JPH0252209B2 - - Google Patents

Info

Publication number
JPH0252209B2
JPH0252209B2 JP24056084A JP24056084A JPH0252209B2 JP H0252209 B2 JPH0252209 B2 JP H0252209B2 JP 24056084 A JP24056084 A JP 24056084A JP 24056084 A JP24056084 A JP 24056084A JP H0252209 B2 JPH0252209 B2 JP H0252209B2
Authority
JP
Japan
Prior art keywords
parabolic mirror
light
mirror
parabolic
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24056084A
Other languages
Japanese (ja)
Other versions
JPS61120037A (en
Inventor
Tomoyuki Kikukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP24056084A priority Critical patent/JPS61120037A/en
Publication of JPS61120037A publication Critical patent/JPS61120037A/en
Publication of JPH0252209B2 publication Critical patent/JPH0252209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、放物面鏡の検査装置、特に放物面鏡
から反射して返つてきた反射光を出射面でさらに
反射させ、当該反射光と新たな出射光とで生じる
干渉縞の発生パターンから放物面鏡の鏡面の状態
を検査するようにした放物面鏡の検査装置に関す
るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is an inspection device for a parabolic mirror, in particular, the reflected light reflected from the parabolic mirror is further reflected on an output surface, and the reflected light is The present invention relates to a parabolic mirror inspection device that inspects the condition of the mirror surface of a parabolic mirror based on the pattern of interference fringes generated by light and newly emitted light.

(従来の技術) 従来、放物面鏡の鏡面の良し悪しを判定するも
のとして、第5図に示されるような装置で行つて
いた。すなわち第5図において、レーザ装置等に
よつて得られた平行光線を、検査すべき放物面鏡
21の鏡面に入射させ、その反射光が当該放物面
鏡21の焦点近辺に設けられているすりガラス等
の拡散板22に結ぶ焦点のスポツト径Lを前記拡
散板22の反対側から顕微鏡23によつて観測
し、拡散板22を左右に移動してそのスポツト径
Lが最小となる位置でのスポツト径の大きさから
放物面鏡21の鏡面の良し悪し、すなわち鏡面の
歪みを判定していた。
(Prior Art) Conventionally, a device as shown in FIG. 5 has been used to determine the quality of the mirror surface of a parabolic mirror. That is, in FIG. 5, a parallel light beam obtained by a laser device or the like is made incident on the mirror surface of the parabolic mirror 21 to be inspected, and the reflected light is provided near the focal point of the parabolic mirror 21. Observe the spot diameter L of the focal point on the diffuser plate 22, such as ground glass, using the microscope 23 from the opposite side of the diffuser plate 22, and move the diffuser plate 22 left and right to the position where the spot diameter L is the minimum. The quality of the mirror surface of the parabolic mirror 21, that is, the distortion of the mirror surface, was determined from the size of the spot diameter.

(発明が解決しようとする問題点) 従来の方法では顕微鏡23で拡散板22に映つ
ているスポツト径Lを観測するので、見づらく、
観測者によつてスポツト径Lの値がバラつくとい
う欠点があり、また拡散板22に映つているスポ
ツト径からでは放物面鏡21が、入射する平行光
線に対し傾いているかどうか、またどのように放
物面鏡21の姿勢を修正すればよいのかその修正
の仕方が判らない欠点もあつた。
(Problems to be Solved by the Invention) In the conventional method, the spot diameter L reflected on the diffuser plate 22 is observed using the microscope 23, which makes it difficult to see.
There is a drawback that the value of the spot diameter L varies depending on the observer, and also, from the spot diameter reflected on the diffuser plate 22, it is difficult to determine whether or not the parabolic mirror 21 is tilted with respect to the incident parallel rays. There was also a drawback that it was difficult to know how to correct the attitude of the parabolic mirror 21.

