieving a higher accuracy of an automatic spectrochemical analysis, by a method wherein calibration curves of absorbance and the amount of ions are set on an arithmetic unit beforehand and a mean of measured values obtained by measuring absorbance several times each in color ion colora tion and color formation areas is introduced into the arithmetic unit to determine the amount of ion from the calibration curves. CONSTITUTION:A sample solution is introduced into a reaction tank 2 from a sample solution tank 1 while a sample is introduced into the tank 2 from reagent tanks 3a-3e to reduce Fe<3+> to Fe<2+>. Thereafter, light is emitted from a light emitting body 7 moving a sample solution to a flow cell 6 to measure absorbance several times in a color ion coloration area with a photoelectric multiplier tube 8 and a mean thereof is computed and introduced into an arithmetic unit 9 on which reference calibration curves of absorbance and the amount of ion are previously set. Then, color forming reagents from the tanks 3a-3e are introduced to the tank 2 to make a color forming ion. Likewise, absorbance in an emission area is measured several times moving the color forming ion to the flow cell 6 to compute a mean. The results are introduced to the arithmetic unit 9 to perform a computation combining the results of measurement in a color ion coloration area and the amount of ion is analyzed from the calibration curves set to display 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶液循環型自動吸光分析方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a solution circulation type automatic absorption analysis method.

(従来の技術) P、Mn、■、A1等の分析方法として溶液循環型自動
吸光分析方法が広く知られているが、このような分析方
法においては、例えば、特開昭48−31987号に開
示されているように、測定そのものは自動的になされて
も、有色イオン呈色域と発色域での吸光度測定が1回ず
つであるため時として誤差が発生し、分析値が不正確に
なることがある。また、測定後の分析は主として人手に
よることになり、結果として迅速性に欠ける等の欠点を
ともなうものである。
(Prior art) A solution circulation type automatic absorption spectrometry method is widely known as an analysis method for P, Mn, ■, A1, etc.; As disclosed, even though the measurement itself is done automatically, the absorbance is measured once in the colored ion coloring region and once in the coloring region, so errors sometimes occur and analytical values become inaccurate. Sometimes. Furthermore, analysis after measurement is mainly done manually, resulting in disadvantages such as a lack of speed.

(発明が解決しようとする問題点) 本発明が解決しようとするところは前記のような欠点を
なくし、自動曝光分析の精度を高めるとともに分析所要
時間を短縮するところにある。
(Problems to be Solved by the Invention) The problem to be solved by the present invention is to eliminate the above-mentioned drawbacks, improve the accuracy of automatic light exposure analysis, and shorten the time required for analysis.

(問題点を解決するための手段) 本発明の?8液循環型自動吸光分析方法は、予め吸光度
とイオン量の検量線を演算器に設定しておき、有色イオ
ン呈色域と発色域でそれぞれ複数回ずつ吸光度測定し、
それぞれの測定値の平均値を前記病算器へ轟いて検量線
からイオン量を決定することを特徴とするものである。
(Means for solving problems) What about the present invention? In the 8-liquid circulation automatic absorption analysis method, a calibration curve of absorbance and ion amount is set in advance on the computer, and the absorbance is measured multiple times in the colored ion coloring region and coloring region.
The method is characterized in that the average value of each measured value is sent to the medical calculator and the amount of ions is determined from the calibration curve.