本発明は上記の欠点を解決することを目的とし
ており、放物面鏡から反射して返つてきた反射光
を出射面でさらに反射させ、当該反射光と新たに
出射する出射光とが干渉することにより生じる干
渉縞のパターン発生状況から、放物面鏡の鏡面の
良し悪しを判定するとともに、干渉縞のパターン
から放物面鏡自体の姿勢を修正すべき方向が得ら
れる放物面鏡の検査装置を提供することを目的と
している。
The present invention aims to solve the above-mentioned drawbacks, and the reflected light reflected from the parabolic mirror is further reflected on the output surface, and the reflected light and the newly emitted output light interfere with each other. The quality of the mirror surface of a parabolic mirror can be determined from the interference fringe pattern generated by this, and the direction in which the attitude of the parabolic mirror itself should be corrected can be obtained from the interference fringe pattern. The purpose is to provide inspection equipment.

(問題点を解決するための手段) そのため本発明の放物面鏡の検査装置は放物面
鏡の焦点位置から該放物面鏡にレーザ光を出射し
反射光として第1の平行光を発生させる手段と、
該第1の平行光と垂直に配置された平面鏡で該第
1の平行光を反射させて該放物面鏡へ再度入射さ
せその反射光を前記放物面鏡の焦点位置に集光さ
せる手段と、該焦点位置に該集光された光軸と垂
直に配置された反射面で前記放物面鏡から再度反
射されたレーザ光を入射角と等しい角度で反射さ
せ前記平面鏡に向けて第2の平行光を発生させる
手段と、該放物面鏡と該平面鏡との間に配設さ
れ、該両鏡間の光通路の一部を遮蔽しかつ前記第
1の平行光と前記第2の平行光とが干渉して生ず
る干渉縞を映し出す手段とからなり、干渉縞の紋
様から放物面鏡の歪みを検査することを特徴とし
ている。
(Means for Solving the Problem) Therefore, the parabolic mirror inspection device of the present invention emits a laser beam from the focal position of the parabolic mirror to the parabolic mirror, and generates a first parallel beam as reflected light. A means of generating
Means for reflecting the first parallel light by a plane mirror disposed perpendicularly to the first parallel light, causing it to enter the parabolic mirror again, and condensing the reflected light at the focal point of the parabolic mirror. Then, the laser beam reflected again from the parabolic mirror is reflected at an angle equal to the incident angle by a reflecting surface disposed perpendicular to the focused optical axis at the focal position and directed toward the plane mirror. a means for generating parallel light of said first parallel light and said second parallel light disposed between said parabolic mirror and said plane mirror, said means for blocking a part of the optical path between said two mirrors; It consists of a means for projecting interference fringes produced by interference with parallel light, and is characterized by inspecting distortion of the parabolic mirror from the pattern of the interference fringes.

以下図面を参照しながら本発明の一実施例を説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

(実施例) 第1図は本発明に係る放物面鏡の検査装置の一
実施例としての軸外し放物面鏡の構成図、第2図
は光出射部の拡大説明図、第3図はスクリーンに
映し出された干渉縞のパターンの一例、第4図は
光出射部の他の構成例を示している。
(Example) Fig. 1 is a configuration diagram of an off-axis parabolic mirror as an embodiment of the parabolic mirror inspection device according to the present invention, Fig. 2 is an enlarged explanatory view of the light emitting part, and Fig. 3 4 shows an example of the pattern of interference fringes projected on the screen, and FIG. 4 shows another example of the structure of the light emitting section.

ここで「軸外し」とは放物面鏡の中心軸及びそ
の近傍を除いた鏡面を意味している。つまり、放
物面鏡の中心軸を外れた部分をいう。
Here, "off-axis" means a mirror surface excluding the central axis of the parabolic mirror and its vicinity. In other words, it refers to the part that is off the central axis of the parabolic mirror.

第1図において、1は光出射部であつて該光出
射部1にレーザ装置2からのレーザ光が入射され
る。光出射部1の前方には鏡面の仕上りの曲率、
すなわち歪みが検査される放物面鏡3が設置され
る。当該放物面鏡3の焦点は前記光出射部1の光
軸上に合わされ、かつ放物面鏡3は光出射部1の
出射光を第1の平行光線とするように、かつ焦点
位置に前記出射部1の出射面がくるように配置さ
れる。また放物面鏡3から入射された光を反射す
る平面鏡4が平行光線と垂直に設置されている。
従つて、例えば点光源とみなしてもよい光出射部
1の0点から放物面鏡3のA点に向けて出射した
光は、放物面鏡3のA点で反射するとともに、こ
の反射光と垂直に設置されている平面鏡4のB点
に入射する。当該平面鏡4のB点に入射した光
は、反射して同一の経路を通り光出射部1の0点
に戻る。同様に光出射部1の0点から放物面鏡3
のC点に向けて出射した光は放物面鏡3のC点で
反射するとともに、平面鏡4のD点に入射する。
当該平面鏡4のD点に入射した光は反射して同一
の経路を通り光出射部1の0点に戻る。
In FIG. 1, reference numeral 1 denotes a light emitting section, into which a laser beam from a laser device 2 is incident. In front of the light emitting part 1, there is a curvature with a mirror finish,
That is, a parabolic mirror 3 whose distortion is inspected is installed. The focus of the parabolic mirror 3 is set on the optical axis of the light emitting section 1, and the parabolic mirror 3 is aligned so that the light emitted from the light emitting section 1 becomes a first parallel ray and at the focal position. The light emitting section 1 is arranged so that the light emitting surface thereof faces. Further, a plane mirror 4 that reflects the light incident from the parabolic mirror 3 is installed perpendicular to the parallel rays.
Therefore, for example, light emitted from the 0 point of the light emitting section 1, which may be regarded as a point light source, toward the point A of the parabolic mirror 3 is reflected at the point A of the parabolic mirror 3, and this reflection The light enters point B of the plane mirror 4, which is installed perpendicular to the light. The light incident on point B of the plane mirror 4 is reflected and returns to the zero point of the light emitting section 1 through the same path. Similarly, from the 0 point of the light emitting part 1 to the parabolic mirror 3
The light emitted toward point C is reflected at point C of the parabolic mirror 3 and enters point D of the plane mirror 4.
The light incident on the point D of the plane mirror 4 is reflected and returns to the zero point of the light emitting section 1 through the same path.

上記の説明から明らかな様に、光路OABと光
路OCDとは同一長の光路となる関係が成立する
ように、光出射部1は3軸方向に移動する微動機
構を備えており(図示されていない)、また放物
面鏡3は回動機構を備えている(図示されていな
い)。放物面鏡3と平面鏡4との間は平行光とな
り、該平行光に垂直な位置の光はすべて同一の光
の位相を有している。この放物面鏡3と平面鏡4
との間に上記平行光の約半分を遮蔽する遮蔽板を
兼ねたスクリーン5が設けられている。
As is clear from the above explanation, the light emitting section 1 is equipped with a fine movement mechanism that moves in three axial directions (not shown) so that the optical path OAB and the optical path OCD have the same length. (not shown), and the parabolic mirror 3 is equipped with a rotation mechanism (not shown). Parallel light forms between the parabolic mirror 3 and the plane mirror 4, and all light at positions perpendicular to the parallel light has the same light phase. This parabolic mirror 3 and plane mirror 4
A screen 5, which also serves as a shielding plate for blocking about half of the parallel light, is provided between the two.

第2図は光出射部の拡大説明図であつて、光出
射部1に光フアイバが使用されている例が示され
ている。光フアイバ7はコア8とクラツド9とか
らなり、レーザ装置2から入射されたレーザ光は
コア8内に通過し、光フアイバ7の端面から点光
源として出射する。この光フアイバ7の端面、す
なわちコア8から出射する光は第2図図示の実線
で示されている。光フアイバ7の端面、特にコア
8の出射面は滑らかな加工が施こされている。
FIG. 2 is an enlarged explanatory diagram of the light emitting section, and shows an example in which the light emitting section 1 uses an optical fiber. The optical fiber 7 consists of a core 8 and a cladding 9, and the laser light incident from the laser device 2 passes through the core 8 and is emitted from the end face of the optical fiber 7 as a point light source. The light emitted from the end face of the optical fiber 7, that is, the core 8, is indicated by a solid line in FIG. The end face of the optical fiber 7, especially the output face of the core 8, is smoothed.