本発明においては、まず、予め吸光度とイオン量との関
係を標準検量線として演算器へ設定しておき、実測定に
際しては、有色イオン呈色域と発色域でそれぞれ複数回
ずつ吸光度を測定する。つまり、従来この両域ではそれ
ぞれ1回ずつの測定にとどまっており、これが不正確な
分析結果の一因となっていることが明らかになったので
、有色イオン呈色域と発色域での吸光度測定をそれぞれ
複数回行い、それぞれの測定値の平均値を基準としよう
とするものであり、また、吸光度測定を複数回繰り返す
ことにより生ずる時間のロスは、測定後に行う分析を予
め吸光度とイオン量との関係を標準検量線として設定し
ておいた演算器で行って迅速化することにより解決した
ものである。すなわち、有色イオン呈色域では、例えば
、鋼中の不純物分析においては、Fe”−+Fe”の還
元作用が施され、呈色用溶液との攪拌、空気抜き等が行
われることから測定に異常値が出ることがあるので、本
発明においては、上記のごとくこの有色イオン呈色域で
の吸光度測定を複数回行って異常値を除いた値を平均化
する。また、発色域においても発光用溶液と試料溶液と
の攪拌が行われて前記有色イオン呈色域での吸光度測定
の場合と同様に測定に異常値が出るので、この発色域に
おいても複数回吸光度測定し、その平均値を上記有色イ
オン呈色域の測定平均値とともに演算器へ導いて検量線
と照合し、これによりイオン量を決定するものであって
、これらのイオン量の決定は演算器において処理するた
め極めて迅速に測定結果に基く分析ができ、複数回ずつ
吸光度測定することにより生ずる時間のロスは補償され
る。なお、上記複数回の吸光度測定は多い程正確な分析
ができるが、測定時間等の関係から1回/秒×5回位が
適当であり、さらにまた、このような分析方法は、P、
Mn、V、AlSMnのほか従来吸光度分析方法による
各種の分析に有効に適用することができる。
In the present invention, first, the relationship between absorbance and ion amount is set in advance as a standard calibration curve in the calculator, and during actual measurement, the absorbance is measured multiple times each in the colored ion coloring region and the coloring region. . In other words, in the past, only one measurement was taken in each of these regions, and it became clear that this was a contributing factor to inaccurate analysis results. Each measurement is performed multiple times, and the average value of each measurement value is used as the standard.Also, to avoid time loss caused by repeating absorbance measurements multiple times, it is necessary to calculate the absorbance and ion content in advance for the analysis to be performed after the measurement. This problem was solved by speeding up the calculation by calculating the relationship between the two using a calculator that had been set as a standard calibration curve. In other words, in the colored ion coloring region, for example, in the analysis of impurities in steel, a reduction action of Fe"-+Fe" is performed, stirring with the coloring solution, air removal, etc., resulting in abnormal values in the measurement. Therefore, in the present invention, the absorbance is measured multiple times in this colored ion coloring region as described above, and the values excluding abnormal values are averaged. In addition, in the coloring region, the luminescence solution and sample solution are stirred, and abnormal values appear in the measurement as in the case of absorbance measurement in the colored ion coloring region, so the absorbance is measured multiple times in this coloring region. The average value is sent to a computer along with the measured average value of the colored ion color range and compared with a calibration curve, thereby determining the amount of ions. Because the process is carried out in the process, analysis based on the measurement results can be carried out extremely quickly, and the time loss caused by measuring the absorbance multiple times can be compensated for. Note that the more times the absorbance is measured, the more accurate the analysis can be, but considering the measurement time etc., it is appropriate to measure absorbance once per second x 5 times.
In addition to Mn, V, and AlSMn, it can be effectively applied to various analyzes using conventional absorbance analysis methods.