すでに第1図で説明したように、光出射部1の
O点から出射した光は、放物面鏡3のA点、平面
鏡4のB点の各点でそれぞれ反射され同一経路を
経て光出射部1のO点に戻つてくる。今この往復
光をそれぞれ第2図の実線と一点鎖線とで表示す
ると、当該往復光は光フアイバ7の端面、すなわ
ちコア8に入射し、その一部がフレネル反射を生
じ、その反射光は、当該コア8の滑らかな面で発
生し、第2図の二点鎖線で表示される。一方コア
8からは当該光フアイバ8に入射されているレー
ザ装置2からの光がコア8から第2図に示された
実線の如く出射するので、二点鎖線で示される往
復光の反射光と実線で示される出射光とが干渉し
合う。上記説明については、放物面鏡3と平面鏡
4との間に設けられたスクリーン5によつて遮蔽
されない往復光すべてについて適用される。そし
て上記説明の二点鎖線で示される往復光の反射光
は、放物面鏡3で反射されて第2の平行光とな
り、実線で示される出射光で生じた第1の平行光
と干渉し合つた光がスクリーン5に照射されるか
ら、他の往復光についての干渉した光も当該スク
リーン5に照射される。しかもこれらの干渉を生
じさせる往復光はすべて同一の位相を有してい
る。従つてスクリーン5には第3図に示される様
な外径が半円形の干渉縞のパターンが映し出され
る。仮に放物面鏡3の鏡面が完全な放物面であれ
ば、当該放物面鏡3の鏡面に起因する位相差のず
れは生じていないので、また平面鏡4から返つて
くる反射光の位相にずれが生じていないので、ス
クリーン5上に映し出された干渉縞は半円形全面
にわたつて一様の濃さとなる。この濃さは、図示
されていない3軸方向の微動機構により光出射部
1を放物面鏡3に近づけるか遠ざける等操作を行
えば一様に薄くなつたり、またはさらに濃くなつ
たり変化する。
As already explained in FIG. 1, the light emitted from the O point of the light emitting part 1 is reflected at each point, A point of the parabolic mirror 3 and B point of the plane mirror 4, and the light is emitted through the same path. Return to point O in part 1. Now, if this reciprocating light is represented by a solid line and a dashed-dotted line in FIG. 2, the reciprocating light enters the end face of the optical fiber 7, that is, the core 8, a part of which causes Fresnel reflection, and the reflected light is This occurs on the smooth surface of the core 8 and is indicated by the two-dot chain line in FIG. On the other hand, the light from the laser device 2 that is incident on the optical fiber 8 is emitted from the core 8 as shown by the solid line in FIG. The emitted light shown by the solid line interferes with each other. The above description applies to all the reciprocating light that is not blocked by the screen 5 provided between the parabolic mirror 3 and the plane mirror 4. The reflected light of the reciprocating light shown by the two-dot chain line in the above explanation is reflected by the parabolic mirror 3 and becomes a second parallel light, which interferes with the first parallel light generated by the output light shown by the solid line. Since the combined light is irradiated onto the screen 5, the screen 5 is also irradiated with interfering light from other reciprocating lights. Moreover, all the reciprocating lights that cause these interferences have the same phase. Therefore, a pattern of interference fringes having a semicircular outer diameter as shown in FIG. 3 is projected on the screen 5. If the mirror surface of the parabolic mirror 3 were a perfect parabolic surface, there would be no shift in phase difference due to the mirror surface of the parabolic mirror 3, and the phase of the reflected light returning from the plane mirror 4 would also change. Since there is no shift, the interference fringes projected on the screen 5 have uniform density over the entire semicircular area. This density changes by uniformly becoming thinner or darker by performing an operation such as moving the light emitting section 1 closer to or farther away from the parabolic mirror 3 using a triaxial fine movement mechanism (not shown).

放物面鏡3の鏡面の仕上りに歪みが存在する場
合、すなわち当該放物面鏡4の鏡面が放物面とし
ての曲率に歪みを有する場合、上記で説明した光
フアイバ8の端面に入射する往復光の間で位相の
ずれが生じ、第2図で示された二点鎖線と実線と
の干渉光が往復光によつてそれぞれ異なり、スク
リーン5に映し出される外径が半円状の干渉縞の
濃さは一様でなくなる。従つてスクリーン5には
鏡面の歪み具合に応じた干渉縞のパターンが生じ
る。このスクリーン5に映し出される干渉縞のパ
ターンを観測することにより、放物面鏡3の鏡面
の良し悪しを検査することができる。そしてスク
リーン5に映し出される干渉縞のパターンが特殊
の様相、例えば縦縞の干渉パターンが生じる場合
は放物面鏡3に歪みがなく、当該放物面鏡3に設
けられている回動機構(図示されていない)を用
いて放物面鏡3を縦に回動させることにより、放
物面鏡3の設置姿勢を修正でき、上記縦縞の干渉
パターンを単一の濃度にすることができる。また
スクリーン5に映し出される干渉縞のパターン
が、例えば横縞の場合は放物面鏡3に設けられて
いる回動機構(図示されていない)を用いて放物
面鏡を横に回動させることにより、放物面鏡3の
設置姿勢も修正することができる。このようにス
クリーン5に映し出される干渉縞のパターンを観
測することに基づき放物面鏡3の鏡面の良し悪
し、すなわち鏡面の歪みを判定することができる
ほか、放物面鏡3自体の設置姿勢も修正すること
ができる。なお放物面鏡3の鏡面に歪みが存在す
る場合には、干渉縞を消去することができないの
で、干渉縞が残存する点に対応した放物面鏡3の
位置に歪みが存在することを示している。
If there is a distortion in the finish of the mirror surface of the parabolic mirror 3, that is, if the mirror surface of the parabolic mirror 4 has a distortion in its curvature as a paraboloid, the light will be incident on the end face of the optical fiber 8 described above. A phase shift occurs between the reciprocating lights, and the interference light between the two-dot chain line and the solid line shown in FIG. The density is no longer uniform. Therefore, a pattern of interference fringes is generated on the screen 5 depending on the degree of distortion of the mirror surface. By observing the pattern of interference fringes projected on the screen 5, the quality of the mirror surface of the parabolic mirror 3 can be inspected. If the pattern of interference fringes projected on the screen 5 has a special aspect, for example, an interference pattern of vertical stripes, the parabolic mirror 3 will not be distorted, and the rotation mechanism (not shown) provided on the parabolic mirror 3 will not be distorted. By vertically rotating the parabolic mirror 3 using a mirror (not shown), the installation posture of the parabolic mirror 3 can be corrected, and the interference pattern of the vertical stripes can be made into a single density. If the pattern of interference fringes projected on the screen 5 is, for example, horizontal stripes, the parabolic mirror may be rotated horizontally using a rotation mechanism (not shown) provided on the parabolic mirror 3. Accordingly, the installation posture of the parabolic mirror 3 can also be corrected. Based on observing the pattern of interference fringes projected on the screen 5 in this way, it is possible to determine the quality of the mirror surface of the parabolic mirror 3, that is, the distortion of the mirror surface, and also to determine the installation orientation of the parabolic mirror 3 itself. can also be modified. Note that if there is distortion on the mirror surface of the parabolic mirror 3, the interference fringes cannot be erased, so it is possible to confirm that distortion exists at the position of the parabolic mirror 3 corresponding to the point where the interference fringes remain. It shows.