次に、本発明方法の一例を図面により説明すれば、第1
図において+11は試料溶液槽、(2)は反応槽、(3
a)、(3b)、(3c)、(3d)、(3e)はいず
れも試薬槽である。今、試料溶液槽(11から試料溶液
を反応槽(2)へ導入する一方、試薬槽(3a)、(3
b)、(3c)、(3d)、(3e)から試薬を反応槽
(2)へ導き、ヒーター(4)で加熱しつつFe”をF
e”+へ還元した後、試料溶液(有色イオン)を空気吹
込管(5)からの空気吹込みによりフローセル(6)へ
循環移動させつつ、−該フローセル(6)に発光体(7
)から発光し、ホトマル(8)で、1色イオン呈色域の
吸光度を複数回測定しその平均値を演算したうえその結
果を予め吸光度とイオン量の標準検量線を設定しておい
た演算器(9)へ導入する。次いで、試薬槽(3a)、
(3b)、(3C)、(3d)、(3e)から発色試薬
を反応槽(2)へ導いて発色イオンとし、これを上記同
様にフローセル(6)へ循環移動させつつ発光体(7)
から発光し、ホトマル(8)で発光域の吸光度を複数回
測定し、その平均値を演算したうえその結果を前記演算
器(9)へ導いて前記有色イオン呈色域の測定結果と合
わせて演算し、この演算器(9)に予め設定しである検
量線からイオン量を分析し、その結果をプリンターα・
へ表示する。
Next, an example of the method of the present invention will be explained with reference to the drawings.
In the figure, +11 is the sample solution tank, (2) is the reaction tank, (3
a), (3b), (3c), (3d), and (3e) are all reagent tanks. Now, while introducing the sample solution from the sample solution tank (11) into the reaction tank (2), the reagent tanks (3a) and (3
The reagents from b), (3c), (3d), and (3e) are led to the reaction tank (2), and while being heated with the heater (4), Fe'' is
After being reduced to e''+, the sample solution (colored ions) is circulated to the flow cell (6) by air blowing from the air blowing tube (5), and - the luminescent material (7) is injected into the flow cell (6).
), the absorbance of one color ion color range is measured multiple times using Photomar (8), the average value is calculated, and the results are calculated by setting a standard calibration curve of absorbance and ion amount in advance. Introduce into container (9). Next, a reagent tank (3a),
The coloring reagents from (3b), (3C), (3d), and (3e) are led to the reaction tank (2) to form coloring ions, which are circulated and transferred to the flow cell (6) in the same manner as above, and the luminescent material (7)
The absorbance of the luminescent region is measured multiple times using a photomultiplier (8), the average value is calculated, and the result is led to the arithmetic unit (9) and combined with the measurement results of the colored ion color region. The amount of ions is analyzed from a calibration curve that is preset in this calculator (9), and the results are sent to the printer α.
Display to.

(実施例) 次に本発明の実施例を比較例とともに挙げる。(Example) Next, examples of the present invention will be listed together with comparative examples.

(tiA中Pの分析例) 鋼の切削試料0.1gを硝酸5 cc、過塩素酸(60
%)5ccを加えて加熱溶解し、白煙処理をして過塩素
酸の残量をl cc以下にする。これに水を加えて塩類
を溶解したのち、全容を正確に25ccとしてこれを試
料溶液とする。次に、上記試料溶液を反応槽に移し、亜
硫酸水素ナトリウム溶液(20%)10ccを加え、F
e3+をFe!+へ還元した後、ニッケル、クロム等に
よる有色イオンの吸光度を測定間隔1回/秒で5回測定
したところ、このときの吸光度(A)は、0.007.
0.007.0、 OO6,0,010,0,007で
あった。
(Example of analysis of P in tiA) 0.1 g of cut steel sample was treated with 5 cc of nitric acid and perchloric acid (60 cc).
%), heat and dissolve, and treat with white smoke to reduce the remaining amount of perchloric acid to 1 cc or less. After adding water to this to dissolve the salts, the total volume is adjusted to exactly 25 cc and this is used as a sample solution. Next, the above sample solution was transferred to a reaction tank, 10 cc of sodium bisulfite solution (20%) was added, and F
Fe3+! After reducing to +, the absorbance of colored ions such as nickel and chromium was measured 5 times at a measurement interval of 1 time/second, and the absorbance (A) at this time was 0.007.
It was 0.007.0, OO6, 0,010, 0,007.