第4図は光出射部の他の構成例を示しており、
10はガラス等の透明媒質であり、当該ガラス1
0は片側にレーザ装置2から出射されたレーザ光
を収束するレンズ11が枠体12によつて固定さ
れている。該レンズ11に入射した平行なレーザ
光は収束され、第4図に示されているようにガラ
ス10の出射端面から点光源として出射される。
そして当該ガラス10の出射面は第2図に表示さ
れた一点鎖線の往復光が反射するように滑らかな
面に加工されている。
FIG. 4 shows another example of the configuration of the light emitting section,
10 is a transparent medium such as glass, and the glass 1
0 has a lens 11 fixed to one side by a frame 12 that converges the laser beam emitted from the laser device 2. The parallel laser light incident on the lens 11 is converged and emitted as a point light source from the output end face of the glass 10, as shown in FIG.
The exit surface of the glass 10 is processed to be a smooth surface so that the reciprocating light indicated by the dashed-dotted line shown in FIG. 2 is reflected.

(発明の効果) 以上説明した如く、本発明によれば、スクリー
ンに映し出された干渉縞のパターンを観測するこ
とにより、容易に放物面鏡の鏡面の荒さの良し悪
しを検査することができる。そして放物面鏡の鏡
面の良し悪しのみならず、干渉縞のパターンの現
われ方により放物面鏡自体の設置姿勢を修正する
ことができるとともに、放物面鏡の鏡面歪みの存
在位置を知ることができる。
(Effects of the Invention) As explained above, according to the present invention, the roughness of the mirror surface of a parabolic mirror can be easily inspected by observing the pattern of interference fringes projected on the screen. . In addition to determining the quality of the mirror surface of the parabolic mirror, it is also possible to correct the installation posture of the parabolic mirror itself based on how the pattern of interference fringes appears, as well as to know the location of mirror distortion of the parabolic mirror. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る放物面鏡の検査装置の一
実施例としての軸外し放物面鏡の構成図、第2図
は光出射部の拡大説明図、第3図はスクリーンに
映し出された干渉縞のパターン一例、第4図は光
出射部の他の構成例、第5図は従来の放物面鏡の
検査装置を説明している検査装置説明図を示して
いる。 図中、1は光出射部、2はレーザ装置、3は放
物面鏡、4は平面鏡、5はスクリーン、7は光フ
アイバ、8はコア、9はクラツド、10はガラ
ス、11はレンズ、12は枠体、21は放物面
鏡、22は拡散板、23は顕微鏡を表わしてい
る。
Fig. 1 is a configuration diagram of an off-axis parabolic mirror as an embodiment of the parabolic mirror inspection device according to the present invention, Fig. 2 is an enlarged explanatory diagram of the light emitting part, and Fig. 3 is a diagram showing the structure of the off-axis parabolic mirror as an embodiment of the parabolic mirror inspection device according to the present invention. FIG. 4 shows an example of a pattern of interference fringes, FIG. 4 shows another example of the configuration of the light emitting section, and FIG. 5 shows an explanatory diagram of an inspection apparatus illustrating a conventional parabolic mirror inspection apparatus. In the figure, 1 is a light emitting part, 2 is a laser device, 3 is a parabolic mirror, 4 is a plane mirror, 5 is a screen, 7 is an optical fiber, 8 is a core, 9 is a cladding, 10 is a glass, 11 is a lens, 12 is a frame body, 21 is a parabolic mirror, 22 is a diffuser plate, and 23 is a microscope.