次いで、発色試薬としてモリブデン酸アンモニウム(2
,5%)10ccと、硫酸ヒドラジン溶液(3%)14
ccを加え、呈色が完結したのち吸光度を測定間隔1回
/秒で5回測定したところ、このときの吸光度(B)は
o、 o s o、o、 o s o、0.058、O
,,051,0,055であった。ところで、一般に溶
液循環型の自動吸光分析においては反応槽と吸光度測定
セル間を通気によって循環する方式をとっているため、
この際に気泡のまき込みによって発生頻度3回/25回
程度で異常値を示すことがあるが、異常値は気泡による
散乱によって常に高値異常であるので、上記の5個の測
定値を組ごとに吸光度の低い順に並べてから高い方の測
定値2個を除外し、低い方から3個の測定値の平均値を
求め、弐B−AK (K−液■補正係数)で演算した値
(補正吸光度)を、予め第2図に示すごとき検量線を設
定しである演算器へ導き、P−19,5μg/g と決
定した。
Next, ammonium molybdate (2
, 5%) 10cc and hydrazine sulfate solution (3%) 14
cc was added and after the color development was completed, the absorbance was measured 5 times at a measurement interval of 1 time/second, and the absorbance (B) at this time was o, o s o, o, o s o, 0.058, O
,,051,0,055. By the way, in general, in solution circulation type automatic absorption analysis, a method is used in which the solution is circulated between the reaction tank and the absorbance measurement cell by aeration.
At this time, an abnormal value may be shown at a frequency of about 3/25 times due to the inclusion of air bubbles, but the abnormal value is always a high abnormal value due to scattering by air bubbles, so the above five measured values are After arranging the absorbance in descending order of absorbance, remove the two highest measured values, calculate the average value of the three lowest measured values, and calculate the value (corrected A calibration curve as shown in FIG. 2 was set in advance, and the absorbance was introduced into a calculator and determined to be P-19.5 μg/g.

(比較例) 上記実施例と同条件の有色イオン呈色域で1回吸光度測
定した測定値である吸光度(A)=O1007と、発色
域で1回吸光度測定した測定値である吸光度(B)−〇
、050を前記式で演算し、この値を予め定めた検量線
からP = 19.3μg/gと決定した。
(Comparative example) Absorbance (A) = O1007, which is the measured value obtained by measuring the absorbance once in the colored ion coloring region under the same conditions as in the above example, and Absorbance (B), which is the measured value obtained by measuring the absorbance once in the colored ion region -0,050 was calculated using the above formula, and this value was determined to be P = 19.3 μg/g from a predetermined calibration curve.

このようにして同一鋼中のPを実施例、比較例それぞれ
10回分析した結果、下表のごとく本発明における分析
においてはバラツキが少なく、精度を向上させることが
できた。
As a result of analyzing P in the same steel 10 times in each of the examples and comparative examples, as shown in the table below, the analysis according to the present invention had little variation and was able to improve accuracy.

(発明の効果) 本発明は前記説明から明らかなように、有色イオン呈色
域と発色域での吸光度測定値はそれぞれ複数回の測定値
の平均値とする一方、測定後の分析は予め吸光度とイオ
ン量の検量線を設定しであるi*算器で行うことにより
、分析精度を向上させて自動分析を極微量域まで適用可
能とするとともに一連の分析所要時間を短縮することが
できたもので、従来の溶液循環型自動吸光分析方法の問
題点を解決したものとして業界の発展に寄与するところ
大なものである。
(Effects of the Invention) As is clear from the above description, the present invention uses absorbance measurements in the colored ion coloring region and the coloring region as average values of multiple measurements, while the analysis after measurement is performed using the absorbance in advance. By setting a calibration curve for the amount of ions and ions and performing the analysis using an i* calculator, we were able to improve the accuracy of the analysis, make automatic analysis applicable to the extremely trace amount range, and shorten the time required for a series of analyses. This method will greatly contribute to the development of the industry as it solves the problems of the conventional solution circulation type automatic absorption analysis method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の1例を示す
説明図、第2図は吸光度を測定するタイミングを表すグ
ラフである。 特許出願人 新日本製鐵株式会社 同          日鐵コンビ1−タシステム株式
会社同    株式会社藤原製作所 代  理  人  名    嶋    明    即
問         綿    貫    達    
離間         山    本    文   
 夫第1図
FIG. 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a graph showing the timing of measuring absorbance. Patent Applicant Nippon Steel Corporation Nippon Steel Combita System Co., Ltd. Representative Fujiwara Seisakusho Co., Ltd. Person Name Akira Shima Immediate Question Tatsu Watanuki
Rimayama main text
husband figure 1

Claims (1)

【特許請求の範囲】[Claims] 予め吸光度とイオン量の検量線を演算器に設定しておき
、有色イオン呈色域と発色域でそれぞれ複数回ずつ吸光
度測定し、それぞれの測定値の平均値を前記演算器へ導
いて検量線からイオン量を決定することを特徴とする溶
液循環型自動吸光分析方法。
A calibration curve of absorbance and ion amount is set in the calculator in advance, and the absorbance is measured multiple times in the colored ion coloring region and the coloring region, respectively, and the average value of each measurement value is led to the calculator to create the calibration curve. A solution circulation type automatic absorption analysis method characterized by determining the amount of ions from.
JP15071087A 1987-06-17 1987-06-17 Solution circulation type automatic absorption spectrochemical analysis Pending JPS63314447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15071087A JPS63314447A (en) 1987-06-17 1987-06-17 Solution circulation type automatic absorption spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15071087A JPS63314447A (en) 1987-06-17 1987-06-17 Solution circulation type automatic absorption spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPS63314447A true JPS63314447A (en) 1988-12-22

Family

ID=15502714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15071087A Pending JPS63314447A (en) 1987-06-17 1987-06-17 Solution circulation type automatic absorption spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS63314447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127058A (en) * 1990-09-19 1992-04-28 Nippon Steel Corp Method and apparatus for automatically analyzing acid value and saponification value of oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127058A (en) * 1990-09-19 1992-04-28 Nippon Steel Corp Method and apparatus for automatically analyzing acid value and saponification value of oil

Similar Documents

Publication Publication Date Title
Itaya et al. A new micromethod for the colorimetric determination of inorganic phosphate
Faithfull Automated simultaneous determination of nitrogen, phosphorus, potassium and calcium on the same herbage digest solution
CN112240872A (en) Integrated multi-index water quality on-line monitor and monitoring method thereof
JPS63314447A (en) Solution circulation type automatic absorption spectrochemical analysis
US20160003750A1 (en) Method and apparatus for titration
JP2005164289A (en) Method of measuring nitrite ion and nitrate ion, and its instrument
Laitinen et al. Amperometric Titration of Calcium
JPH0252240A (en) Solution circulation type automatic absorption analysis
JP2004301609A (en) Measuring method and device for arsenic concentration
US20160011118A1 (en) Method for quantitative determination of oxidant and appratus for quantitative determination of oxidant
JP2894237B2 (en) Continuous water quality measuring device and continuous water quality measuring method
CN103674861B (en) The assay method of absorbance
JP2594936B2 (en) Method and apparatus for measuring nitrate nitrogen and nitrite nitrogen
JPH0252239A (en) Analysis methode
CN109030377B (en) Colorimetric analyzer with improved error detection
US3567392A (en) Method and apparatus for analysis of gases for sulfur dioxide
He et al. Precise and sensitive determination of nitrite by coulometric backtitration under flow conditions
JPH04109166A (en) Quantification method for silica
JP2727364B2 (en) Aging measurement method for unrecycled colored liquid for stainless steel
CN113607725B (en) Method for measuring ammonia nitrogen content in wastewater
CN110873695B (en) Method for measuring phosphorus content in ferroniobium
Baghurst et al. Photometric Determination of Arsenic and Phosphorus in Copper-Base Alloys
JPS6171355A (en) Analyzing method of phosphoric acid
Carrillo et al. Sensitive spectrofluorimetric determination of aluminium (III) with Eriochrome Red B
JP2005265728A (en) Quantitative analytical method by colorimetric method