Claims (1)

【特許請求の範囲】[Claims] 1 放物面鏡の鏡面の歪みを検査する放物面鏡の
検査装置であつて、該放物面鏡の焦点位置から該
放物面鏡にレーザ光を出射し反射光として第1の
平行光を発生させる手段と、該第1の平行光と垂
直に配置された平面鏡で該第1の平行光を反射さ
せて該放物面鏡へ再度入射させその反射光を前記
放物面鏡の焦点位置に集光させる手段と、該焦点
位置に該集光された光軸と垂直に配置された反射
面で前記放物面鏡から再度反射されたレーザ光を
入射角と等しい角度で反射させ前記平面鏡に向け
て第2の平行光を発生させる手段と、該放物面鏡
と該平面鏡との間に配置され、該両鏡間の光の通
路の一部を遮蔽しかつ前記第1の平行光と前記第
2の平行光とが干渉して生ずる干渉縞を映し出す
手段とからなり、干渉縞の紋様から放物面鏡の歪
みを検査することを特徴とした放物面鏡の検査装
置。
1 A parabolic mirror inspection device for inspecting the distortion of the mirror surface of a parabolic mirror, which emits a laser beam from the focal position of the parabolic mirror to the parabolic mirror and generates a first parallel beam as reflected light. means for generating light, and a plane mirror disposed perpendicular to the first parallel light to reflect the first parallel light and make it enter the parabolic mirror again, and transmit the reflected light to the parabolic mirror. means for condensing the light at a focal position; and a reflecting surface disposed at the focal position perpendicular to the condensed optical axis to reflect the laser beam reflected again from the parabolic mirror at an angle equal to the incident angle. a means for generating a second parallel beam toward the plane mirror; a means disposed between the parabolic mirror and the plane mirror, the means for blocking a part of the light path between the two mirrors; A parabolic mirror inspection device comprising means for projecting interference fringes produced by interference between parallel light and the second parallel light, and inspecting distortion of the parabolic mirror from the pattern of the interference fringes. .
JP24056084A 1984-11-16 1984-11-16 Testing device of parabolic mirror Granted JPS61120037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24056084A JPS61120037A (en) 1984-11-16 1984-11-16 Testing device of parabolic mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24056084A JPS61120037A (en) 1984-11-16 1984-11-16 Testing device of parabolic mirror

Publications (2)

Publication Number Publication Date
JPS61120037A JPS61120037A (en) 1986-06-07
JPH0252209B2 true JPH0252209B2 (en) 1990-11-09

Family

ID=17061339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24056084A Granted JPS61120037A (en) 1984-11-16 1984-11-16 Testing device of parabolic mirror

Country Status (1)

Country Link
JP (1) JPS61120037A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109163682B (en) * 2018-09-11 2020-08-18 苏州如期光电科技有限公司 Detection device and method for long-focus large-off-axis-amount off-axis paraboloid

Also Published As

Publication number Publication date
JPS61120037A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
CA1139441A (en) Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed
US4373774A (en) Illuminator for supplying a divergent illuminating beam from a predetermined area of a plane
US4689480A (en) Arrangement for improved scanned 3-D measurement
JPH0368913A (en) Luminous curtain generator
US4063088A (en) Method of and means for testing a glancing-incidence mirror system of an X-ray telescope
US6100519A (en) Photo-detector based calculating means having a grating wheel with integrated lenses
JPH0252209B2 (en)
JPS5815767B2 (en) Hikari Bee Musou Saho Seiko Gakukei
US5896362A (en) Lens Inclination Adjustment System
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
SU1675827A1 (en) Microscope
JP3041205B2 (en) Reference plate for interferometer
JP3106521B2 (en) Optical inspection equipment for transparent substrates
JPH0511600B2 (en)
JPS59171812A (en) Optical inspection device and method
JP3276486B2 (en) Exposure equipment
JP3040131B2 (en) Spherical surface scratch inspection device
JPH04297810A (en) Optical tester
JP2915599B2 (en) Method and apparatus for measuring toroidal surface
JPS63169612A (en) Optical scanner
JPS6321854B2 (en)
JP2756715B2 (en) Inspection method of Dach reflector molding mold
SU1716318A1 (en) Method to test concave elliptical surfaces
JPH01245137A (en) Laser beam projecting system in glass disk surface inspection instrument